Non-Instantaneous Impulsive Differential Equations with Finite State Dependent Delay and Ulam-Type Stability

Ravi P. Agarwal

Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; Distinguished University Professor of Mathematics, Florida Institute of Technology, Melbourne, FL 32901, USA E-mail: agarwal@tamuk.edu

S. Hristova

Plovdiv University, Tzar Asen 24, 4000 Plovdiv, Bulgaria E-mail: snehri@gmail.com

D. O'Regan

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland E-mail: donal.oregan@nuigalway.ie

Abstract

We consider an initial value problem (IVP) for a nonlinear system of non-instantaneous impulsive differential equations with state dependent delay (NIDDE) and Ulam-type stability is studied.

1 Statement of the problem

Let the points $t_i, s_i \in [0, T]$: $s_0 = 0, t_{k+1} = T, 0 < t_i < s_i < t_{i+1}, i = 1, 2, ..., k$ be given. Consider the space $PC_0 = C([-r, 0], E)$ endowed with the norm $\|y\|_{PC_0} = \sup_{t \in [-r, 0]} \{\|y(t)\|_E : y \in PC_0\}$; here

E is a Banach space.

The intervals (s_i, t_{i+1}) , i = 0, 1, 2, ..., k will be the intervals on which the fractional differential equation will be given and the intervals (t_i, s_i) , i = 1, 2, ..., k will be called impulsive intervals and on these intervals impulsive conditions are given.

Consider the IVP for the NIDDE

$$\begin{aligned} x'(t) &= f(t, x_{\rho(t, x_t)}) & \text{for } t \in (s_i, t_{i+1}], \quad i = 0, 1, 2, \dots, k, \\ x(t) &= g_i(t, x(t_i)), \quad t \in (t_i, s_i], \quad i = 1, 2, \dots, k, \\ x(t) &= \phi(t) & \text{for } t \in [-r, 0], \end{aligned}$$
(1.1)

where the functions $f: [0,T] \times PC_0 \to E$; $\rho: [0,T] \times PC_0 \to [0,T]$, $\phi: [-r,0] \to E$; $g_i: [t_i, s_i] \times E \to E$, i = 1, 2, ..., k. Here for any $t \in [0,T]$ the notation $x_t(s) = x(t+s)$, $s \in [-r,0]$ is used, i.e. x_t represents the history of the state x(t) from time t-r up to the present time t. Note that for any $t \in [0,T]$ we let $y_{\rho(t,x_t)}(s) = x(\rho(t, x(t+s)) + s)$, $s \in [-r,0]$, i.e. the function ρ determines the state-dependent delay.

Remark 1.1. Note in the special case $\rho(t, x) \equiv t$ problem (1.1) reduces to an IVP for a delay non-instantaneous impulsive differential equation.

Let \mathcal{PC} be the Banach space of all functions $y : [-r, T] \to E$ which are continuous on [0, T]except for the points $t_i \in (0, T)$ at which $y(t_i+) = \lim_{t \downarrow t_i} y(t)$ and $y(t_i-) = y(t_i) = \lim_{t \uparrow t_i} y(t)$ exist and it is endowed with the norm $\|y\|_{\mathcal{PC}} = \sup_{t \in [-r, T]} \{\|y(t)\|_E : y \in \mathcal{PC}\}.$

We consider the assumptions:

A1. The function
$$f \in C(\bigcup_{i=0}^{k} [s_i, t_{i+1}] \times E, E)$$

- **A2.** The function $\phi \in PC_0$.
- **A3.** The function $\rho \in C(\bigcup_{i=0}^{k} [s_i, t_{i+1}] \times E, [0, T])$ is such that for any $t \in \bigcup_{i=0}^{k} [s_i, t_{i+1}]$ and any function $u \in PC_0$ the inequality $\rho(t, u) \leq t$ holds.
- **A4.** The functions $g_i \in C([t_i, s_i] \times E, E), i = 1, 2, \dots, k$.

Definition 1.1. The function $x \in \mathcal{PC}$ is a solution of the IVP (1.1) iff it satisfies the following integral-algebraic equation

$$x(t) = \begin{cases} \phi(t), & t \in [-r, 0], \\ \phi(0) + \int_{0}^{t} f(s, x_{\rho(s, x_{s})}) \, ds, & t \in (0, t_{1}], \\ g_{i}(t, x(t_{i})), & t \in (t_{i}, s_{i}], \ i = 1, 2, \dots, k, \\ g_{i}(s_{i}, x(t_{i})) + \int_{s_{i}}^{t} f(s, x_{\rho(s, x_{s})}) \, ds, & t \in (s_{i}, t_{i+1}], \ i = 1, 2, \dots, k. \end{cases}$$
(1.2)

2 Ulam types stability

Let $\varepsilon > 0$, $\Psi \ge 0$ and $\Phi \in C(\bigcup_{i=1}^{k} [s_i, t_{i+1}], [0, \infty))$ be nondecreasing. We consider the following inequalities:

$$\left\| y'(t) - f(t, y_{\rho(t, y_t)}) \right\|_E \le \varepsilon \text{ for } t \in (s_i, t_{i+1}], \ i = 0, 1, 2, \dots, k, \left\| y(t) - g_i(t, y(t_i)) \right\|_E \le \varepsilon, \ t \in (t_i, s_i], \ i = 1, 2, \dots, k,$$
 (2.1)

and

$$\begin{aligned} \left\| y'(t) - f(t, y_{\rho(t, y_t)}) \right\|_E &\leq \Phi(t) \text{ for } t \in (s_i, t_{i+1}], \quad i = 0, 1, 2, \dots, k, \\ \left\| y(t) - g_i(t, y(t_i)) \right\|_E &\leq \Psi, \quad t \in (t_i, s_i], \quad i = 1, 2, \dots, k, \end{aligned}$$

$$(2.2)$$

and

$$\|y'(t) - f(t, y_{\rho(t,y_t)})\|_E \le \varepsilon \Phi(t) \text{ for } t \in (s_i, t_{i+1}], \ i = 0, 1, 2, \dots, k, \|y(t) - g_i(t, y(t_i))\|_E \le \varepsilon \Psi, \ t \in (t_i, s_i], \ i = 1, 2, \dots, k.$$

$$(2.3)$$

The inequalities (2.1)–(2.3) have connections with the definitions of Ulam–Hyers stability, Ulam–Hyers–Rassias stability with respect to Φ , Ψ and generalized Ulam–Hyers–Rassias stability, respectively (for detailed definitions see, for example [2]).

Lemma 2.1. Let assumptions A1, A3, A4 be satisfied.

- If $y \in \mathcal{PC}$ is a solution of inequalities (2.1), then it satisfies the following integral-algebraic inequalities

$$\begin{cases} \left\| y(t) - \phi(0) - \int_{0}^{t} f(s, y_{\rho(s, y_{s})}) \, ds \right\|_{E} \leq \varepsilon t, & t \in (0, t_{1}], \\ \left\| y(t) - g_{i}(t, y(t_{i})) \right\|_{E} \leq \varepsilon, & t \in (t_{i}, s_{i}], \ i = 1, 2, \dots, k, \\ \left\| y(t) - g_{i}(s_{i}, y(t_{i})) - \int_{s_{i}}^{t} f(s, y_{\rho(s, y_{s})}) \, ds \right\|_{E} \leq \varepsilon + \varepsilon (t - s_{i}), \ t \in (s_{i}, t_{i+1}], \ k = 1, 2, \dots, k \end{cases}$$

- If $y \in \mathcal{PC}$ is a solution of inequalities (2.2), then it satisfies the following integral-algebraic inequalities

$$\begin{cases} \left\| y(t) - \phi(0) - \int_{0}^{t} f(s, y_{\rho(s, y_{s})}) \, ds \right\|_{E} \leq \int_{0}^{t} \Phi(s) \, ds, & t \in (0, t_{1}], \\ \left\| y(t) - g_{i}(t, y(t_{i})) \right\|_{E} \leq \Psi, & t \in (t_{i}, s_{i}], \ i = 1, 2, \dots, k, \\ \left\| y(t) - g_{i}(s_{i}, y(t_{i})) - \int_{s_{i}}^{t} \left| f(s, y_{\rho(s, y_{s})}) \right| \, ds \right\|_{E} \leq \Psi + \int_{s_{i}}^{t} \Phi(s) \, ds, \ t \in (s_{i}, t_{i+1}], \ i = 1, 2, \dots, k \end{cases}$$

Remark 2.1. We have a similar result for the inequality (2.3).

Next we discuss the existence of the solution of (1.1), given by Definition 1.1, using the Banach contraction principle.

Theorem 2.1 (Existence result). Let the following conditions be satisfied:

1. Assumption A1 is satisfied and there exists a constant $L_f > 0$ such that for any $t \in \bigcup_{i=1}^{k} [s_i, t_{i+1}]$ and any functions $u, v \in \mathcal{PC}$ the inequality

$$\left\| f(t, u_{\rho(t, u_t)}) - f(t, v_{\rho(t, v_t)}) \right\|_E \le L_f \| u_{\rho(t, u_t)} - v_{\rho(t, v_t)} \|_{PC_0}$$

holds.

2. Assumption A4 is satisfied and there exist constants $L_{g_i} > 0$, i = 1, 2, ..., k, such that

$$||g_i(t,x) - g_i(t,y)||_E \le L_{g_i}||x - y||_E, \ t \in [t_i, s_i], \ x, y \in E, \ i = 1, 2, \dots, k$$

- 3. Assumptions A2, A3 are satisfied.
- 4. The inequality $\gamma = \max_{i=1,2,\dots,k} L_{g_i} + \eta L_f < 1$ holds, where $\eta = \max\{t_{i+1} s_i, i = 0, 1, \dots, k\}$.

Then the initial value problem (1.1) has a unique solution $x \in \mathcal{PC}$ as defined in Definition 1.1.

Theorem 2.2 (Stability results). Let the conditions of Theorem 2.1 be satisfied.

(i) Assume for any $\varepsilon > 0$ inequality (2.1) has at least one solution $y_{\varepsilon} \in \mathcal{PC}$. Then problem (1.1) is Ulam-Hyers stable, i.e.

$$||x(t) - y_{\varepsilon}(t)||_{E} < c_{f,g_{i}}\varepsilon, \ t \in [0,T]$$

with

$$c_{f,g_i} = 1 + (1+\eta) \sum_{j=1}^{k-1} \left(\prod_{m=0}^{j-1} L_{g_{k-m}}\right) e^{jL_f\eta} + \left(\prod_{j=1}^k L_{g_j}\right) \eta e^{(k+1)L_f\eta}$$

where x is the solution of (1.1).

- (ii) Suppose there exist constants $\Psi \ge 0$, $\Lambda_{\Phi} > 0$ and a function $\Phi \in C\left(\bigcup_{i=1}^{k} [s_i, t_{i+1}], [0, \infty)\right)$ such that for any $t \in [s_i, t_{i+1}]$, i = 0, 1, 2, ..., k inequality $\int_{s_i}^{t} \Phi(s) \, ds \le \Lambda_{\Phi} \Phi(t)$ holds and for any $\varepsilon > 0$ inequality (2.3) has at least one solution $y_{\varepsilon}(t) \in \mathcal{PC}$. Then problem (1.1) is generalized Ulam-Hyers-Rassias stable with respect to Φ, Ψ .
- (iii) Assume there exist constants $\Psi \ge 0$, $\Lambda_{\Phi} > 0$ and a function $\Phi \in C\left(\bigcup_{i=1}^{k} [s_i, t_{i+1}], [0, \infty)\right)$ such that for any $t \in [s_i, t_{i+1}]$, i = 0, 1, 2, ..., k inequality $\int_{s_i}^{t} \Phi(s) \, ds \le \Lambda_{\Phi} \Phi(t)$ holds and inequality (2.2) has at least one solution $y \in \mathcal{PC}$. Then problem (1.1) is Ulam-Hyers-Rassias stable with respect to Φ , Ψ , i.e. $||x(t) y(t)||_E < c_{f,g_i}(\Psi + \Phi(t)), t \in [0, T]$ with

$$C = \max\{1, \Lambda_{\Phi}\}, \quad c_{f,g_i} = C e^{L_f \eta} \Big(1 + \sum_{i=1}^k \prod_{m=0}^{i-1} (L_{g_{k-m}} e^{L_f \eta}) \Big),$$

where x is the solution of (1.1).

Remark 2.2. Ulam stability properties of ordinary differential equations were studied in [2], for impulsive differential equations without any type of delays see [3] and for impulsive differential equations with variable delays see [4].

Acknowledgement

This paper is partially supported by the project MU17FMI007.

References

- R. Agarwal, S. Hristova, D. O'Regan, Non-Instantaneous Impulses in Differential Equations. Springer, Cham, 2017.
- [2] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26 (2010), no. 1, 103–107.
- [3] J. R. Wang, M. Fečkan, Y. Zhou, Ulam's type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395 (2012), no. 1, 258–264.
- [4] J. R. Wang, A. Zada, W. Ali, Ulam's-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces. Int. J. Nonlinear Sci. Numer. Simul. 19 (2018), no. 5, 553–560.