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Abstract
We consider an initial value problem (IVP) for a nonlinear system of non-instantaneous

impulsive differential equations with state dependent delay (NIDDE) and Ulam-type stability
is studied.

1 Statement of the problem
Let the points ti, si ∈ [0, T ]: s0 = 0, tk+1 = T , 0 < ti < si < ti+1, i = 1, 2, . . . , k be given. Consider
the space PC0 = C([−r, 0], E) endowed with the norm ∥y∥PC0 = sup

t∈[−r,0]
{∥y(t)∥E : y ∈ PC0}; here

E is a Banach space.
The intervals (si, ti+1), i = 0, 1, 2, . . . , k will be the intervals on which the fractional differential

equation will be given and the intervals (ti, si), i = 1, 2, . . . , k will be called impulsive intervals and
on these intervals impulsive conditions are given.

Consider the IVP for the NIDDE

x′(t) = f(t, xρ(t,xt)) for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k,

x(t) = gi(t, x(ti)), t ∈ (ti, si], i = 1, 2, . . . , k,

x(t) = ϕ(t) for t ∈ [−r, 0],

(1.1)

where the functions f : [0, T ]×PC0 → E; ρ : [0, T ]×PC0 → [0, T ], ϕ : [−r, 0] → E; gi : [ti, si]×E →
E, i = 1, 2, . . . , k. Here for any t ∈ [0, T ] the notation xt(s) = x(t + s), s ∈ [−r, 0] is used, i.e. xt
represents the history of the state x(t) from time t− r up to the present time t. Note that for any
t ∈ [0, T ] we let yρ(t,xt)(s) = x(ρ(t, x(t + s)) + s), s ∈ [−r, 0], i.e. the function ρ determines the
state-dependent delay.
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Remark 1.1. Note in the special case ρ(t, x) ≡ t problem (1.1) reduces to an IVP for a delay
non-instantaneous impulsive differential equation.

Let PC be the Banach space of all functions y : [−r, T ] → E which are continuous on [0, T ]
except for the points ti ∈ (0, T ) at which y(ti+) = lim

t↓ti
y(t) and y(ti−) = y(ti) = lim

t↑ti
y(t) exist and

it is endowed with the norm ∥y∥PC = sup
t∈[−r,T ]

{∥y(t)∥E : y ∈ PC}.

We consider the assumptions:

A1. The function f ∈ C
( k∪
i=0

[si, ti+1]× E,E
)
.

A2. The function ϕ ∈ PC0.

A3. The function ρ ∈ C
( k∪
i=0

[si, ti+1] × E, [0, T ]
)

is such that for any t ∈
k∪

i=0
[si, ti+1] and any

function u ∈ PC0 the inequality ρ(t, u) ≤ t holds.

A4. The functions gi ∈ C([ti, si]× E,E), i = 1, 2, . . . , k.

Definition 1.1. The function x ∈ PC is a solution of the IVP (1.1) iff it satisfies the following
integral-algebraic equation

x(t) =



ϕ(t), t ∈ [−r, 0],

ϕ(0) +

t∫
0

f(s, xρ(s,xs)) ds, t ∈ (0, t1],

gi(t, x(ti)), t ∈ (ti, si], i = 1, 2, . . . , k,

gi(si, x(ti)) +

t∫
si

f(s, xρ(s,xs)) ds, t ∈ (si, ti+1], i = 1, 2, . . . , k.

(1.2)

2 Ulam types stability

Let ε > 0, Ψ ≥ 0 and Φ ∈ C
( k∪
i=1

[si, ti+1], [0,∞)
)

be nondecreasing. We consider the following

inequalities: ∥∥y′(t)− f(t, yρ(t,yt))
∥∥
E
≤ ε for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k,∥∥y(t)− gi(t, y(ti))

∥∥
E
≤ ε, t ∈ (ti, si], i = 1, 2, . . . , k,

(2.1)

and ∥∥y′(t)− f(t, yρ(t,yt))
∥∥
E
≤ Φ(t) for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k,∥∥y(t)− gi(t, y(ti))

∥∥
E
≤ Ψ, t ∈ (ti, si], i = 1, 2, . . . , k,

(2.2)

and ∥∥y′(t)− f(t, yρ(t,yt))
∥∥
E
≤ εΦ(t) for t ∈ (si, ti+1], i = 0, 1, 2, . . . , k,∥∥y(t)− gi(t, y(ti))

∥∥
E
≤ εΨ, t ∈ (ti, si], i = 1, 2, . . . , k.

(2.3)

The inequalities (2.1)–(2.3) have connections with the definitions of Ulam–Hyers stability,
Ulam–Hyers–Rassias stability with respect to Φ, Ψ and generalized Ulam–Hyers–Rassias stabil-
ity, respectively (for detailed definitions see, for example [2]).

Lemma 2.1. Let assumptions A1, A3, A4 be satisfied.
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- If y ∈ PC is a solution of inequalities (2.1), then it satisfies the following integral-algebraic
inequalities

∥∥∥∥y(t)− ϕ(0)−
t∫

0

f(s, yρ(s,ys)) ds

∥∥∥∥
E

≤ εt, t ∈ (0, t1],∥∥y(t)− gi(t, y(ti))
∥∥
E
≤ ε, t ∈ (ti, si], i = 1, 2, . . . , k,∥∥∥∥y(t)− gi(si, y(ti))−

t∫
si

f(s, yρ(s,ys)) ds

∥∥∥∥
E

≤ ε+ ε(t− si), t ∈ (si, ti+1], k = 1, 2, . . . , k.

- If y ∈ PC is a solution of inequalities (2.2), then it satisfies the following integral-algebraic
inequalities

∥∥∥∥y(t)− ϕ(0)−
t∫

0

f(s, yρ(s,ys)) ds

∥∥∥∥
E

≤
t∫

0

Φ(s) ds, t ∈ (0, t1],∥∥y(t)− gi(t, y(ti))
∥∥
E
≤ Ψ, t ∈ (ti, si], i = 1, 2, . . . , k,∥∥∥∥y(t)− gi(si, y(ti))−

t∫
si

|f(s, yρ(s,ys))| ds
∥∥∥∥
E

≤ Ψ+

t∫
si

Φ(s) ds, t ∈ (si, ti+1], i = 1, 2, . . . , k.

Remark 2.1. We have a similar result for the inequality (2.3).

Next we discuss the existence of the solution of (1.1), given by Definition 1.1, using the Banach
contraction principle.

Theorem 2.1 (Existence result). Let the following conditions be satisfied:

1. Assumption A1 is satisfied and there exists a constant Lf > 0 such that for any t ∈
k∪

i=1
[si, ti+1]

and any functions u, v ∈ PC the inequality∥∥f(t, uρ(t,ut))− f(t, vρ(t,vt))
∥∥
E
≤ Lf∥uρ(t,ut) − vρ(t,vt)∥PC0

holds.

2. Assumption A4 is satisfied and there exist constants Lgi > 0, i = 1, 2, . . . , k, such that

∥gi(t, x)− gi(t, y)∥E ≤ Lgi∥x− y∥E , t ∈ [ti, si], x, y ∈ E, i = 1, 2, . . . , k.

3. Assumptions A2, A3 are satisfied.

4. The inequality γ = max
i=1,2,...,k

Lgi + ηLf < 1 holds, where η = max{ti+1 − si, i = 0, 1, . . . , k}.

Then the initial value problem (1.1) has a unique solution x ∈ PC as defined in Definition 1.1.

Theorem 2.2 (Stability results). Let the conditions of Theorem 2.1 be satisfied.
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(i) Assume for any ε > 0 inequality (2.1) has at least one solution yε ∈ PC. Then problem (1.1)
is Ulam–Hyers stable, i.e.

∥x(t)− yε(t)∥E < cf,giε, t ∈ [0, T ]

with

cf,gi = 1 + (1 + η)

k−1∑
j=1

( j−1∏
m=0

Lgk−m

)
ejLfη +

( k∏
j=1

Lgj

)
ηe(k+1)Lfη,

where x is the solution of (1.1).

(ii) Suppose there exist constants Ψ ≥ 0, ΛΦ > 0 and a function Φ ∈ C
( k∪
i=1

[si, ti+1], [0,∞)
)

such

that for any t ∈ [si, ti+1], i = 0, 1, 2, . . . , k inequality
t∫

si

Φ(s) ds ≤ ΛΦΦ(t) holds and for any

ε > 0 inequality (2.3) has at least one solution yε(t) ∈ PC. Then problem (1.1) is generalized
Ulam–Hyers–Rassias stable with respect to Φ, Ψ.

(iii) Assume there exist constants Ψ ≥ 0, ΛΦ > 0 and a function Φ ∈ C
( k∪
i=1

[si, ti+1], [0,∞)
)

such

that for any t ∈ [si, ti+1], i = 0, 1, 2, . . . , k inequality
t∫

si

Φ(s) ds ≤ ΛΦΦ(t) holds and inequality

(2.2) has at least one solution y ∈ PC. Then problem (1.1) is Ulam–Hyers–Rassias stable
with respect to Φ, Ψ, i.e. ∥x(t)− y(t)∥E < cf,gi(Ψ + Φ(t)), t ∈ [0, T ] with

C = max{1,ΛΦ}, cf,gi = CeLfη
(
1 +

k∑
i=1

i−1∏
m=0

(Lgk−m
eLfη)

)
,

where x is the solution of (1.1).

Remark 2.2. Ulam stability properties of ordinary differential equations were studied in [2], for
impulsive differential equations without any type of delays see [3] and for impulsive differential
equations with variable delays see [4].
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Let I ⊂ R be an interval non-degenerate in the point, b0 = sup I and

I0 = I \ {b0}.

Consider the linear system of impulsive equations with fixed points of impulses actions

dx

dt
= P (t)x+ q(t) for a.a. t ∈ I0 \ {τl}+∞

l=1 , (1)

x(τl+)− x(τl−) = Glx(τl) + gl (l = 1, 2, . . . ), (2)

where P ∈ Lloc(I0,Rn×n), q ∈ Lloc(I0,Rn), Gl ∈ Rn×n (l = 1, 2, . . . ), gl ∈ Rn (l = 1, 2, . . . ), τl ∈ I0
(l = 1, 2, . . . ), τi ̸= τj if i ̸= j, and lim

l→+∞
τl = b0.

Let H = diag(h1, . . . , hn) : I0 → Rn×n be a diagonal matrix-functions with continuous diagonal
elements hk : I0 → ]0,+∞[ (k = 1, . . . , n).

We consider the problem of the well-posedness of solution x : I0 → Rn of the system (1), (2),
satisfying the modified Cauchy condition

lim
t→b0

(H−1(t)x(t)) = 0. (3)

Along with the system (1), (2) consider the perturbed singular system

dx

dt
= P̃ (t)x+ q̃(t) for a.a. t ∈ I0 \ {τl}+∞

l=1 , (4)

x(τl+)− x(τl−) = G̃lx(τl) + g̃l (l = 1, 2, . . . ), (5)

where P̃ ∈ Lloc(I0,Rn×n), q̃ ∈ Lloc(I0,Rn), G̃l ∈ Rn×n (l = 1, 2, . . . ), g̃l ∈ Rn (l = 1, 2, . . . ).
In the paper, we investigate the question when the unique solvability of the problem (1), (2); (3)

guarantees the unique solvability of the problem (4), (5); (3) and also nearness of its solutions in
the definite sense if matrix-functions P and P̃ , Gl and G̃l (l = 1, 2, . . . ), and vector-functions q and
q̃ and gl and g̃l (l = 1, 2, . . . ) are accordingly close to each other.

The analogous problem for systems (1) of ordinary differential equations with singularities are
investigated in [2–4].

The singularity of system (1) is considered in the sense that the matrix P and vector q functions,
in general, are not integrable at the point b. In general, the solution of the problem (1), (2); (3)
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is not continuous at the point b and, therefore, it is not a solution in the classical sense. But its
restriction on every interval from I0 is a solution of the system (1), (2). In connection with this we
give the example from [4].

Let α > 0 and ε ∈ ]0, α[ . Then the problem

dx

dt
= −αx

t
+ ε|t|ε−1−α, lim

t→0
(tαx(t)) = 0

has the unique solution x(t) = |t|ε−α sgn t. This function is not solution of the equation on the set
I = R, but its restrictions on ]−∞, 0[ and ]0,+∞[ are solutions of that.

We give sufficient conditions guaranteeing the well-posedness of the problem (1), (2); (3). The
analogous results belong to I. Kiguradze [3, 4] for the modified Cauchy problem for systems of
ordinary differential equations with singularities.

Some boundary value problems for linear impulsive systems with singularities are investigated
in [1] (see, also references therein).

In the paper, the use will be made of the following notation and definitions.
N is the set of all natural numbers.
R = ] − ∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open

intervals.
Rn×m is the space of all real n×m matrices X = (xij)

n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

If X = (xij)
n,m
i,j=1 ∈ Rn×m, then |X| = (|xij |)n,mi,j=1.

Rn×m
+ = {(xij)n,mi,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)}.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-
minant of X and the spectral radius of X; In is the identity n× n-matrix.

The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-

ponent is such.
X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X :

[a, b] → Rn×m at the point t.
C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-functions X :

[a, b] → D.
C̃loc(I0 \ {τl}+∞

l=1 , D) is the set of all matrix-functions X : It0 → D whose restrictions to an
arbitrary closed interval [a, b] from I0 \ {τl}+∞

l=1 belong to C̃([a, b], D).
L([a, b];D) is the set of all integrable matrix-functions X : [a, b] → D.
Lloc(I0;D) is the set of all matrix-functions X : I0 → D whose restrictions to an arbitrary

closed interval [a, b] from I0 belong to L([a, b], D).
A vector-function x ∈ C̃loc(I0 \ {τl}+∞

l=1 ,R
n) is said to be a solution of the system (1), (2) if

x′(t) = P (t)x(t) + q(t) for a.a. t ∈ It0 \ {τl}+∞
l=1

and there exist one-sided limits x(τl−) and x(τl+) (l = 1, 2, . . . ) such that the equalities (2) hold.
We assume that

det(In +Gl) ̸= 0 (l = 1, 2, . . . ).

The above inequalities guarantee the unique solvability of the Cauchy problem for the corre-
sponding nonsingular systems, i.e. for the case when P ∈ Lloc(I,Rn×n) and q ∈ Lloc(I,Rn).

Let Nt0 = {l ∈ N : t ≤ τl < b} and I0(δ) = [b0 − δ, b0[∩ I0 for every δ > 0.
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Definition. The problem (1), (2); (3) is said to be H-well-posed if it has the unique solution x and
for every ε > 0 there exists η > 0 such that the problem (4), (5); (3) has the unique solution x̃ and
the estimate ∥∥H(t)(x(t)− x̃(t))

∥∥ < ε for t ∈ I

holds for every P̃ ∈ Lloc(I0,Rn×n), q̃ ∈ Lloc(I0,Rn), G̃l ∈ Rn×n (l = 1, 2, . . . ), g̃l ∈ Rn (l = 1, 2, . . . )
such that det(In + G̃l) 6= 0 (l = 1, 2, . . . ),∥∥∥∥

b−∫
t

H−1(s)|P̃ (s)− P (s)|H(s) ds

∥∥∥∥+
∥∥∥ ∑
l∈Nt0

H−1(τl)|G̃l −Gl|H(τl)
∥∥∥ < η for t ∈ I0(δ)

and ∥∥∥∥
b−∫
t

H−1(s)|q̃(s)− q(s)| ds
∥∥∥∥+

∥∥∥ ∑
l∈Nt0

H−1(τl)|g̃l − gl|
∥∥∥ < η for t ∈ I0(δ).

Let P0 ∈ Lloc(It0 ,Rn×n) and G0l ∈ Rn×n (l = 1, 2, . . . ). Then a matrix-function C0 : I0 × I0 →
Rn×n is said to be the Cauchy matrix of the homogeneous impulsive system

dx

dt
= P0(t)x, (6)

x(τl+)− x(τl−) = G0lx(τl) (l = 1, 2, . . . ), (7)

if, for every interval J ⊂ I0 and τ ∈ J , the restriction of C0( · , τ) : I0 → Rn×n on J is the
fundamental matrix of the system (6), (7) satisfying the condition C0(τ, τ) = In. Therefore, C0 is
the Cauchy matrix of (6), (7) if and only if the restriction of C0 on J ×J , for every interval J ⊂ I0,
is the Cauchy matrix of the system in the sense of definition given in [5].

Theorem. Let there exist a matrix-function P0 ∈ Lloc(It0 ,Rn×n) and constant matrices Gl ∈ Rn×n
(l = 1, 2, . . . ) and B0, B ∈ Rn×n+ such that

det(In +G0l) 6= 0 (l = 1, 2, . . . ),

r(B) < 1,

and the estimates

|C0(t, τ)| ≤ H(t)B0H
−1(τ) for b− δ ≤ t ≤ τ < b, τ 6= τl (l = 1, 2, . . . ),∣∣C0(t, τl)G0l(In +G0l)

−1∣∣ ≤ H(t)B0H
−1(τl) for b− δ ≤ t ≤ τl < b (l = 1, 2, . . . )

and

b−∫
t

∣∣C0(t, τ)(P (τ)− P0(τ))
∣∣H(τ) dτ

+
∑
l∈Nt0

∣∣C0(t, τl)G0l(In +G0l)
−1∣∣ |Gl −G0l|H(τl) ≤ H(t)B for t ∈ I0(δ)

hold for some δ > 0, where C0 is the Cauchy matrix of the system (5), (6). Let, moreover,

lim
t→b

(∥∥∥∥
t∫

t0

H−1(τ)|C0(t, τ)| |q(τ)| dτ
∥∥∥∥+

∥∥∥ ∑
l∈Nt0

H−1(τl)
∣∣C0(t, τl)G0l(In +G0l)

−1∣∣ |gl| ∥∥∥) = 0.

Then the problem (1), (2); (3) is H-well-posed.
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1 Introduction
For the equation

y(n) = p0|y|k sgn y, n ≥ 2, k > 1, p0 > 0, (1.1)
we study blow-up solutions, i.e. those with lim

x→x∗−0
y(x) = ∞.

The origin of the considered problem is described in [8, problem 16.4], and [6]. It was earlier
proved for sufficiently large n (see [9]), for n = 12 (see [7]), for n = 13, 14 (see [4]), and for n = 15
(see [11]), that there exists k = k(n) > 1 such that equation (1.1) has a solution with nonpower-law
behavior, namely,

y(x) = (x∗ − x)−αh(log(x∗ − x)), x→ x∗ − 0, (1.2)
where h is a positive periodic non-constant function on R. Now we prove this result for arbitrary
n ≥ 12.

Note that it was also proved for n = 2 (see [8]) and for n = 3, 4 [1], that all blow-up solutions
have power-law asymptotic behavior:

y(x) = C(x∗ − x)−α(1 + o(1)), x→ x∗ − 0, (1.3)
with

α =
n

k − 1
, C =

(α(α+ 1) · · · (α+ n− 1)

p0

) 1
k−1

. (1.4)

Existence of a solution satisfying (1.3) was proved for arbitrary n ≥ 2. For 2 ≤ n ≤ 11 an (n− 1)-
parametric family of such solutions to equation (1.1) was proved to exist (see [1,2], [3, Ch. I(5.1)]).
It was proved that for slightly superlinear equations of arbitrary order n ≥ 5 all blow-up solutions
have power-law asymptotic behavior (see [5]).

2 The main result
In this section, a result on existence of solutions with non-power behavior is formulated for equation
(1.1) with n ≥ 12.
Theorem 2.1. For n ≥ 12 there exists k > 1 such that equation (1.1) has a solution y(x) with

y(j)(x) = (x∗ − x)−α−jhj(log(x
∗ − x)), j = 0, 1, . . . , n− 1,

where α is defined by (1.4) and hj are periodic positive non-constant functions on R.
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3 Proof of the main result
To prove the main result we transform equation (1.1) into the dynamical system and use a version
of the Hopf Bifurcation theorem (see [10]).

3.1 Transformation of equation (1.1)

Equation (1.1) can be transformed into a dynamical system (see [1] or [3, Ch. I(5.1)]), by using the
substitution

x∗ − x = e−t, y = (C + v) eαt, (3.1)

where C and α are defined by (1.4). The derivatives y(j), j = 0, 1, . . . , n− 1, become

e(α+j)t · Lj(v, v
′, . . . , v(j)),

where v(j) = djv
dtj

, and Lj is a linear function with

Lj(0, 0, . . . , 0) = Cα(α+ 1) · · · (α+ j − 1) ̸= 0

and the coefficient of v(j) is equal to 1.
Thus (1.1) is transformed into

e(α+n)t · Ln(v, v
′, . . . , v(n)) = p0(C + v)keαkt, (3.2)

v(n) = p0(C + v)k − p0C
k −

n−1∑
j=0

ajv
(j), (3.3)

where aj , j = 1, . . . , n, are the coefficients of v(j) in the linear function Ln, and are (n− j)-degree
polynomial functions in α. Equation (3.3) can be written as

v(n) = kCk−1p0v −
n−1∑
j=0

ajv
(j) + f(v), (3.4)

where

f(v) = p0
(
(C + v)k − Ck − kCk−1v

)
= O(v2),

f ′(v) = O(v) as v → 0,

Suppose V = (V0, . . . , Vn−1) is the vector with coordinates Vj = v(j), j = 0, . . . , n − 1. Then
equation (3.4) can be written as

dV

dt
= AV + F (V ), (3.5)

where A is a constant n× n matrix, namely,

A =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1

−ã0 −a1 −a2 −a3 . . . −an−1
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with

ã0 = a0 − kck−1p0 = a0 − kα(α+ 1) · · · (α+ n− 1) = a0 − (α+ 1) · · · (α+ n− 1)(α+ n) (3.6)

and eigenvalues satisfying the equation

0 = det(A− λE) = (−1)n+1(−ã0 − a1λ− · · · − an−1λ
n−1 − λn)

= (−1)n+1
(
(α+ 1)(α+ 2) · · · (α+ n)− (λ+ α) · · · (λ+ α+ n− 1)

)
, (3.7)

which is equivalent to
n−1∏
j=0

(λ+ α+ j) =

n−1∏
j=0

(1 + α+ j). (3.8)

F in (3.5) is the vector function F (V ) = (0, . . . , 0, Fn−1(V )) and Fn−1(V ) = f(V0).

3.2 Preliminary results
Theorem 3.1 (Modification of the Hopf Theorem [10]). Consider an α-parameterized dynamical
system ẋ = f(x, α) where f : Rn+1 7→ Rn is a Cr-function (r ≥ 3) such that f(0, α) = 0 for all
α ∈ R. Suppose the Jacobian matrix Dxf(0, α̃) ≡ A(α̃) has ±iβ as simple eigenvalues for some
α̃ ∈ R. Let v and w be eigenvectors such that Av = βiv, A∗w = βiw, where A∗ denotes the
transpose conjugate matrix of the matrix A. Put

φ ≡ Re(eitv), ψ ≡ Re(eitw), Θj =
1

j!

2π∫
0

(∂j(fx)
∂αj

(0, α̃)φ,ψ
)
dt.

If Θc ̸= 0 for some odd number c, then (0, α̃) is a bifurcation point of periodic solutions of
ẋ = f(x, α). More precisely, there exist continuous mappings ε 7→ α(ε) ∈ R, ε 7→ T (ε) ∈ R, and
ε 7→ b(ε) ∈ Rn defined in a neighborhood of 0 and such that α(0) = α̃, T (0) = 2π

q , b(0) = 0,
b(ε) ̸= 0 for ε ̸= 0, and the solutions to the problems ẋ = f(x, α(ε)), x(0) = b(ε) are T (ε)-periodic
and non-constant.

To apply the Hopf Bifurcation theorem, we study equation (3.5) and the roots of the algebraic
equation (3.8).

Lemma 3.1 ([4]). For any integer n ≥ 12 there exist α > 0 and q > 0 such that

n−1∏
j=0

(qi+ α+ j) =

n−1∏
j=0

(1 + α+ j) (3.9)

with i2 = −1.

Lemma 3.2 ([4]). For any α > 0 and any integer n > 1 all roots λ ∈ C to equation (3.8) are
simple.

3.3 Proof of Theorem 2.1
We can obtain some useful formulas

ã0 = α(α+ 1) . . . (α+ n− 1)− (α+ 1) · · · (α+ n) = −n(α+ 1) . . . (α+ n− 1), (3.10)
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dn−1(−ã0)
dαn−1

= n!,
dn−1(−a1)
dαn−1

= −n!, (3.11)

dn−2(−ã0)
dαn−2

= n
(
(n− 1)!α+ (n− 2)!

n(n− 1)

2

)
=

(2α+ 1)n!

2
, (3.12)

dn−1(−a2)
dαn−1

= 0,
dn−2(−a2)
dαn−2

= −(n− 2)!
n(n− 1)

2
= −n!

2
. (3.13)

By using (3.7), we can prove for n, α, q from Lemma 3.1 that the vector

v = (1, qi,−q2,−q3i, q4, . . . )

is an eigenvector of the matrix A corresponding to the eigenvalue qi. Consider also an eigenvector
w of the matrix A∗ corresponding to the eigenvalue qi, assuming its last coordinate to equal 1:
w = (. . . . . . , 1). Then

φ = Re(eitv) =
(
cos t,−q sin t,−q2 cos t, q3 sin t, q4 cos t, . . .

)
, ψ = Re(eitw) = (. . . . . . , cos t).

Using formulas (3.11)–(3.13), we obtain

Θn−1 =
1

(n− 1)!

2π∫
0




0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
n! −n! 0 . . . 0




cos t
−q sin t

...

...

 ,


...
...
...

cos t



 dt

=
1

(n− 1)!

2π∫
0

n! (cos2 t+ q sin t cos t) dt = πn ̸= 0,

Θn−2 =
1

(n− 2)!

2π∫
0




0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0

(2α+ 1)n!

2

dn−2(−a1)
dαn−2

−n!
2

0 . . . 0




cos t
−q sin t
−q2 cos t

...

 ,


...
...
...

cos t



 dt

=
π

(n− 2)!

((2α+ 1)n!

2
+
q2n!

2

)
=
πn(n− 1)

2
(2α+ 1 + q2) > 0.

So, if n ≥ 12, then Θn−1 > 0, Θn−2 > 0 (since α > 0), and either n−1 or n−2 is odd. Consequently,
due to the above lemmas, all the conditions of Theorem 3.1 are fulfilled. Therefore, for any n ≥ 12
there exists a family αε > 0 such that equation (3.8) with α = α0 has the imaginary roots λ = ±qi
with q from Lemma 3.1 and, for sufficiently small ε, system (3.5) with α = αε has an arbitrary small
non-zero periodic solution Vε(t). In particular, the coordinate Vε,0(t) = v(t) of the vector Vε(t) is
also a small periodic function with the same period. This function is non-zero, too. Otherwise, all
v(j) and therefore Vε(t) itself should be zero. Then, taking into account (3.1), we obtain

y(x) =
(
C + v(− ln(x∗ − x))

)
(x∗ − x)−α.

Put h(s) = C + v(−s), which is a non-constant continuous periodic and positive for sufficiently
small ε function, and obtain the required equality

y(x) = (x∗ − x)−αh(ln(x∗ − x)).

In the similar way we obtain the related expressions for y(j)(x), j = 0, 1, . . . , n− 1.
Theorem 2.1 is proved.
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1 Introduction
Let M be a metric space. For a given positive integer n consider a family of linear differential
systems depending on the parameter µ ∈ M :

ẋ = A(t, µ)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1.1)

such that the matrix function A( · , µ) : R+ → Rn×n is continuous and bounded for each fixed µ ∈ M
(generally speaking, the bound being dependent on µ). Therefore, fixing a value of the parameter
µ ∈ M in the family (1.1), we obtain a linear differential system with continuous coefficients
bounded on the semiaxis. The Lyapunov exponents of this system are denoted by λ1(µ;A) 6
· · · 6 λn(µ;A). Thus for each k = 1, n we get the function λk( · ;A) : M → R, which is called the
k-th Lyapunov exponent of the family (1.1), and the vector function Λ( · ;A) : M → Rn defined by
Λ(µ;A) = (λ1(µ;A), . . . , λn(µ;A))⊤.

In the theory of Lyapunov exponents, a family of matrix functions A( · , µ), µ ∈ M (as stated,
all functions are continuous and bounded on the semiaxis), is considered under one of the following
two natural assumptions: that the family is continuous either a) in the compact-open topology, or
b) in the uniform topology. The condition a) is equivalent to the fact that if a sequence (µk)k∈N
of points from M converges to a point µ0, then the sequence of functions A(t, µk) of the variable
t > 0 converges to the function A(t, µ0) as k → +∞ uniformly on each segment [0, T ] ⊂ R+,
while the condition b) is equivalent to the fact that this convergence is uniform over the whole
semiaxis R+. Denote the class of families (1.1) that are continuous in the compact-open topology
by Cn(M) and the class of those that are continuous in the uniform topology by Un(M). It is clear
that Un(M) ⊂ Cn(M). In what follows, we shall identify families (1.1) with the matrix-functions
A( · , · ) defining them, and therefore write A ∈ Cn(M) or A ∈ Un(M).

For families (1.1) V. M. Millionshchikov stated [9] the problem of description of their Lyapunov
exponents as functions of a parameter. In other words, this problem is formulated as follows: for
each n ∈ N, k = 1, n, and metric space M describe the following classes of functions:

Λk(M ;n, C) =
{
λk( · ;A) : A ∈ Cn(M)

}
and Λk(M ;n,U) =

{
λk( · ;A) : A ∈ Un(M)

}
. (1.2)

V. M. Millionshchikov proved that for any metric space M and family A ∈ Cn(M) each of the
Lyapunov exponents λk( · ;A) can be represented as the limit of a decreasing sequence of functions
of the first Baire class. In particular, this implies that λk( · ;A) is a function of the second Baire
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class on this space (this assertion followed from the essentially more general Millionshchikov the-
orem obtained by him in [8]). M. I. Rakhimberdiev proved [10] that the number of Baire class
in the description above cannot be reduced even in the case of Lyapunov exponents of families
from Un(M). However, the problem of a complete description of the classes (1.2) until recently
remained unsolved, the solution have been obtained in [6] and [4].

The description of the classes (1.2) is a special case of a more general problem – to describe for
each n ∈ N and metric space M the following classes of vector functions:

Λ(M ;n, C) =
{
Λ( · ;A) : A ∈ Cn(M)

}
and Λ(M ;n,U) =

{
Λ( · ;A) : A ∈ Un(M)

}
. (1.3)

For further discourse note that in the case n = 1, the description of the second of the classes (1.3)
(i.e., of the class Λ(M ; 1,U) = Λ1(M ; 1,U)) is obvious: it consists of all continuous functions
M → R.

Before presenting the main results on the description of the classes (1.2) and (1.3), recall the
necessary definitions of the descriptive set theory [5, p. 267]. Let M and N be sets consisting of
subsets of the space M . A function f : M → R belongs to the class (M, ∗) if for any r ∈ R the
preimage f−1((r,+∞)) of the interval (r,+∞) belongs to M. A function f : M → R belongs to the
class ( ∗,N) if for any r ∈ R the preimage f−1([r,+∞)) of the half-interval [r,+∞) belongs to N.
Finally, a function f belongs to the class (M,N) if it belongs to both classes (M, ∗) and ( ∗,N).

For any n ∈ N, k = 1, n, and metric space M , the classes Λk(M ;n, C) are described in [6] – a
function f : M → R belongs to the class Λk(M ;n, C) if and only if it: 1) belongs to the class ( ∗, Gδ)
and 2) has an upper semi-continuous minorant. For any n > 2, k = 1, n, and metric space M ,
the description of the classes Λk(M ;n,U) is obtained in [4]: a function f : M → R belongs to the
class Λk(M ;n,U) if and only if it satisfies the condition 1) and the condition 2′) it has continuous
minorant and majorant. As can be seen from the formulations above, the descriptions of the classes
Λk(M ;n, C) and Λk(M ;n,U) are similar, however, their proofs differ quite significantly. For any
n ∈ N, k = 1, n, and metric space M , the class Λ(M ;n, C) is described in [6], and the description of
the class Λ(M ;n,U) was announced in [1] (the full proof is given in [2]). Moreover, the description
of both classes (1.3) is obtained by adding to the conditions 1) and 2) (respectively, to 1) and 2′)),
which are necessary since Un(M) ⊂ Cn(M), the inequalities f1(µ) 6 · · · 6 fn(µ) for all µ ∈ M .
The latter inequalities obviously follow from the definition of the vector function Λ( · ;A).

Let us emphasize that the description of the class Λ(M ;n,U) required for its proof an approach
different from those used in [4, 6]. As noted above, the key part in the description of the class
Λ(M ;n,U) is a (constructive) proof of the sufficiency of the conditions. Let us formulate this
description [1, 2], since the results given below are closely related to it.

Theorem. Let M be a metric space, an integer n > 2, and all components of a vector function
(f1, . . . , fn)

⊤ : M → Rn belong to the class ( ∗, Gδ), have continuous minorant and majorant and
satisfy the inequalities f1(µ) 6 · · · 6 fn(µ) for all µ ∈ M . Then there exists a family A ∈ Un(M)
such that Λ( · ;A) = (f1, . . . , fn)

⊤.

If the given vector function is bounded:

sup
{∥∥(f1(µ), . . . , fn(µ))⊤∥∥ : µ ∈ M

}
< +∞,

then the statement of the above theorem can be significantly strengthened. Denote by Qn(M) the
class of families (1.1) of the form A(t, µ) = B(t)+Q(t, µ), t ∈ R+, µ ∈ M , where B(t) is a bounded
n× n matrix, and Q(t, µ) is a bounded n× n matrix vanishing as t → +∞ uniformly with respect
to µ.

The proof of the preceding theorem implies the following
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Corollary 1. For any metric space M , integer n > 2, and vector function (f1, . . . , fn)
⊤ : M → Rn

whose components belong to the class (∗, Gδ), are bounded and satisfy the inequalities f1(µ) 6 · · · 6
fn(µ) for all µ ∈ M , there exists a family A ∈ Qn(M) such that Λ( · ;A) = (f1, . . . , fn)

⊤.

Let us give some more corollaries of the theorem presented here, which answer a number of
open questions.

V. M. Millionshchikov proved [8] that if M is a complete metric space, then for a family
A ∈ Cn(M) the set USi(A) of upper semicontinuity points of the function λi( · ;A) contains a dense
Gδ-set for each i = 1, n. In other words, the upper semicontinuity of these functions is Baire typical
in the space M . This statement is not true for the lower semicontinuity: in [11] for each n > 1 there
is constructed a family A ∈ Cn([0, 1]) such that the set LSi(A) of lower semicontinuity points of the
function λi( · ;A), i = 1, n, is empty. A complete description of the n-tuples (LS1(A), . . . , LSn(A))
for any metric space M and a complete description of the n-tuples (US1(A), . . . , USn(A)) for any
complete metric space M are obtained in [7] for the families A ∈ Cn(M). A family A ∈ Un([0, 1])
for which the set LSi(A) is empty is constructed in [13] for any n > 2 and i = 1, n. Later, using
the ideas of that paper and the results of [7], a complete description of the sets LSi(A), i = 1, n,
for any metric space M and a complete description of the sets USi(A), i = 1, n, for any complete
metric space M were obtained in [3] for the families A ∈ Un(M).

Using the main theorem we can give a complete description of the n-tuples (LS1(A), . . . , LSn(A))
for any metric space M and a complete description of the n-tuples (US1(A), . . . , USn(A)) for any
complete metric space M for the families A ∈ Un(M) thus giving an answer to the problem stated
in [3].

Corollary 2. For any integer n > 2 and metric space M , an n-tuple (M1, . . . ,Mn) of subsets
of M is the n-tuple of the lower semicontinuity sets of the Lyapunov exponents of some family
A ∈ Un(M) (i.e., Mi = LSi(A), i = 1, n) if and only if each set Mi, i = 1, n, is Fσδ and contains
all isolated points of M . Moreover, in cases where such a family exists, it can be chosen from the
class Qn(M).

Corollary 3. For any integer n > 2 and complete metric space M , an n-tuple (M1, . . . ,Mn) of
subsets of M is the n-tuple of the upper semicontinuity sets of the Lyapunov exponents of some
family A ∈ Un(M) (i.e., Mi = USi(A), i = 1, n) if and only if each set Mi, i = 1, n, is a dense
Gδ-set in M . Moreover, in cases where such a family exists, it can be chosen from the class Qn(M).

For each µ ∈ M denote by S(µ;A) the vector space of solutions of the system (1.1). As is well
known, the sets Lα(µ;A)

def
= {x ∈ S(µ;A) : λ[x] < α} and Nα(µ;A)

def
= {x ∈ S(µ;A) : λ[x] ≤ α}

are vector subspaces of the space S(µ;A) for any α ∈ R. Denote their dimensions by dα(µ;A) and
Dα(µ;A) respectively. Next we consider the natural question: what are the functions µ 7→ dα(µ;A)
and µ 7→ Dα(µ;A)? A. N. Vetokhin proved [12] that if M is the space of all linear n-dimensional
systems endowed with either of the topologies: compact-open or uniform, and the family (1.1) is
defined by the equality A(t, µ) = µ(t), µ ∈ M , t ∈ R+, then the first function belongs exactly to
the second Baire class, and the second one belongs exactly to the third Baire class.

The following statements contain a complete description of the classes {dα(µ;A) : A ∈ Cn(M)},
{dα(µ;A) : A ∈ Un(M)}, {Dα(µ;A) : A ∈ Cn(M)}, and {Dα(µ;A) : A ∈ Un(M)} for any metric
space M and numbers α ∈ R, n ∈ N.

Corollary 4. Let an arbitrary metric space M and numbers α ∈ R, n ∈ N, and a function
f : M → {0, . . . , n} be given. Then the equality f = dα( · ;A) (f = Dα( · ;A)) holds for some family
A ∈ Cn(M) if and only if f belongs to the class (Fσ, Fσ) (respectively, to the class (Fσδ, Fσδ)).
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Corollary 5. Let an arbitrary metric space M and numbers α ∈ R, n ∈ N, and a function
f : M → {0, . . . , n} be given. Then the equality f = dα( · ;A) (f = Dα( · ;A)) holds for some family
A ∈ Un(M) if and only if

1) in the case n > 2, the function f belongs to the class (Fσ, Fσ) (respectively, (Fσδ, Fσδ));

2) in the case n = 1, the function f is lower semicontinuous (respectively, upper semicontinuous).

Moreover, for n > 2, if such a family exists, then it can be chosen from the class Qn(M).

Corollaries 4 and 5 allow us to describe the sets of semicontinuity of functions dα( · ;A) and
Dα( · ;A) for families A ∈ Cn(M) and A ∈ Un(M).

Corollary 6. Let an arbitrary metric space M and numbers α ∈ R, and n > 2 (n > 1) be given.
Then a set S ⊂ M is the set of lower semicontinuity points of the function dα( · ;A) for some family
A ∈ Un(M) (A ∈ Cn(M)) if and only if S is a dense Gδ-subset. A set S ⊂ M is the set of upper
semicontinuity points of the function dα( · ;A) for some family A ∈ Un(M) (A ∈ Cn(M)) if and
only if S is a dense Fσ-subset. Moreover, for n > 2, if the mentioned family exists, then it can be
chosen from the class Qn(M).

Corollary 7. Let an arbitrary metric space M and numbers α ∈ R, and n > 2 (n > 1) be given.
Then a set S ⊂ M is the set of lower semicontinuity points of the function Dα( · ;A) for some
family A ∈ Un(M) (A ∈ Cn(M)) if and only if S is a dense Fσδ-subset. A set S ⊂ M is the set of
upper semicontinuity points of the function Dα( · ;A) for some family A ∈ Un(M) (A ∈ Cn(M)) if
and only if S is a dense Gδσ-subset. Moreover, for n > 2, if the mentioned family exists, it can be
chosen from the class Qn(M).
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Let N, Z and R the sets of natural, integer and real numbers, respectively, z = (zn) = (z(n))
(n ∈ N) – l-dimensional vector function (sequence), defined on N with values in Rl, i.e. z : N → Rl.
The set of such sequences is denoted by Sl. Following [1, p. 69] we introduce the definition.

Definition 1. A sequence z ∈ Sl is called periodic with a period ω ∈ N (ω-periodic) if for any
n ∈ N the equality zn+ω = zn holds.

Naturally, if the number ω is the period of the sequence z, then its multiples will also be the
periods of this sequence, i.e. for any n ∈ N, m ∈ N, we have z(n+mω) = z(n). Therefore, in the
future, under the period of the sequence, as a rule, we will understand the smallest of the periods.
In this case, in particular, any constant scalar sequence will be 1-periodic. The set of l-dimensional
ω-periodic sequences is denoted by PSl

ω.
Periodic sequences under certain conditions can be solutions of discrete (difference) systems.

The problem of the existence and construction of periodic solutions of discrete equations and
systems is considered in a sufficiently large number of papers [1,4,6] etc. In these papers solutions
are mainly studied, the period of which coincides with the period of the equation. The results
obtained in this direction are in many respects similar to the corresponding results for ordinary
differential equations. However, in some cases there are significant differences. Note one of them.

As it is known [8], a nonlinear scalar periodic ordinary differential equation does not have non-
constant periodic solutions such that the periods of the solution and equation are incommensurable.
Moreover, N. P. Erugin proved in [5] that such solutions are absent in the linear nonstationary
periodic system of two equations. It is interesting to investigate such questions for discrete equations
and systems. For this purpose, we consider the system

xn+1 = X(xn, yn, n), yn+1 = Y (xn, yn, n), n ∈ N, col(x, y) ∈ S2, (1)

the right side of which is ω-periodic, i.e. there exists the smallest ω ∈ N such that for any fixed
n0 ∈ N equalities X(xn0 , yn0 , n + ω) = X(xn0 , yn0 , n), Y (xn0 , yn0 , n + ω) = Y (xn0 , yn0 , n) hold for
all n ∈ N. Further, the period of the system of the form (1) is understood as the period of its right
side.

Analogous to [2], we introduce the following



22 International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia

Definition 2. A periodic solution with a period of the system (1) such that the numbers ω and Ω
are coprime, we will call strongly irregular.

We note that the paper [7] shows the following: under certain conditions, the scalar discrete
equation can admit a strongly irregular periodic solution. Indeed, let σ be an arbitrary odd number
and (hn) ∈ PS1

σ. Take the discrete equation

xn+1 = −xn − (1− x2n)hn. (2)

The equation (2) has a solution
xn = (−1)n (3)

with period Ω = 2. As the numbers σ and Ω coprime, by Definition 2, the periodic solution (3) of
the equation (2) is strongly irregular.

Thus, Massera’s theorem [8] on the absence of strongly irregular periodic solutions for a scalar
ordinary equation for difference equations, generally speaking, has no complete analog for discrete
equations. An analogue of Massera’s theorem for linear difference equations was obtained in [3]. In
particular, it is shown that the scalar linear homogeneous periodic nonstationary discrete equation
of the first order has not strongly irregular periodic solutions different from the constants.

It is quite natural to raise the question for the two-dimensional case: is there an analogue of
the above theorem by N. P. Erugin on the two-dimensional linear system (1)

xn+1 = anxn + bnyn, yn+1 = cnxn + dnyn, n ∈ N, x ∈ S1, y ∈ S1, (4)

where the coefficient matrix
A =

[
a b
c d

]
is ω-periodic, i.e. A(n + ω) = A(n) for all n ∈ N and at least one of its elements is different from
the constant? As the following example shows, the answer to this question is generally negative.
Indeed, take a linear discrete system

xn+1 = −xn + bnyn, yn+1 = dnyn, n ∈ N, (bn) ∈ PS1
ω, (dn) ∈ PS1

ω, (5)

where at least one of the coefficients (bn), (dn) is different from the constant, i.e. ω ≥ 2, and the
greatest common divisor of numbers 2 and ω is 1. The system (5) has a periodic solution

xn = (−1)n, yn = 0, n ∈ N. (6)

The period of the solution (6) is coprime with the period of the system (5).
Our goal is to distinguish a class of linear two-dimensional discrete systems that have not

strongly irregular periodic solutions.
Further, we say that the columns H(1)(n), . . . , H(k)(n) of some matrix H(n), n ∈ N are linearly

independent if the identity

α1H
(1)(n) + · · ·+ αkH

(k)(n) ≡ 0, n ∈ N, α1, . . . , αk ∈ R

holds if and only if α1 = · · · = αk = 0. Through rankcolH denote the column rank of the matrix
H(n), n ∈ N, i.e. the largest number of its linearly independent columns.

Suppose that the system (4) has a strongly irregular Ω-periodic solution

xn = φn, yn = ψn, φ(n+Ω) = φ(n), ψ(n+Ω) = ψ(n), n ∈ N, (7)
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where ω and Ω are coprime and Ω ≥ 2. This means that

φn+1 ≡ anφn + bnψn, ψn+1 ≡ cnφn + dnψn, n ∈ N. (8)

As the identities (8) are true for all n ∈ N, there are also true

φn+1+Ω ≡ an+Ωφn+Ω + bn+Ωψn+Ω, ψn+1 ≡ cn+Ωφn+Ω + dn+Ωψn+Ω, n ∈ N. (9)

By virtue of the Ω-periodicity of functions φn, ψn, the identities (9) take the following form

φn+1 ≡ an+Ωφn + bn+Ωψn, ψn+1 ≡ cn+Ωφn + dn+Ωψn, n ∈ N. (10)

The identities (8), (10) implies the following

(an+Ω − an)φn + (bn+Ω − bn)ψ ≡ p(11)(n)φn + p(12)(n)ψn ≡ 0,

(cn+Ω − cn)φn + (dn+Ω − dn)ψ ≡ p(21)(n)φn + p(22)(n)ψn ≡ 0,
n ∈ N. (11)

We form a matrix
P (n) =

[
p(11)(n) p(12)(n)

p(21)(n) p(22)(n)

]
, n ∈ N.

We denote by P (j)(n), n ∈ N, j = 1, 2 the columns of this matrix. As P (n) = A(n+Ω)−A(n)
and A(n+ ω) ≡ A(n), n ∈ N, the matrix function P is ω-periodic.

We show that the columns P (1)(n) and P (2)(n) are linearly dependent, i.e. there are exist such
α0, β0 ∈ R, α2

0 + β20 ̸= 0, that α0P
(1)(n) + β0P

(2)(n) ≡ 0, n ∈ N. According to the assumption, at
least one of the functions x = φ, y = ψ is nonstationary. Therefore, there exists n0 ∈ N for which
the inequality φ2

n0
+ ψ2

n0
̸= 0 holds. The identities (11) imply the justice of equalities

φn0+mΩP
(1)(n0 +mΩ) + ψn0+mΩP

(2)(n0 +mΩ) = 0, m ∈ N,

from which, on the basis of the Ω-periodicity of functions φ, ψ, we obtain the equality

φn0P
(1)(n0 +mΩ) + ψn0P

(2)(n0 +mΩ) = 0, m ∈ N. (12)

As the matrix P has a period ω, the equality (12) can be written as

φn0P
(1)(n0 +mΩ+ kω) + ψn0P

(2)(n0 +mΩ+ kω) = 0, k,m ∈ N. (13)

Since k,m are an arbitrary natural numbers and least common multiple of ω and Ω is 1,
for any n ∈ N there exist such k,m that the equation n = n0 + mΩ + kω holds. Therefore,
P (j)(n0 +mΩ + kω) = P (j)(n), n ∈ N, j = 1, 2 for k,m ∈ N. Hence, from the equations (13) we
obtain

φn0P
(1)(n) + ψn0P

(2)(n) = 0, n ∈ N. (14)

By virtue of the fact that φ2
n0

+ψ2
n0

̸= 0, the identity (14) means that the columns of the matrix
P (n), n ∈ N are linearly dependent.

So, we have proved the following

Theorem. If the system (4) has a nonstationary periodic solution such that the solution period is
coprime with the system’s period, then the columns of the matrix are linearly dependent.

Corollary. If the matrix P (n), n ∈ N has a complete column rank, i.e. rankcolP = 2, the system
(4) has not nonstationary strongly irregular periodic solutions.
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Remark 1. As shown above, the discrete periodic system (5) has a strongly irregular 2-periodic
solution (6). The matrix P (n), n ∈ N for this system has the form

P (n) =

[
0 b(n+ 2)− b(n)
0 d(n+ 2)− d(n)

]
, n ∈ N. (15)

The columns of this matrix are linearly dependent and its column rank in generall case is one.

Remark 2. In general, the linear dependence of the columns and rows of a discrete matrix is
not equivalent. This is particularly confirmed by the example (15), where the matrix rows can be
linearly dependent only if

b(n+ 2)− b(n) ≡ l(d(n+ 2)− d(n)), l ∈ R.
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Abstract. In this paper we study an initial boundary-value problem for the Regularized Long
Wave (RLW) equation. A three-level conservative difference scheme is constructed and investigated.
For each new level the obtained algebraic equations are linear with respect to the values of unknown
function.

1 Introduction
We consider one-dimensional RLW equation

∂u

∂t
+

∂u

∂x
+ λu

∂u

∂x
− µ

∂3u

∂x2∂t
= 0, (1.1)

with the physical boundary conditions u → 0 as x → ±∞. Here u(x, t) represents the wave’s
amplitude, and λ and µ are positive parameters.

This equation describes phenomena with weak nonlinearity and dispersion waves, including, for
example, ion-acoustic and magnetohidrodynamic waves in plasma.

The main difficulties of numerical solution of (1.1) consist in physical domain boundless and
nonlinearity of the equation, therefore, it is expedient to restrict the computational domain to a
finite one. Suppose that the initial data u0(x) is compactly supported in a finite domain (a, b) ⊂ R
which contains the compact support of u(x, t).

We consider RLW equation (1.1) with the homogeneous boundary conditions

u(a, t) = 0, u(b, t) = 0, 0 < t ≤ T,

and the initial condition
u(x, 0) = u0(x), a ≤ x ≤ b.

2 Construction of difference scheme
The domain [a, b]× [0, T ] is divided into rectangle grids by

xi = a+ ih, tj = jτ, i = 1, 2, . . . , n, j = 0, 1, 2, . . . , J,

where h = (b − a)/n and τ = T/J denote the spatial and temporal mesh sizes, respectively. For
discrete functions defined on the mesh we use notation U j

i = U(xi, tj), U j
i ∼ u(xi, tj).
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In some cases, for simplicity and not implying vagueness, we omit some indices of the discrete
function. We introduce fictitious values U j

−1, U
j
n+1 which correspond to the abscissaes x−1 = a−h,

xn+1 = b+ h and are defined by the equalities:

U j
−1 = 0, U j

n+1 = 0, j = 0, 1, 2, . . . .

Let
Z0
h =

{
v = (vi) | v−1 = v0 = vn = vn+1 = 0

}
.

Define

(U j
i )x =

U j
i+1 − U j

i

h
, (U j

i )x =
U j
i − U j

i−1

h
,

(U j
i )ẋ =

1

2h
(U j

i+1 − U j
i−1), (U j

i )ẍ =
1

4h
(U j

i+2 − U j
i−2),

U
0
i =

U1
i + U0

i

2
, U

j
i =

U j+1
i + U j−1

i

2
for j ≥ 1,

(U j
i )t =

U j+1
i − U j

i

τ
, (U j

i )◦t
=

1

2τ
(U j+1

i − U j−1
i ).

Define the following averaging operators

Ṗu =
1

h2

x+h∫
x−h

(
h− |x− ξ|

)
u(ξ, t) dξ, P̈u =

1

4h2

x+2h∫
x−2h

(
2h− |x− ξ|

)
u(ξ, t) dξ,

◦
Su =

1

2τ

t+τ∫
t−τ

u(x, ζ) dζ, Ŝu =
1

τ

t+τ∫
t

u(x, ζ) dζ.

Let us consider some equalities connected with these operators

Ṗ ∂2u

∂x2
= uxx, P̈ ∂2u

∂x2
= uẋẋ,

◦
S ∂u

∂t
= u◦

t
.

It is easy to verify that

Ṗu = u+
h2

12

∂2u

∂x2
+O(h4), P̈u = u+

4h2

12

∂2u

∂x2
+O(h4),

whence
(4Ṗ − P̈)u = 3u+O(h4).

Let us act on (1.1) with the operator

1

3
(4Ṗ − P̈)

◦
S.

Notice that

1

3
(4Ṗ − P̈)

◦
S ∂u

∂t
=

1

3
(4Ṗ − P̈)u◦

t
= u◦

t
+O(h4),

1

3
(4Ṗ − P̈)

◦
S ∂3u

∂x2∂t
=

1

3
(4Ṗ − P̈)

(∂2u

∂x2

)
◦
t
=

1

3
(4u

xx
◦
t
− u

ẋẋ
◦
t
).
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Further,
1

3
(4Ṗ − P̈)

◦
S ∂u

∂x
=

1

3
(4Ṗ − P̈)

∂u

∂x
=

1

3
(4uẋ − uẍ) +O(τ2 + h4).

Finally, after some transformations we have

(4Ṗ − P̈)
◦
S
(
u
∂u

∂x

)
= (4Ṗ − P̈)

(
u
∂u

∂x

)
+O(τ2) = 3u

∂u

∂x
+O(τ2 + h4)

=
4

3

[
uẋu+ (uu)ẋ

]
− 1

3

[
uẍu+ (uu)ẍ

]
+O(τ2 + h4).

Thus, we have the difference scheme

(U j
i )◦t

+
(4
3
(U

j
i )ẋ −

1

3
(U

j
i )ẍ

)
+

4λ

9
κ1(U

j
i , U

j
i )−

λ

9
κ2(U

j
i , U

j
i )

− µ
(4
3
(U j

i )xx
◦
t
− 1

3
(U j

i )ẋẋ
◦
t

)
= 0, i = 1, 2, . . . , n− 1; j = 1, 2, . . . , J − 1, U ∈ Z0

h, (2.1)

where
κ1(U, V ) = UẋV + (UV )ẋ, κ2(U, V ) = UẍV + (UV )ẍ.

The additional initial conditions (the values of unknown function on the first level) is found
with two-level linear scheme:

(U0
i )t +

(4
3
(U

0
i )ẋ −

1

3
(U

0
i )ẍ

)
+

4λ

9
κ1(U

0
i , U

0
i )

− λ

9
κ2(U

0
i , U

0
i )− µ

(4
3
(U0

i )xxt −
1

3
(U0

i )ẋẋt

)
= 0, i = 1, 2, . . . , n− 1. (2.2)

It is proved that the difference scheme (2.1), (2.2) is uniquely solvable, conservative, absolutely
stable and converges with rate O(τ2 + h4).

Equations (2.2) are especially notable. Some authors suggest that this is the approximation of
the differential equation using initial conditions and attempt to receive an approximation with the
same order truncation error as for the differential equation. We think that (2.2) is an approximation
of the initial conditions for the first level using the differential equation. It must be required an
appropriate order of approximation of initial data. This is confirmed in our papers (see, e.g. [1–3]).
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1 Introduction
Consider the nonlinear differential equation

(a(t)Φ(x′))′ + b(t)F (x) = 0, t ∈ [1,∞), (1.1)

where
Φ(u) := |u|α sgnu, α > 0.

We study the problem of the existence of Kneser solutions, that is solutions x such that

x(t) > 0, x′(t) < 0 for t ∈ [1,∞), (1.2)

satisfying the boundary conditions

x(1) = c > 0, lim
t→∞

x(t) = 0. (1.3)

We assume that the functions a, b are continuous functions on [1,∞), a(t) > 0, and

Ja =

∞∫
1

Ψ
( 1

a(t)

)
dt < ∞,

where Ψ is the inverse function of Φ, that is Ψ(u) := |u|1/α sgnu. The weight function b is bounded
from above and is allowed to change sign (in)finite many times. The nonlinearity F is a continuous
function on [0,∞) such that F (u) > 0 for u > 0 and

lim sup
u→0+

F (u)

Φ(u)
< ∞. (1.4)

This problem is motivated by [3] where some asymptotic BVPs are studied for (1.1) in case
F (u) = |u|β sgnu, β > 0 and b(t) ≤ 0 for t ≥ 1. There are few contributions to the solvability of
the boundary value problems when the function b is allowed to change its sign. For example, the
boundary value problem on the compact interval with the indefinite weight has been considered
in [1].

In [4], our method used here is based on a fixed point theorem for operators defined in a Fréchet
space stated in [2]. This approach does not require the explicit form of the fixed point operator
but only good a-priori bounds. These bounds are obtained using the principal solutions of an
associated linear or half-linear differential equations.

Our proofs are based on the following fixed point theorem.
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Theorem 1 ([2]). Consider the BVP on [1,∞),

(a(t)Φ(x′))′ + b(t)F (x) = 0, x ∈ S, (1.5)

where S is a nonempty subset of the Fréchet space C[1,∞) of the continuous functions defined in
[1,∞) endowed with the topology of uniform convergence on compact subsets of [1,∞).

Let G be a continuous function on [0,∞)× [0,∞) such that F (d) = G(d, d) for any d ∈ [0,∞).
Assume that there exist a nonempty, closed, convex and bounded subset Ω ⊆ C[1,∞) and a bounded
closed subset S1 ⊆ S ∩ Ω such that for any u ∈ Ω the BVP on [1,∞)

(a(t)Φ(x′))′ + b(t)G(u(t), x(t)) = 0, x ∈ S1

admits a unique solution. Then the BVP (1.5) has at least a solution.

In the sequel, we introduce the notion of principal solution and disconjugacy for the half-linear
equation

(a(t)Φ(y′))′ + β(t)Φ(y) = 0, (1.6)

where β is a continuous function for t ≥ 1. When (1.6) is nonoscillatory, the notion of principal
solution of (1.6) has been introduced in [7] by following the Riccati approach, see, also [6, Sec-
tions 2.2, 4.2]. Among all eventually different from zero solutions of the associated Riccati equation

w′ + β(t) +R(t, w) = 0, (1.7)

where
R(t, w) = α|w|Ψ

( |w|
a(t)

)
,

there exists one, say wx, which is continuable to infinity and is minimal in the sense that any other
solution w of (1.7), which is continuable to infinity, satisfies wx(t) < w(t) as t → ∞. This concept
extends to the half-linear case the well-known notion of principal solution that was introduced in
1936 by W. Leighton and M. Morse for the linear case.

We recall that (1.6) is said to be disconjugate on an interval I ⊂ [T,∞) if any nontrivial solution
of (1.6) has at most one zero on I. Equation (1.6) is disconjugate on [T,∞) if and only if it has
the principal solution without zeros on (T,∞).

An important role in our considerations is played by a comparison theorem for the principal
solutions of Sturm majorant and minorant half-linear equations established in [5]. It is worth to
note that if α = 1, the half-linear equation reduces to linear one and its principal solution can be
characterized by the condition

∞∫
1

1

a(t)x2(t)
dt = ∞. (1.8)

However, the integral characterization of the principal solution of half-linear equations remains an
open problem. Hence, in the half-linear case a different approach has been used.

2 Existence and uniqueness theorem: case α = 1

Consider nonlinear equation with the Sturm–Liouville operator

(a(t)x′)′ + b(t)F (x) = 0. (2.1)
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In addition to assumptions stated in Introduction, we also assume here that F is differentiable on
[0,∞) with bounded nonnegative derivative, that is

0 ≤ dF (u)

du
≤ K for u ≥ 0, (2.2)

and satisfies
lim

u→0+

F (u)

u
= k0, lim

u→∞

F (u)

u
= k∞, (2.3)

where 0 ≤ k0 ̸= k∞.
The following result has been stated in [4, Theorem 3], see also Remark 5.

Theorem 2. Let B > 0 be such that

b(t) ≤ B on [1,∞)

and assume that the linear differential equation

v′′ +
BK

a(t)
v = 0 (2.4)

is disconjugate on [1,∞). Then, for any c > 0, equation (2.1) has a unique solution x satisfying
(1.2) and (1.3). Moreover, such solution x satisfies (1.8).

Example. Consider the equation

(t2x′)′ +
1

4
cos

(πt
2

)
F (x) = 0 (t ≥ 1), (2.5)

where
F (u) =

u

1 +
√
u
.

Then F satisfies (2.2), (2.3), K = 1 and b(t) ≤ 1/4 for t ≥ 1. Hence equation (2.4) becomes the
Euler equation

v′′ +
1

4t2
v = 0 (t ≥ 1),

which has a principal solution v =
√
t and thus it is disconjugate on [1,∞). By Theorem 2, for any

c > 0, equation (2.5) has a unique Kneser solution satisfying (1.2), (1.3) and (1.8).

3 Existence theorem in the general case
Denote by b+, b−, respectively, the positive and the negative part of b, i.e., b+(t) = max{b(t), 0},
b−(t) = −min{b(t), 0}. Thus b(t) = b+(t)− b−(t).

Denote by F̃ the function

F̃ (v) =
F (v)

Φ(v)
on (0,∞). (3.1)

In view of (1.4), the function F̃ is bounded in the neighbourhood of zero.
Using Theorem 1 and asymptotic properties of the half-linear equations, we obtain from [5,

Theorem 1] the following result.
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Theorem 3. Let c > 0 be fixed and Mc be such that

F̃ (v) ≤ Mc on [0, c].

Assume that the half-linear differential equation

(a1(t)Φ(y
′))′ + β1(t)Φ(y) = 0, (3.2)

where
a1(t) ≤ a(t), β1(t) ≥ Mcb+(t) on t ≥ 1, (3.3)

has a principal solution which is positive decreasing on [1,∞).
Then, the BVP (1.1), (1.3) has at least one solution x if any of the following conditions holds:

(i1)

lim
T→∞

T∫
1

|b(t)|Φ
( ∞∫

t

Ψ
( 1

a(s)

)
ds

)
dt < ∞; (3.4)

(i2) There exists t ≥ 1 such that b+(t) = 0 for any t ≥ t.

Moreover, if (i1) holds, such solution x satisfies

lim
t→∞

x(t)
∞∫
t

Ψ(a−1(s)) ds

= ℓ, 0 < ℓ < ∞. (3.5)

Remark. A typical nonlinearity satisfying (1.4) is F (u) = uβ. A prototype of an half-linear
equation (3.2) is the Euler type equation

(t1+αΦ(y′))′ +
( 1

1 + α

)1+α
Φ(y) = 0. (3.6)

From [6, Theorem 4.2.4], the function

y0(t) =
( 1

1 + α

)1/α
t−1/(1+α)

is the principal solution of (3.6). Moreover, y0 is positive decreasing on the interval [1,∞) and so
(3.6) is disconjugate on the same interval. Other examples can be found in [5].
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Let
G(ε0) = {t, ε : t ∈ R, ε ∈ [0, ε0], ε0 ∈ R+}.

Definition 1. We say that the function p(t, ε) belongs to the class S(m; ε0) (m ∈ N ∪ {0}) if

1) p : G(ε0) → C;

2) p(t, ε) ∈ Cm(G(ε0)) with respect to t;

3)
dkp(t, ε)

dtk
= εkp∗k(t, ε) (0 ≤ k ≤ m)

and

∥p∥S(m,ε0)
def
=

m∑
k=0

sup
G(ε0)

|p∗k(t, ε)| < +∞.

Definition 2. We say that the function f(t, ε, θ(t, ε)) belongs to the class F (m; ε0; θ) (m∈N∪{0}) if

f(t, ε, θ(t, ε)) =

∞∑
n=−∞

fn(t, ε) exp(in θ(t, ε)),

and

1) fn(t, ε) ∈ S(m, ε0) (n ∈ Z);

2)

∥f∥F (m;ε0,θ)
def
=

∞∑
n=−∞

∥fn∥S(m;ε0) < +∞;

3) θ(t, ε) =
t∫
0

φ(τ, ε) dτ , φ ∈ R+, φ ∈ S(m, ε0), inf
G(ε0)

φ(t, ε) = φ0 > 0.

Definition 3. We say that the infinite dimensional x(t, ε) = col (x1(t, ε), x2(t, ε), . . . ) belongs to
the class S1(m; ε0) if xj ∈ S(m; ε0) (j = 1, 2, . . . ), and

∥x∥S1(m;ε0)
def
= sup

j
∥xj∥S(m;ε0) < +∞.
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Definition 4. We say that the infinite dimensional matrix A(t, ε) = (ajk(t, ε))j,k=1,2,... belongs to
the class S2(m; ε0) if ajk ∈ S(m; ε0), and

∥A∥S2(m;ε0)
def
= sup

j

∞∑
k=1

∥ajk∥S(m;ε0) < +∞.

Definition 5. We say that the infinite dimensional vector x(t, ε, θ) = col (x1(t, ε, θ), x2(t, ε, θ), . . . )
belongs to the class F1(m; ε0, θ) if xj ∈ F (m; ε0; θ) (j = 1, 2, . . . ), and

∥x∥F1(m;ε0,θ)
def
= sup

j
∥xj∥F (m;ε0,θ) < +∞.

Definition 6. We say that the infinite dimensional matrix A(t, ε, θ) = (ajk(t, ε, θ))j,k=1,2,... belongs
to the class F2(m; ε0, θ) if ajk ∈ F (m; ε0, θ), and

∥A∥F2(m;ε0,θ)
def
= sup

j

∞∑
k=1

∥ajk∥F (m;ε0,θ) < +∞.

Obviously, if A ∈ F2(m; ε0; θ), x ∈ F1(m; ε0; θ), then Ax ∈ F1(m; ε0; θ), and

∥Ax∥F1(m;ε0;θ) ≤ 2m∥A∥F2(m;ε0;θ) · ∥x∥F1(m;ε0;θ).

The condition ∥A∥F2(m;ε0;θ) < 1 guarantees the existence of a matrix

(E +A)−1 = E +
∞∑
k=1

(−1)kAk,

where E = diag(1, 1, . . . ).
For any vector x(t, ε, θ) ∈ F1(m; ε0; θ) we denote

Γn[x] =
1

2π

2π∫
0

x(t, ε, θ) exp(−inθ) dθ, n ∈ Z.

For infinite dimensional vectors x = colon(x1, x2, . . . ), y = colon(y1, y2, . . . ) we denote [x, y] =
colon(x1y1, x2y2, . . . ).

We consider the following countable system of differential equations

dx

dt
= Λ(t, ε)x+ µB(0)(t, ε, θ)x+ µ2B(t, ε, θ)x, (1)

where

t, ε ∈ G(ε0), x = colon(x1, x2, . . . ),

Λ(t, ε) = diag
[
λ1(t, ε), λ2(t, ε), . . .

]
∈ S2(m; ε0),

B(0)(t, ε, θ) = diag
[
b1(t, ε, θ), b2(t, ε, θ), . . .

]
∈ F2(m; ε0; θ),

B(t, ε, θ) = (bjk(t, ε, θ))j,k=1,2,... ∈ F2(m; ε0; θ),

bjj(t, ε, θ) ≡ 0 (j = 1, 2, . . . ), µ ∈ (0, µ0) ⊂ R+.

We suppose
λj(t, ε)− λk(t, ε) = injkφ(t, ε), (2)
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njk ∈ Z (j, k = 1, 2, . . . ), φ(t, ε) – function in Definition 2. In this sense we say that we have a
resonance case.

We study the problem on the existence of the transformation of kind

x = (E +Q(t, ε, θ, µ))y, (3)

y = colon(y1, y2, . . . ), Q(t, ε, θ, µ) = (qjk(t, ε, θ, µ))j,k=1,2,... ∈ F2(m1; ε2; θ) (m1 ≤ m, ε1 ≤ ε0),
qjj(t, ε, θ, µ) ≡ 0, which leads the system (4) to kind:

dy

dt
= D(t, ε, θ, µ)y, (4)

D(t, ε, θ, µ) = diag
[
d1(t, ε, θ, µ), d2(t, ε, θ, µ), . . .

]
∈ F2(m1, ε1; θ).

We consider the auxiliary countable system of differential equations

dz

dt
= iφ(t, ε)Λ1z + µU(t, ε, θ)z + g(t, ε, θ) + µ2C(t, ε, θ)z + µ4[z,R(t, ε, θ)z], (5)

where

t, ε ∈ G(ε0), z = colon(z1, z2, . . . ), Λ1 = diag[n1, n2, . . . ], nj ∈ Z (j = 1, 2, . . . ),

U = diag
[
u1(t, ε, θ), u2(t, ε, θ), . . .

]
∈ F2(m; ε0; θ),

g = colon
(
g1(t, ε, θ), g2(t, ε, θ), . . .

)
∈ F1(m; ε0; θ),

C = (cjk(t, ε, θ))j,k=1,2,... ∈ F2(m; ε0; θ), cjj ≡ 0 (j = 1, 2, . . . ),

R ∈ F2(m; ε0; θ), µ ∈ (0, µ0) ⊂ R+.

Lemma 1. Let the system (5) satisfy the next conditions:

1) ∀ t, ε ∈ G(ε0):
2π∫
0

gj(t, ε, θ) exp(−injθ) dθ = 0, j = 1, 2, . . . ;

2)

inf
G(ε0)

∣∣∣∣
2π∫
0

uj(t, ε, θ) dθ

∣∣∣∣ ≥ γ > 0, j = 1, 2, . . . .

Then there exists µ1 ∈ (0, µ0) such that ∀µ ∈ (0, µ1) and ∀ q ∈ N there exists the transfor-
mation of kind

z =

2q−1∑
s=0

ξ(s)(t, ε, θ)µs +Φ(t, ε, θ, µ)z(1), (6)

ξ(s) ∈ F1(m; ε0; θ), Φ ∈ F2(m; ε0; θ), which leads the system (6) to kind:

dz(1)

dt
=

( q∑
l=1

K(l)(t, ε)µl
)
z(1) + εh(11)(t, ε, θ, µ) + µ2qh(12)(t, ε, θ, µ)

+ εV (1)(t, ε, θ, µ)z(1) + µq+1P (1)(t, ε, θ, µ)z(1)

+ µ
[
R(11)(t, ε, θ, µ)z(1), R(12)(t, ε, θ, µ)z(1)

]
,

where K(l) ∈ S2(m; ε0), and ∀µ ∈ (0, µ1); h(11), h(12) ∈ F1(m−1; ε0; θ), V (1), P (1), R(11), R(12) ∈
F2(m− 1; ε0; θ).
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We consider the countable linear homogeneous system of differential equations:

dx(0)

dt
= A(t, ε)x(0), (7)

where A(t, ε) ∈ S2(m; ε0).

Definition 7. The Green-matrix of the system (7) is the matrix G(t, τ, ε) = (gjk(t, τ, ε))j,k=1,2,...,
such that

1) if t ̸= τ :
∂G(t, τ, ε)

∂t
= A(t, ε)G(t, τ, ε),

∂G(t, τ, ε)

∂τ
= −G(t, τ, ε)A(τ, ε);

2)
G(τ + 0, τ, ε)−G(τ − 0, τ, ε) = E, G(t, t+ 0, ε)−G(t, t− 0, ε) = −E.

If t = τ , then Green-matrix is not defined.
Along with the system (7) consider the countable linear inhomogeneous system:

dx

dt
= A(t, ε)x+ f(t, ε, θ), (8)

where f ∈ F1(m; ε0; θ), matrix A(t, ε) is the same as in the system (7).

Lemma 2. Let the system (7) have the Green-matrix G(t, τ, ε) = (gjk(t, τ, ε))j,k=1,2,... such that

|gjk(t, τ, ε)| ≤ M0 exp
(
− γ0|t− τ |

)
,

where M0, γ0 ∈ (0,+∞), and M0, γ0 do not depend on t, τ , ε. Then the system (8) has a unique
particular solution x(t, ε, θ) ∈ F1(m; ε0; θ), and there exists K0 ∈ (0,+∞) such that

∥x(t, ε, θ)∥F1(m;ε0;θ) ≤
K0

γ0
∥f(t, ε, θ)∥F1(m;ε0;θ).

Lemma 3. Let the system (5) be such that

1) the conditions of Lemma 1 hold;

2) for the linear homogeneous system

dx

dt
=

( q∑
l=1

K(l)(t, ε)µl
)
x,

where matrices K(l)(t, ε) are defined by Lemma 1, there exists the Green-matrix G(t, τ, ε, µ) =
(gjk(t, τ, ε, µ))j,k=1,2,... such that

|gjk(t, τ, ε, µ)| ≤ M1 exp
(
− γ1µ

q0 |t− τ |
)
,

q0 ∈ [1, q], M1, γ1 ∈ (0,+∞) and do not depend on t, τ , ε, µ.

Then there exist µ2 ∈ (0, µ0), ε2(µ) ∈ (0, ε0) such that ∀µ ∈ (0, µ2), ε ∈ (0, ε2(µ)) the system (5)
has a particular solution, belonging to the class F1(m− 1; ε2(µ); θ).
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Now we return to the system (1) and make in it substitution (3). Taking into account the
condition of diagonality of transformed system (4) and condition (2), we obtain the next countable
system of differential equations for the elements qjk (j ≠ k) of matrix Q:

dqjk
dt

= injkφ(t, ε)qjk + µ
(
bj(t, ε, θ)− bk(t, ε, θ)

)
qjk + µ2bjk(t, ε, θ)

+ µ2
∞∑
s=1

(s ̸=j, s ̸=k)

bjs(t, ε, θ)qsk − µ2qjk

∞∑
s=1
(s ̸=k)

bks(t, ε, θ)qsk, j, k = 1, 2, . . . ; j ̸= k. (9)

The elements of the diagonal matrix D in system (4) are defined by formulas:

dj(t, ε, θ, µ) = λj(t, ε) + µbj(t, ε, θ) + µ
∞∑
s=1
(s ̸=j)

bjs(t, ε, θ)qsj(t, ε, θ, µ). (10)

The substitution
qjk = µ2q̃jk, j, k = 1, 2, . . . ; j ̸= k

leads the system (9) to kind:

dq̃jk
dt

= injkφ(t, ε)q̃jk + µ
(
bj(t, ε, θ)− bk(t, ε, θ)

)
q̃jk + bjk(t, ε, θ)

+ µ2
∞∑
s=1

(s ̸=j, s≠k)

bjs(t, ε, θ)q̃sk − µ4q̃jk

∞∑
s=1
(s ̸=k)

bks(t, ε, θ)q̃sk, j, k = 1, 2, . . . ; j ̸= k. (11)

In the system (11) index k is fixed, then for any k = 1, 2, . . . system (11) is the separate
countable system of the differential equations for q̃1k, q̃2k, . . . , q̃k−1,k, q̃k+1,k, . . . . It is not difficult
to see that vector-form of such system has a kind (5). Then we can prove the validity of the next
theorem.

Theorem. Let for the system (1) hold (2), and for all k = 1, 2, . . . the system (11) satisfy all
the conditions of Lemma 3. Then there exist µ3 ∈ (0, µ0), ε3(µ) ∈ (0, ε0) such that ∀µ ∈ (0, µ3),
ε ∈ (0, ε3(µ)) there exists the transformation of kind (3), where Q(t, ε, θ, µ) ∈ F2(m − 1; ε3(µ); θ),
which leads the system (1) to kind (4), where the elements of diagonal matrix D(t, ε, θ, µ) ∈
F2(m− 1; ε3(µ); θ) are defined by formulas (10).
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We consider the differential equation

y′′′ = α0p(t)φ(y), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, φ : ∆Y0 →
]0,+∞[ is a twice continuously differentiable function such that

φ′(y) ̸= 0 for y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

φ(y) =

{
or 0,

or +∞,
lim
y→Y0

y∈∆Y0

φ(y)φ′′(y)

φ′2(y)
= 1, (2)

Y0 equals either zero or ±∞, ∆Y0 – some one-sided neighborhood of Y0.
From identity

φ′′(y)φ(y)

φ′2(y)
=

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2
+ 1 for y ∈ ∆Y0

and conditions (2) it follows that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
, y → Y0 (y ∈ ∆Y0), lim

y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞.

It means that in the considered equation the continuous function φ and its first order derivatives
are [5, Chapter 3, Section 3.4, Lemmas 3.2, 3.3, pp. 91–92] rapidly change at y → Y0.

For two-term differential equations of the second order with nonlinearities satisfying condition
(2), the asymptotic properties of solutions were studied in the works of M. Maric [5], V. M. Evtukhov
and his students N. G. Drik, V. M. Kharkov, A. G. Chernikova [1–3].

In the works of V. M. Evtukhov, A. G. Chernikova [1] for the differential equation (1) of the
second order in the case when φ satisfies condition (2), the asymptotic properties of so-called
Pω(Y0, λ0)-solutions were studied with λ0 ∈ R \ {0, 1}. In this work, we propose the distribution
of [1] results to third-order differential equations.

Solution y of the differential equation (1) specified on the interval [t0, ω[⊂ [a, ω[ calls Pω(Y0, λ0)-
solution, if it satisfies the following conditions:

lim
t↑ω

y(t) = Y0, lim
t↑ω

y(k)(t) =

{
or 0,

or ±∞,
k = 1, 2, lim

t↑ω

y′′2(t)

y′′′(t)y′(t)
= λ0.

The goal of this work is to establish the necessary and sufficient conditions for the existence for
the equation (1) Pω(Y0, λ0)-solutions in the non-singular case, when λ0 ∈ R \ {0, 1, 12}, as well as
asymptotic for t ↑ ω representations for such solutions and their derivatives up to the second order
inclusively.
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Without loss of generality, we will further assume that

∆Y0 =

{
[y0, Y0[ , if ∆Y0 is a left neighborhood of Y0,
]Y0, y0], if ∆Y0 is a right neighborhood of Y0,

(3)

where y0 ∈ R is such that |y0| < 1, when Y0 = 0 and y0 > 1 (y0 < −1), when Y0 = +∞ (when
Y0 = −∞).

A function φ : ∆Y0 → R \ {0}, satisfying condition (2), belongs to the class ΓY0(Z0), that was
introduced in the work [1], which extends the class of function Γ, introduced by L. Khan (see, for
example, [4, Chapter 3, Section 3.10, p. 175]). Using properties from this class, main results below
are obtained.

We introduce the necessary auxiliary notation. We assume that the domain of the function
φ ∈ ΓY0(Z0) is determined by formula (3). Next, we set

µ0 = sgnφ′(y), ν0 = sgn y0, ν1 =

{
1, if ∆Y0 = [y0, Y0[ ,

−1, if ∆Y0 =]Y0, y0],

and introduce the following functions

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
J(t) =

t∫
A

π2
ω(τ)p(τ) dτ, Φ(y) =

y∫
B

ds

φ(s)
,

where

A =


ω, if

ω∫
a

π2
ω(τ)p(τ) dτ = const,

a, if
ω∫

a

π2
ω(τ)p(τ) dτ = ±∞,

B =



Y0, if
Y0∫

y0

ds

φ(s)
= const,

y0, if
Y0∫

y0

ds

φ(s)
= ±∞.

Considering the definition of Pω(Y0, λ0)-solutions of the differential equation (1), we note that
the numbers ν0, ν1 determine the signs of any Pω(Y0, λ0)-solution and of its first derivatives in some
left neighborhood of ω. It is clear that the condition

ν0ν1 < 0 if Y0 = 0, ν0ν1 > 0 if Y0 = ±∞,

is necessary for the existence of such solutions.
Now we turn our attention to some properties of the function Φ. It retains a sign on the interval

∆Y0 , tends either to zero or to ±∞, when y → Y0 and increasing by ∆Y0 , because on this interval
Φ′(y) = 1

φ(y) > 0. Therefore, for it there is an inverse function Φ−1 : ∆Z0 → ∆Y0 , where due to the
second of conditions (2) and the monotone increase of Φ−1,

Z0 = lim
y→Y0
y∈∆Y0

Φ(y) =

{
or 0,

or +∞,
∆Z0 =

{
[z0, Z0[ , or ∆Y0 = [y0, Y0[ ,

]Z0, z0], or ∆Y0 = ]Y0, y0],
z0 = φ(y0).

For λ0 ∈ R \ {0; 1; 12} with using Φ−1 we also introduce the auxiliary functions

q(t) =
α0(λ0 − 1)2π3

ω(t)p(t)φ
(
Φ−1(α0

(λ0−1)2

λ0
(λ0 − 1)J(t))

)
λ0Φ−1(α0

(λ0−1)2

λ0
J(t))

,

H(t) =
Φ−1(α0

(λ0−1)2

λ0
J(t))φ′(Φ−1(α0

(λ0−1)2

λ0
J(t))

)
φ(Φ−1(α0

(λ0−1)2

λ0
J(t)))

.

For equation (1) the following assertions are valid.
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Theorem 1. Let λ0 ∈ R \ {0; 1; 12}. Then for the existence for the differential equation (1),
Pω(Y0, λ0)-solutions, it is necessary to comply with the conditions

α0ν1λ0 > 0,

ν0ν1(2λ0 − 1)(λ0)πω(t) > 0, α0µ0λ0J(t) < 0 for t ∈ (a, ω),

α0

λ0
lim
t↑ω

J(t) = Z0, lim
t↑ω

πω(t)J
′(t)

J(t)
= ±∞, lim

t↑ω
q(t) =

2λ0 − 1

λ0 − 1
.

Moreover, for each such solution, the asymptotic representations

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
for t ↑ ω,

y′(t) =
(2λ0 − 1)

(λ0 − 1)

Φ−1(α0
(λ0−1)2

λ0
J(t))

πω(t)
[1 + o(1)] for t ↑ ω,

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2
Φ−1(α0

(λ0−1)2

λ0
J(t))

π2
ω(t)

[1 + o(1)] for t ↑ ω

take place.

Theorem 2. Let λ0 ∈ R \ {0; 1; 12}, there exist a finite or equal to ±∞ limit

lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

3

√(yφ′(y)

φ(y)

)2

and
lim
t↑ω

[2λ0 − 1

λ0 − 1
− q(t)

]
|H(t)|

2
3 = 0.

Then, the differential equation (1) has at least one Pω(Y0, λ0)-solution which allows for t ↑ ω the
asymptotic representation

y(t) = Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 +

o(1)

H(t)

]
,

y′(t) =
2λ0 − 1

(λ0 − 1)πω(t)
Φ−1

(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 + o(1)H− 2

3
]
,

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)π2
ω(t)

Φ−1
(
α0

(λ0 − 1)2

λ0
J(t)

)[
1 + o(1)H− 1

3
]
.

Moreover, in the case when µ0λ0(2λ0− 1)(λ0− 1) < 0 there exists one-parameter family, but in the
case µ0λ0(2λ0 − 1)(λ0 − 1) > 0 there exists a two-parameter family.
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1 Introduction
Consider the Sturm–Liouville problem

y′′ +Q(x)y + λy = 0, x ∈ (0, 1), (1.1)
y(0) = y(1) = 0, (1.2)

where Q belongs to the set Tα,β,γ of all real-valued locally integrable on (0, 1) functions with non-
negative values such that the following integral condition holds

1∫
0

xα(1− x)βQγ(x) dx = 1, α, β, γ ∈ R, γ ̸= 0. (1.3)

A function y is a solution to problem (1.1), (1.2) if it is absolutely continuous on the segment
[0, 1], satisfies (1.2), its derivative y′ is absolutely continuous on any segment [ρ, 1 − ρ], where
0 < ρ < 1

2 , and equality (1.1) holds almost everywhere in the interval (0, 1).
For any function Q ∈ Tα,β,γ by HQ we denote the closure of the set C∞

0 (0, 1) with respect to
the norm

∥y∥HQ
=

( 1∫
0

y′
2
dx+

1∫
0

Q(x)y2 dx

) 1
2

.

We consider the functional generated by problem (1.1), (1.2)

R[Q, y] =

1∫
0

y′2 dx−
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

.

We give estimates for

mα,β,γ = inf
Q∈Tα,β,γ

inf
y∈HQ\{0}

R[Q, y], Mα,β,γ = sup
Q∈Tα,β,γ

inf
y∈HQ\{0}

R[Q, y].

Remark 1.1. This work is the continuation of the study of estimates for the first eigenvalue
of Sturm–Liouville problems with integral conditions on the potential, which was initiated by
Y. V. Egorov and V. A. Kondratiev [1]. The history of the research can be found in [2].
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2 Main results
2.1 On precise estimates for Mα,β,γ as γ < −1, α, β > 2γ − 1

It is proved [3] that Mα,β,γ 6 π2 for all α, β, γ, γ ̸= 0, and Mα,β,γ < π2 as γ < 0, α, β > 3γ − 1.
In case of γ < 0, using the Hölder inequality for any functions Q ∈ Tα,β,γ and y ∈ HQ, we

obtain
1∫

0

Q(x)y2 dx >
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

and
inf

y∈HQ\{0}
R[Q, y] 6 inf

y∈HQ\{0}
G[y],

where

G[y] =

1∫
0

y′2 dx−
( 1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

1∫
0

y2 dx

.

Consider the functional G in H1
0 (0, 1). It is proved [4] that for γ < 0, α, β > 2γ−1 the functional

G is bounded below in H1
0 (0, 1) and there exists

m = inf
y∈H1

0 (0,1)\{0}
G[y].

Similarly to [4] we prove that for γ < 0, α, β > 2γ − 1 any minimizing sequence of the functional
G in H1

0 (0, 1) converges to some function u ∈ H1
0 (0, 1) and

inf
y∈H1

0 (0,1)\{0}
G[y] = G[u] = m.

As in the case of α = β = 0 [2] we prove that function u is positive on (0, 1).
For 0 < ε < 1

3 , we consider the function

v(x) =

{
0, x ∈ [0, ε] ∪ [1− ε, 1],

u, x ∈ (ε, 1− ε)

and its averaging vρ with ρ = ε
2 (see, for example, [5, I, § 1]). Then for any function Q ∈ Tα,β,γ ,

we obtain
inf

y∈HQ\{0}
R[Q, y] 6 inf

y∈HQ\{0}
G[y] 6 lim

ρ→0
G[vρ] = G[u] = m

and
Mα,β,γ = sup

Q∈Tα,β,γ

inf
y∈HQ\{0}

R[Q, y] 6 m.

On (0, 1) we consider the function Q∗(x) = x
α

1−γ (1 − x)
β

1−γ u
2

γ−1 which satisfies the integral
condition (1.3) and u ∈ HQ∗ . Since the function u is the first eigenfunction for problem (1.1)–(1.3)
for Q = Q∗ and the first eigenvalue λ1(Q∗) = m, then

inf
y∈HQ∗\{0}

R[Q∗, y] = R[Q∗, u] = m.

Therefore, Mα,β,γ > m. Hence, the following theorem holds.
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Theorem 2.1. If γ < −1, α, β > 2γ − 1 and m = inf
y∈H1

0 (0,1)\{0}
G[y], then there exist functions

Q∗ ∈ Tα,β,γ and u ∈ HQ∗, u > 0 on (0, 1), such that Mα,β,γ = R[Q∗, u], moreover, u satisfies the
equation

u′′ +mu = −x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1 (2.1)

and the integral condition
1∫

0

x
α

1−γ (1− x)
β

1−γ u
2γ
γ−1 dx = 1. (2.2)

2.2 On estimates for Mα,β,γ as γ > 0

Theorem 2.2.

- If γ > 1, then Mα,β,γ = π2.

- If 0 < γ 6 1, α 6 2γ − 1, −∞ < β < +∞ or β 6 2γ − 1, −∞ < α < +∞, then Mα,β,γ = π2.

- If 0 < γ < 1, α, β > 3γ − 1, then Mα,β,γ < π2.

- If 0 < γ < 1/2, α, β > 0, then Mα,β,γ < π2.

- If 1/2 6 γ < 1, 2γ − 1 < α, β 6 3γ − 1, then Mα,β,γ < π2.

Remark 2.1. The result M0,0,γ < π2 as 0 < γ < 1/2 was obtained in [6].

Remark 2.2. We can give some lower bounds for Mα,β,γ in cases of γ < 0 or 0 < γ < 1:

- If γ < 0, α, β > 0, then Mα,β,γ > π2 − 1.

- If γ < 0, 2γ − 1 < α < 0 6 β, then Mα,β,γ > (1− 4(α− 2γ + 1)
1
γ )π2.

- If γ < 0, 2γ − 1 < β < 0 6 α, then Mα,β,γ > (1− 4(β − 2γ + 1)
1
γ )π2.

- If γ < 0, 2γ − 1 < α, β < 0, then Mα,β,γ > (1 + θ
1
γ · 2

θ+4γ−2
γ )π2, θ = min{α, β} − 2γ + 1.

2.3 Some estimates for mα,β,γ below

Theorem 2.3.

- If γ < 0 or 0 < γ < 1, then mα,β,γ = −∞.

- If γ = 1 and α, β 6 0, then mα,β,γ > 3
4 π

2.

- If γ = 1, β 6 0 < α 6 1 or α 6 0 < β 6 1, then mα,β,γ > 0.

- If γ = 1, 0 < α, β 6 1, then −π2 6 mα,β,γ 6 π2.

- If γ > 1 and 0 < α, β 6 2γ − 1, then

mα,β,γ >
(
1− 2

3γ−2
γ

(2γ − 1

γ

) 2γ−1
γ

)
π2.
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- If γ > 1 and β 6 0 < α 6 2γ − 1 or α 6 0 < β 6 2γ − 1, then

mα,β,γ >
(
1−

(2γ − 1

γ

) 2γ−1
γ

)
π2.

- If γ > 1 and α, β 6 0, then mα,β,γ > 0.

Theorem 2.4. If γ > 1 and α, β < 2γ − 1, then there exist functions Q∗ ∈ Tα,β,γ and u ∈ HQ∗,
u > 0 on (0, 1), such that mα,β,γ = R[Q∗, u] = m, moreover, u satisfies equation (2.1) and the
integral condition (2.2).
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1 Introduction and preliminaries
A set of fundamental results of the mathematical theory of multifrequency oscillations have been
developed by A. M. Samoilenko and summarized in [11]. In particular, these studies include the
problems of the existence and stability of invariant manifolds of dynamical systems defined in
the direct product of m-dimensional torus Tm and n-dimensional Euclidean space Rn. In [5], the
stability properties of invariant tori have been studied in terms of sign-definite quadratic forms.
In this paper, we establish less restrictive (compared to [5]) conditions for exponential stability
and instability of the trivial invariant torus of nonlinear extension of dynamical system on torus
which are formulated in terms of quadratic forms that are sign-definite in nonwandering set Ω of
dynamical system on torus and allowed to be sign-indefinite in Tm \ Ω. For further details we
refer a reader to the extended version of this contribution [2]. The corresponding results for linear
extensions of dynamical systems on torus have been obtained in [1, 3, 7–10].

We consider the following system defined in Tm × Rn

dφ

dt
= a(φ),

dx

dt
= P (φ, x)x, (1.1)

where φ = (φ1, . . . , φm)⊤ ∈ Tm, x = (x1, . . . , xn)
⊤ ∈ Rn, function P is continuous in Tm × Rn and

for every x ∈ Rn P ( · , x), a( · ) ∈ C(Tm); C(Tm) is a space of continuous 2π-periodic with respect
to each of the components φv, v = 1, . . . ,m functions defined on Tm. We assume that the following
conditions hold:

∃M > 0 such that ∀ (φ, x) ∈ Tm × Rn ∥P (φ, x)∥ ≤ M ; (1.2)
∀ r > 0 ∃L = L(r) > 0 such that ∀x′, x′′, ∥x′∥ ≤ r, ∥x′′∥ ≤ r, ∀φ ∈ Tm∥∥P (φ, x′′)− P (φ, x′)

∥∥ ≤ L∥x′′ − x′∥; (1.3)
∃A > 0 ∀φ′, φ′′ ∈ Tm ∥a(φ′′)− a(φ′)∥ ≤ A∥φ′′ − φ′∥. (1.4)

Condition (1.4) guarantees that the system

dφ

dt
= a(φ) (1.5)

generates a dynamical system on Tm, which will be denoted by φt(φ).
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Definition 1.1 ([6]). A point φ ∈ Tm is called a nonwandering point of dynamical system (1.5) if
there exist a neighbourhood U(φ) and a moment of time T = T (φ) > 0 such that

U(φ) ∩ φt(U(φ)) = ∅ ∀ t ≥ T.

Let us denote by Ω a set of all nonwandering points of (1.5). Since Tm is a compact set, the set
Ω is nonempty, invariant, and compact subset of Tm [11]. Additionally, the following holds:

Lemma 1.1 ([6]). For any ε > 0 there exist T (ε) > 0 and N(ε) > 0 such that for any φ ̸∈ Ω
the corresponding trajectory φt(φ) spends only a finite time that is bounded by T (ε) outside the
ε-neighbourhood of the set Ω, and leaves this set not more than N(ε) times.

Definition 1.2 ([11]). Trivial invariant torus x = 0, φ ∈ Tm of the system (1.1) is called exponen-
tially stable if there exist constants K > 0, γ > 0, and δ > 0 such that for all φ ∈ Tm and for all
x0 ∈ Rn, ∥x0∥ ≤ δ it holds that

∀ t ≥ 0 ∥x(t, φ, x0)∥ ≤ K∥x0∥e−γt,

where x(t, φ, x0) is a solution to the Cauchy problem

dx

dt
= P (φt(φ), x)x, x(0) = x0.

In [4], the conditions for the exponential stability of the trivial invariant torus of the system
(1.1) have been established in terms of the properties of function φ 7→ P (φ, 0) in the nonwandering
set Ω of dynamical system (1.5):

Lemma 1.2 ([4]). Let
∀φ ∈ Ω λ(φ, 0) < 0, (1.6)

where λ(φ, x) is the largest eigenvalue of the matrix P̂ (φ, x) = 1
2 (P (φ, x) + P T (φ, x)). Then the

trivial invariant torus of system (1.1) is exponentially stable.

The following example demonstrates the case when the trivial invariant torus is exponentially
stable (this will be proven in Theorem 2.1), however the condition (1.6) does not hold.

Example 1.1. Consider a system defined in T1 × R2

dφ

dt
= − sin2

(φ
2

)
,


dx1
dt

dx2
dt

 =

(
sin(φ+ x1 + x2)x1 −x2

x1 − sin(x1 − x2 − φ)x2

)
. (1.7)

Dynamical system on torus T1 that are generated by (1.7) has a nonwandering set Ω = {φ = 0}.

However, the matrix P̂ (0, 0) =

(
0 0
0 0

)
does not satisfy condition (1.6).

In the following section, we prove new sufficient conditions that allow concluding exponential
stability of trivial invariant torus of system (1.7).
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2 Main results
For any φ ∈ Tm, x ∈ Rn let us denote

Ŝ(φ, x) =
∂S(φ, x)

∂φ
a(φ) +

∂S(φ, x)

∂x
(P (φ, x)x) + S(φ, x)P (φ, x) + P T (φ, x)S(φ, x), (2.1)

where S = S(φ, x) is a symmetric matrix of a class C1(Tm × Rn).

Theorem 2.1. Let there exist a symmetric matrix S = S(φ, x) ∈ C1(Tm × Rn) such that

∀φ ∈ Ω S(φ, 0) > 0, Ŝ(φ, 0) < 0.

Then the trivial torus of system (1.1) is exponentially stable.

Example 2.1 (revisited). Let us illustrate the usage of Theorem 2.1 for system (1.7). Let S =

S(φ, x) =

(
2 1
1 1

)
> 0. Then, Ŝ(0, 0) =

(
2 −1
−1 −2

)
< 0 which guarantees the exponential stability

of the trivial invariant torus.

The following theorem provides sufficient conditions for instability of the trivial torus of system
(1.1) in terms of sign-definite on the set Ω quadratic forms.

Theorem 2.2. Let there exist a symmetric matrix S = S(φ, x) of the class C1(Tm×Rn) such that
for the matrix (2.1) and for the quadratic form V (φ, x) = (S(φ, x)x, x) the following conditions
hold:

∀φ ∈ Ω Ŝ(φ, 0) > 0,

∀ δ > 0 ∃x0 ∈ Rn, ∥x0∥ < δ, ∃φ0 ∈ Ω such that V (φ0, x0) > 0.

Then the trivial torus of system (1.1) is unstable.
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We consider the autonomous system of differential equations on the real plane
dx

dt
= P (x, y),

dy

dt
= Q(x, y), (x, y) ∈ Ω ⊂ R2, P (x, y), Q(x, y) ∈ C1(Ω). (1)

The Dulac criterion [1, p. 226], [8,9] is one of the ways to obtain nonlocal solution of the problem
of counting and localizing the limit cycles [7] of system (1). However, there is no regular methods
for finding a connected domain Ω of localization of the limit cycles and for constructing the Dulac
function in this domain. Therefore, this criterion was predominantly used for proving the absence of
limit cycles in a simply-connected domain Ω or the existence of at most one limit cycle in a doubly
connected domain Ω. L. A. Cherkas [2] suggested to develop the Dulac criterion and to construct a
special Dulac function in a connected domain Ω where the number and localization of limit cycles
can be determined by using transversal curves that correspond to such function. This criterion is
referred to as the Dulac–Cherkas criterion and allows one to derive an upper bound for the number
of limit cycles for many classes of systems (1) [3, 4]. Additional research is needed to produce an
exact estimate for the number of limit cycles but it is possible only in separate cases. Thus, our
aim here is to present approaches developed by us to obtaining an exact nonlocal estimate for the
number of limit cycles that surround one equilibrium point of system (1) and localizing these cycles.
The Dulac or Dulac–Cherkas methods are applied sequentially two times to find closed transversal
curves that divide the domain Ω in doubly connected subdomains surrounding the equilibrium
point such that the system (1) has exactly one limit cycle in each of them.

The Dulac–Cherkas method as a generalization of the Dulac criterion consists in finding the
Dulac–Cherkas function Ψ(x, y) [3, p. 199].
Definition 1. A function Ψ ∈ C1(Ω, R) is called as the Dulac–Cherkas function of system (1) in
a domain Ω if there exists such a real number k ̸= 0 that the following condition holds

Φ(x, y) = kΨdivX +
∂Ψ

∂x
P +

∂Ψ

∂y
Q > 0 (6 0), ∀ (x, y) ∈ Ω ⊂ R2, (2)

where X is a vector field defined by system (1).
Remark 1. In inequality (2), it is usually assumed [1, p. 226], [2,8,9], [3, p. 68] that the function
Φ can be zero on a set of the zero measure in the domain Ω, with no closed curve in this set being
a limit cycle of system (1). However, Cherkas et al. [3, p. 312] showed that this requirement can
be relaxed and replaced with the condition that the curve defined by the equation Φ(x, y) = 0 is
transversal.
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Remark 2. If Ψ is a Dulac–Cherkas function of system (1) in the domain Ω, then B = |Ψ|
1
k is

a Dulac function in each subdomain Ωi, where Ψ > 0(< 0), while any limit cycle Γ of system (1)
that exists in Ω is rough and stable (unstable) under the condition that kΦΨ < 0(> 0) on Γ.

To localize the limit cycles in the domain Ω, we introduce a set W = {(x, y) ∈ Ω : Ψ(x, y) = 0},
that is transversal for the vector field X under condition (2) and is not intersected by the limit
cycles of system (1).

The following assertion was proved in the monograph [3, p. 205].

Theorem 1 (the Dulac–Cherkas criterion). Suppose that in a connected domain Ω system (1) has
the unique anti-saddle point of rest O, while Ψ is the Dulac–Cherkas function of system (1) with
k < 0 in the domain Ω, where the set W consists of s mutually embedded ovals ωi surrounding the
point O. Then, system (1) has exactly one limit cycle in each of the s− 1 ring-shaped subdomains
Ωi that are bounded by neighboring ovals ωi and ωi+1 and can have at most s limit cycles in the
domain Ω in total.

The monograph [3] contains different ways for constructing the Dulac–Cherkas function which
allows to estimate the upper bound for the number of limit cycles by using Theorem 1.

In cases where this approach is difficult to be implemented, it was suggested in [3, p. 334] to
construct the Dulac function in the form of the product

B = |Ψ(x, y)|
1
k |Ψ̃(x, y)|

1

k̃ , k, k̃ ∈ R, kk̃ ̸= 0, Ψ, Ψ̃ ∈ C1(Ω). (3)

Theorem 2. A function B of the form (3) is the Dulac function of system (1) in the domain Ω if
the following condition is satisfied:

Φ̃ ≡ kk̃ΨΨ̃divX + kΨ
dΨ̃

dt
+ k̃Ψ̃

dΨ

dt
> 0 (< 0). (4)

Let W0 = W ∪ W̃ , where

W =
{
(x, y) ∈ Ω : Ψ(x, y) = 0

}
, W̃ =

{
(x, y) ∈ Ω : Ψ̃(x, y) = 0

}
,

then the following assertions hold in the domain Ω: the set W0 contains no equilibrium points of
system (1); any trajectory of system (1) that encounters the set W0 intersects it transversally; the
set W0 defines a curve with disjoint branches; and the limit cycles of system (1) that belong entirely
to the domain Ω do not intersect the set W0.

Since the curves of the set W0 divide the domain Ω in subdomains Ωi in each of which B is a
Dulac function in the classical sense, we find [3, p. 336] that the following assertion applies when
evaluating the number of cycles of system (1) and localizing these cycles.

Theorem 3. Suppose that in a connected domain Ω system (1) has the unique anti-saddle equi-
librium point O and possesses a function B of the form (3) that satisfies condition (4) for k < 0,
k̃ < 0. If sets W and W̃ in the domain Ω consist of, respectively, s and s̃ mutually embedded
ovals that surround O, then in each of the s+ s̃− 1 ring-shaped subdomains Ωi that are bounded by
neighboring ovals ωi and ωi+1 of the set W0, system (1) has exactly one limit cycle, which is stable
(unstable) for Φ̃/(kk̃ΨΨ̃) < 0 (> 0). System (1) can have at most s+ s̃ limit cycles in the domain
Ω in total.

However, none of the above theorems provides an exact estimate for the number of limit cycles
of the considered systems (1), since to establish the existence or absence of a limit cycle in the
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external doubly connected subdomain Ωs or Ωs+s̃, one needs to conduct additional research and
examine the influence of the other equilibrium points of rest or construct an additional transversal
closed curve that embraces an external oval that corresponds to the function B = |Ψ|

1
k or a function

B of the form (3).
Now we will present our approaches to establishing the exact number of limit cycles of system

(1) in the domain Ω, the approaches being based on constructing a closed transversal curve that
surrounds the external oval of the function B in a doubly connected subdomain Ωs with the use of
an additional application of the Dulac or Dulac–Cherkas criterion. The gist of the first approach
is expressed by the following assertion.

Theorem 4. Suppose that the assumptions of Theorem 1 are valid, and system (1) has a second
Dulac–Cherkas function Ψ̃(x, y) for k̃ < 0 in the domain Ω such that the set W̃ consists of s + 1
ovals in Ω that surround the point O. Then system (1) has exactly s limit cycles in the domain Ω.

Proof. By virtue of Theorem 1, the existence of a Dulac–Cherkas function Ψ(x, y) that defines s
ovals in the domain Ω implies the existence of s − 1 limit cycles of system (1) in the ring-shaped
domains Ωi, i = 1, . . . , s − 1, bounded by neighboring ovals ωi and ωi+1 and admits the existence
of one limit cycle in the doubly connected subdomain Ωs. By virtue of Theorem 1, the existence
of the second Dulac–Cherkas function Ψ̃(x, y), that defines s+1 ovals in the domain Ω implies the
existence of s limit cycles of system (1) in the ring-shaped domains Ω̃i, i = 1, . . . , s, bounded by
neighboring ovals of the set W̃ and admits the existence of one limit cycle in the doubly connected
subdomain Ω̃s+1, that lies in between the external oval of the set W̃ and the boundary ∂Ω of the
domain Ω. The simultaneous existence of the functions Ψ and Ψ̃ guarantees the existence of one
limit cycle in the subdomain Ωs \ Ω̃s+1 and rules out the existence of a limit cycle in the subdomain
Ω̃s+1. Hence it follows that system (1) has exactly s limit cycles in the domain Ω. It completes the
proof of the theorem.

A second approach can be described as follows.

Theorem 5. Suppose that the assumptions of Theorem 1 hold, and, in addition, that in the domain
Ω system (1) has a Dulac function B of the form (3) that satisfies the assumptions of Theorem 3,
with the set W̃ consisting of a single oval that is situated in the doubly connected domain Ωs and
surrounds all the ovals of the set W . Then system (1) has exactly s limit cycles in the domain Ω.

Proof. The existence of s−1 limit cycles of system (1) in the case where the Dulac–Cherkas function
Ψ(x, y) exists can be proved similarly to Theorem 4. The existence of one more limit cycle in the
doubly connected subdomain Ω̃s ⊂ Ωs in between the external oval of the set W and the single
oval of the set W̃ follows from Theorem 3. The simultaneous existence of the function Ψ and a
function B of the form (3) guarantees that system (1) has exactly s limit cycles in the domain Ω.
The proof of the theorem is complete.

If the usage of Theorem 5 does not enable the construction of a function Ψ̃, that satisfies
inequality (3), one can relinquish the sign-definiteness of the function Φ̃ and use the condition of
transversality of the set

V =
{
(x, y) ∈ Ω : Φ̃ = 0

}
with respect to the vector field X of system (1). This constitutes the essence of the third approach.

Theorem 6. Suppose that the assumptions of Theorem 1 are valid and there exists such a function
Ψ̃(x, y) ∈ C1(Ω) with k̃ < 0 that in the domain Ω the set W̃ intersects neither the set V nor the
set W . Then the set W̃ is transversal to the vector field X and is disjoint with the limit cycles of
system (1) that belong entirely to the domain Ω.
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Proof. We consider the set W̃ . Since W̃ and V are disjoint sets, it follows that the condition
Φ̃ > 0(< 0) is satisfied on the set W̃ . By virtue of inequality (4), the condition kΨdΨ̃

dt > 0 (< 0) is
satisfied on the curve Ψ̃ = 0 along any solution of system (1). Since the set W̃ does not intersect
the set W , it follows from the above inequality that the condition dΨ̃

dt > 0 (< 0) is satisfied.
Consequently, any trajectory of system (1) intersects the curve Ψ̃ = 0 transversally.

Without loss of generality, we consider the case dΨ̃
dt > 0. Let us show that the limit cycles

cannot intersect the curve Ψ̃ = 0. Suppose the contrary is true, then a point on the limit cycle can
get with time onto the curve Ψ̃ = 0 only from a set in which Ψ̃ < 0 and should necessarily leave into
a set in which Ψ̃ > 0. However, when moving along the limit cycle, the point should return into
the original position in the domain Ψ̃ = 0, which is impossible in view of the inequality? dΨ̃

dt > 0.
The obtained contradiction implies that the limit cycles of system (1) cannot intersect the curve
Ψ̃ = 0 and it completes the proof.

Remark 3. Theorems 4–6 persist if the function Ψ̃ is found not in the entire domain Ω but only in
the domain Ωs or in its doubly connected subdomain Gs ⊂ Ωs surrounding the equilibrium point O.

Theorem 7. Suppose that the assumptions of Theorem 1 are valid and system (1) has a closed
transversal curve that lies in a doubly connected subdomain Ωs that surrounds the external oval
of the set W , two of them forming the boundary of a ring-shaped domain Ω̃s ⊂ Ωs. Then, if the
trajectories of system (1) enter, as t increases, the interior of the domain Ω̃s from outside (or vice
versa) through the boundary ∂Ω̃s, then there exists the unique stable (or unstable) limit cycle of
system (1) in the subdomain Ω̃s and system (1) has exactly s limit cycles in the domain Ω in total.

Proof. According to Theorem 4, the existence of a Dulac–Cherkas function Ψ(x, y) ensures the
existence of s − 1 limit cycles of system (1) encircled by the external oval ωs of the set W . In
accordance with the Dulac criterion, system (1) can have no more than one limit cycle in the
doubly connected subdomain Ωs. On the other hand, if the trajectories of system (1) enter, as t
increases, the interior of the subdomain Ω̃s from outside (or vice versa) through the boundary ∂Ω̃s,
then, according to the Poincare theorem [3, p. 64], there exists at least one stable (or unstable)
limit cycle in the subdomain Ω̃s. Thus, we establish the uniqueness of the limit cycle in Ω̃s.
Consequently, system (1) has exactly s limit cycles in the domain Ω. The proof is complete.

A detailed presentation of the approaches developed by us and their application to some classes
of systems (1) are contained in our paper [5]. Our paper [6] also shows that these approaches
can be effectively implemented to establish the exact number of limit cycles surrounding several
equilibrium points of systems (1), the total Poincaré index of which is +1.
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Consider the system of functional differential inequalities

D(σ(t))
[
u′(t)− ℓ(u)(t)

]
≥ 0 for a.e. t ∈ [a, b], (1)

φ(u) ≥ 0, (2)

where ℓ : C([a, b];Rn) → L([a, b];Rn) is a linear bounded operator, φ : C([a, b];Rn) → Rn is a
linear bounded functional, σ = (σi)

n
i=1, σi : [a, b] → {−1, 1} are functions of bounded variation, and

D(σ(t)) = diag(σ1(t), . . . , σn(t)). In the present contribution, we establish conditions guaranteeing
that every absloutely continuous vector-valued function u satisfying (1) and (2) admits also the
inequality u(t) ≥ 0 for t ∈ [a, b]. For this purpose we will need the following notation and definitions.

R is a set of all real numbers, R+ = [0,+∞[ , Rn is a space of n-dimensional column vectors
x = (xi)

n
i=1 with elements xi ∈ R (i = 1, . . . , n), Rn×n is a space of n × n-matrices X = (xij)

n
i,j=1

with elements xij ∈ R (i, j = 1, . . . , n), Rn
+ and Rn×n

+ are sets of non-negative column vectors and
matrices, respectively. The inequalities between vectors and matrices are understood component-
wise. If 0 and 1 are used as vectors, then 0 is a zero column vector and 1 is a column vector with
all components equal to one; δik is the Kronecker’s symbol; X−1 is the inverse matrix to X; r(X)
is the spectral radius of the matrix X; Θ is a zero matrix.

C([a, b];Rn) is a Banach space of continuous vector-valued functions x = (xi)
n
i=1 : [a, b] → Rn

endowed with the norm

∥x∥C = max

{ n∑
i=1

|xi(t)| : t ∈ [a, b]

}
.

AC([a, b];Rn) is a set of absolutely continuous vector-valued functions x : [a, b] → Rn.
L([a, b];Rn) is a Banach space of Lebesgue integrable vector-valued functions p = (pi)

n
i=1 :

[a, b] → Rn endowed with the norm

∥p∥L =

b∫
a

n∑
i=1

|pi(s)| ds.

Ln
ab is a set of linear bounded operators ℓ : C([a, b];Rn) → L([a, b];Rn).

Cn,∗
ab is a set of linear bounded functionals φ : C([a, b];Rn) → Rn.

For any ℓ ∈ Ln
ab, the operators ℓi : C([a, b];Rn) → L([a, b];R) and ℓik : C([a, b];R) → L([a, b];R)

(i, k = 1, . . . , n) are defined as follows:

• for any v ∈ C([a, b];Rn), ℓi(v) is the i-th component of the vector-valued function ℓ(v);

• for any z ∈ C([a, b];R) we put ℓik(z) = ℓi(ẑ), where ẑ = (δikz)
n
i=1.

For any functional φ ∈ Cn,∗
ab we define the functionals φi : C([a, b];Rn) → R and φik :

C([a, b];R) → R in a similar way. Moreover, we put Φ =
(
φik(1)

)n
i,k=1

.
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Definition 1. An operator ℓ ∈ Ln
ab is said to be σ-positive if the relation

D(σ(t))ℓ(u)(t) ≥ 0 for a.e. t ∈ [a, b] (3)

is fulfilled whenever u ∈ C([a, b];Rn) is such that

u(t) ≥ 0 for t ∈ [a, b] (4)

holds. A set of σ-positive operators is denoted by Pn
ab(σ).

Definition 2. We will say that an operator ℓ ∈ Ln
ab belongs to the set Pn,+

ab (σ) if the relation (3)
is fulfilled whenever u ∈ AC([a, b];Rn) is such that (4) and

D(σ(t))u′(t) ≥ 0 for a.e. t ∈ [a, b] (5)

hold.

Remark 1. Obviously, Pn
ab(σ) ( Pn,+

ab (σ).

Definition 3. We will say that a pair of operators (ℓ, φ) ∈ Ln
ab × Cn,∗

ab belongs to the set Sn
ab(σ) if

every function u ∈ AC([a, b];Rn) satisfying (1), (2) admits also (4).

Remark 2. Obviously, if (ℓ, φ) ∈ Sn
ab(σ), then the problem

u′(t) = ℓ(u)(t) + q(t) for a.e. t ∈ [a, b], φ(u) = c

has a unique solution u ∈ AC([a, b];Rn) for every q ∈ L([a, b];Rn) and c ∈ Rn, and this solution is
non-negative if D(σ(t))q(t) ≥ 0 for a. e. t ∈ [a, b] and c ≥ 0.

In the formulation of the main results, the inclusion (0, φ) ∈ Sn
ab(σ) is used. Therefore, we

present here some basic implication of this inclusion.

Proposition 1. Let (0, φ) ∈ Sn
ab(σ). Then

(i) detΦ ̸= 0,

(ii) Φ−1 ≥ Θ.

Proposition 2. Let (0, φ) ∈ Sn
ab(σ) and let u ∈ AC([a, b];Rn) satisfy (5). Then

u(t) ≥ Φ−1φ(u) for t ∈ [a, b].

Main results
Theorem 1. Let ℓ ∈ Pn

ab(σ), (0, φ) ∈ Sn
ab(σ). Then (ℓ, φ) ∈ Sn

ab(σ) iff there exists γ ∈ AC([a, b];Rn)
such that

D(σ(t))
[
γ′(t)− ℓ(γ)(t)

]
≥ 0 for a.e. t ∈ [a, b],

γ(t) > 0 for t ∈ [a, b], Φ−1φ(γ) > 0.

Proof. Necessity: If (ℓ, φ) ∈ Sn
ab(σ), then according to Remark 2 the problem

u′(t) = ℓ(u)(t) + ℓ(1)(t) for a.e. t ∈ [a, b], φ(u) = 0
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is uniquely solvable. Moreover, u(t) ≥ 0 for t ∈ [a, b]. Put γ(t) = u(t) + 1 for t ∈ [a, b]. Then

D(σ(t))
[
γ′(t)− ℓ(γ)(t)

]
= 0 for a.e. t ∈ [a, b],

γ(t) > 0 for t ∈ [a, b], Φ−1φ(γ) = Φ−1(φ(u) + Φ · 1) > 0.

Sufficiency: Let u satisfy (1), (2) with uj(tj) < 0 for some j ∈ {1, . . . , n} and tj ∈ [a, b]. Put

λi = max
{
− ui(t)

γi(t)
: t ∈ [a, b]

}
(i = 1, . . . , n)

and let
λ = max

{
λ1, . . . , λn

}
> 0.

Then w(t)
def
= λγ(t) + u(t) ≥ 0 for t ∈ [a, b], and there exist i0 ∈ {1, . . . , n} and t0 ∈ [a, b] such that

wi0(t0) = λγi0(t0) + ui0(t0) = 0. Consequently,

D(σ(t))w′(t) ≥ D(σ(t))ℓ(w)(t) ≥ 0 for a.e. t ∈ [a, b].

According to Proposition 2,

w(t) ≥ Φ−1φ(w) = Φ−1(λφ(γ) + φ(u)) > 0,

a contradiction.

Theorem 2. Let ℓ admit the representation ℓ = ℓ+ − ℓ− where ℓ+, ℓ− ∈ Pn
ab(σ). Let, moreover,

ℓ ∈ Pn,+
ab (σ), (ℓ+, φ) ∈ Sn

ab(σ), (0, φ) ∈ Sn
ab(σ).

Then ℓ ∈ Sn
ab(σ).

Proof. Let u satisfy (1), (2). According to Remark 2 there exists a unique solution x to the
problem

x′(t) = D(σ(t))
[
D(σ(t))u′(t)

]
− for a.e. t ∈ [a, b], φ(x) = 0.

Moreover, we have x(t) ≥ 0 for t ∈ [a, b]. Put w(t) = u(t) + x(t) for t ∈ [a, b]. Then w(t) ≥ u(t) for
t ∈ [a, b],

D(σ(t))w′(t) =
[
D(σ(t))u′(t)

]
+
≥ 0 for a.e. t ∈ [a, b], φ(w) ≥ 0.

Thus, w(t) ≥ 0 for t ∈ [a, b]. Let Ai = {t ∈ [a, b] : w′
i(t) = u′i(t)} and put

q(t)
def
= D(σ(t))

[
u′(t)− ℓ(u)(t)

]
for a.e. t ∈ [a, b].

Then, for every i ∈ {1, . . . , n}, we have

σi(t)w
′
i(t) =



σi(t)u
′
i(t) = σi(t)

n∑
k=1

[
ℓ+ik(uk)(t)− ℓ−ik(uk)(t)

]
+ qi(t)

≤ σi(t)
n∑

k=1

[
ℓ+ik(wk)(t)− ℓ−ik(uk)(t)

]
+ qi(t) for t ∈ Ai,

0 for a.e. t ∈ [a, b] \Ai.

On the other hand,

D(σ(t))
[
ℓ+(w)(t)− ℓ−(u)(t)

]
+ q(t) ≥ D(σ(t))ℓ(w)(t) + q(t) ≥ 0 for a.e. t ∈ [a, b].
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Consequently,

D(σ(t))
[
w′(t)− ℓ+(w)(t)

]
≤ −D(σ(t))ℓ−(u)(t) + q(t) for a.e. t ∈ [a, b].

Put z(t) = u(t)− w(t) for t ∈ [a, b]. Then

D(σ(t))
[
z′(t)− ℓ+(z)(t)

]
≥ 0 for a.e. t ∈ [a, b], φ(z) = 0,

and so z(t) ≥ 0 for t ∈ [a, b], i.e. u(t) ≥ w(t) ≥ 0 for t ∈ [a, b].
As a consequences of the main results we formulate corollaries in the case when σ is a constant

function. Therefore, in what follows we assume that σ(t) = (σi)
n
i=1 for t ∈ [a, b] with σi ∈ {−1, 1}.

First consider the system with deviating arguments

σi

[
u′i(t)−

n∑
k=1

(
pik(t)uk(τik(t))− gik(t)uk(µik(t))

)]
≥ 0 for a.e. t ∈ [a, b], (6)

ui(a) ≥ 0 if σi = 1, ui(b) ≥ 0 if σi = −1, (7)

where σipik, σigik ∈ L([a, b];R+), τik, µik : [a, b] → [a, b] are measurable functions.

Corollary 1. Let

σi
(
pik(t)− gik(t)

)
≥ 0, σiσkgik(t)

(
τik(t)− µik(t)

)
≥ 0 for a.e. t ∈ [a, b].

Let, moreover, there exist A =
(
aik

)n
i,k=1

∈ Rn×n
+ such that r(A) < 1 and

b∫
a

(
σi
(
pik(t)− gik(t)

)
+ σigik(t)

τik(t)∫
µik(t)

n∑
j=1

pkj(s) ds

)
dt ≤ aik.

Then every u ∈ AC([a, b];Rn) that satisfies (6), (7) is non-negative.

The next corollary deals with the second-order differential inequality with deviations together
with mixed boundary value conditions

u′′(t) ≤ −p(t)u(τ(t)) + g(t)u(µ(t)) for a.e. t ∈ [a, b], u(a) ≥ 0, u′(b) ≥ 0. (8)

Here p, g ∈ L([a, b];R+) and τ, µ : [a, b] → [a, b] are measurable functions.

Corollary 2. Let

τ(t) ≤ t, p(t) ≥ g(t), g(t)(τ(t)− µ(t)) ≥ 0 for a.e. t ∈ [a, b].

Let, moreover, there exists λ1, λ2 ∈ R+ such that
+∞∫
0

ds

λ1 + λ2s+ s2
≥ b− a,

p(t)− g(t) + g(t)(τ(t)− µ(t))

t∫
τ(t)

p(s) ds+ g(t)

τ(t)∫
µ(t)

(s− µ(t))p(s) ds ≤ λ1 for a.e. t ∈ [a, b],

g(t)(τ(t)− µ(t)) ≤ λ2 for a.e. t ∈ [a, b],

and at least one of the last three inequalities is strict. Then every u ∈ AC1([a, b];R) that satisfies
(8) is non-negative and nondecreasing.
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We consider the linear differential system

ẋ = A(t)x, x ∈ R2, t ≥ 0, (1)

with a bounded continuously differentiable matrix of coefficients A(t) and with negative charac-
teristic exponents λ1(A) ≤ λ2(A) < 0. This system is a linear approximation for the nonlinear
system

ẏ = A(t)y + f(t, y), y = (y1, y2) ∈ R2, t ≥ 0. (2)

In addition, the so-called m-perturbation of f(t, y) is continuously differentiable in its arguments
t ≥ 0 and y1, y2 ∈ R and has the order m > 1 of smallness in some neighborhood of the origin and
admissible growth outside of it:

‖f(t, y)‖ ≤ Cf‖y‖m, m > 1, y ∈ R2, t ≥ 0, (3)

where Cf is a positive constant.

Perron’s effect [28], [27, pp. 50, 51] of sign and value change in characteristic exponents claims
the existence of such system (1) with the negative Lyapunov exponents and 2-perturbation (3) that
all nontrivial solutions of the perturbed system (2) turn out to be infinitely extendable and have
finite Lyapunov exponents equal to:

1) the negative higher exponent λ2 of the initial system (1) for the solutions starting at the
initial moment on the axis y1 = 0 (that allows one to consider Perron’s effect incomplete);

2) any one positive value for all the rest solutions (calculated in [10, pp. 13–15]).

In our works [3–8, 11–24], we obtained various versions of the full Perron’s effect when all
nontrivial solutions of the nonlinear system (2) with m-perturbation (3) are infinitely extendable
(this is not so in a general case) and have finite positive Lyapunov exponents for negative exponents
of the system of linear approximation (1). These versions correspond to: different types of the set
λ(A, f) ⊂ (0,+∞) of characteristic Lyapunov exponents of all nontrivial solutions of the perturbed
system (2), distribution of those solutions with respect to the exponents from the set λ(A, f) and,
finally, an arbitrary order of systems (1) and (2). In particular, in our last works [14, 15], we
obtained a continual version of the full Perron’s effect with an arbitrarily given segment, a set
λ(A, f) ⊂ (0,+∞) of characteristic exponents of the perturbed system (2).
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In the full Perron’s effect, the question dealing, in particular, with a most general type of the
set λ(A, f) of characteristic exponents (of all nontrivial solutions) of the perturbed system (2), i.e.,
the question on a full description of that set, remains still open. The aim of the present work is
to establish that in the full Perron’s effect of value change in characteristic exponents their set
λ(A, f) is the Suslin’s one [2, pp. 97, 98, 192], realizing thus the first stage of the above description.
Towards this end, it will be proved that within the framework of the effect under consideration the
characteristic exponent

λ[y(·, y0)] ≡ lim
t→+∞

1

t
ln ∥y(t, y0)∥

of every nontrivial solution y(t, y0) of system (2), being the function of the initial vector y0 =
y(0, y0) ∈ R2 \ {0}, is the function of the second Bare’s class [2, p. 248]. Thus its set of values

Λ(A, f) ≡
{
λ[y( · , y0)] : y0 ∈ R2 \ {0}

}
belongs to the class of Suslin’s sets [2, pp. 97,98, 192].

The perturbed differential system (2) realizing the full Perron’s effect of values change, whose
all nontrivial solutions take their origin in some neighbourhood of its zero solution and have, by
the definition, positive exponents, may be called exponentially nonstable. In an opposite case,
in no way connected with the Perron’s effect, when the exponentially stable system (1) is such
that any system (2) with m-perturbation f is likewise exponentially stable, we studied the set [9]
Λ0(A, f) =

∩
ρ>0

Λρ(A, f), where Λρ(A, f) is a set of Lyapunov’s exponents of nontrivial solutions of

system (2), emanating for t = 0 from the ρ-neighbourhood of zero. For the set Λ0(A, f) ⊂ (−∞, 0),
we obtained the following results. In [9], for an arbitrary segment [α, β] ⊂ (−∞, 0), we constructed
the system (2) for which Λ0(A, f) = [α, β]. In [29], these constructions were extended to the
sets Λ0(A, f) ⊂ (−∞, 0) consisting of a countable number of connectedness components. Finally,
in [1], the family of sets Λ0(A, f) is described completely; it consists of bounded Suslin’s sets of the
negative semi-axis whose exact upper bound is negative.

The essentials of the Baer’s classification of Lyapunov exponents and other asymptotic charac-
teristics of solutions of parametric differential systems, as the functions of a parameter, were laid by
V. M. Millionshchikov. Its subsequent development is connected with the works of M. I. Rakhim-
berdiev, I. N. Sergeyev, E. A. Barabanov, A. N. Vetokhin, V. V. Bykov and their pupils.

We will consider a more general, as compared with (2), the n-dimwnsional differential system

ẏ = F (t, y), y ∈ Rn, t ≥ 0, (4)

with a continuously differentiable in its arguments t > 0 and y1, . . . , yn ∈ R right-hand side F (t, y)
satisfying the condition F (t,0) ≡ 0, t ≥ 0.

The following theorem is valid.

Theorem. Let all nontrivial solutions y(t, y0) of system (4) be infinitely extendable and have finite
characteristic exponents. Then the characteristic exponent λ[y( · , y0)] of those solutions is the
function of the 2nd Baer’s class of their initial vectors y0 ∈ Rn \ {0}.

Getting back to the full Perron’s effect of value change in negative characteristic exponents of
the system of linear approximation (1), for the whole set Λ(A, f) of positive Lyapunov exponents
of all nontrivial solutions of the perturbed system (2), we obtain the following

Corollary. Let all nontrivial solutions y(t, y0), y0 ∈ R2 \ {0} of system (2) be infinitely extendable
and have finite positive Lyapunov exponents. Then the characteristic exponent λ[y( · , y0)] of those
solutions is the function of the 2nd Baer’ class of their initial values y0 ∈ R2 \ {0}, whereas the
whole set Λ(A, f) of exponents of nontrivial solutions is Suslin’s one.
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Remark 1. The above corollary is likewise valid for the n-dimensional analogue of the full Perron’s
effect.

Remark 2. In addition to the monograph by G. A. Leonov [27] the works due to V. V. Kozlov
[25,26] had a stimulating influence on our investigations of Perron’s effect of sign and value change
in characteristic exponents.
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The present note is devoted to the nonlinear multi-dimensional integro-differential equation of
parabolic type. The well-posedness of the initial-boundary value problem with first kind boundary
condition and convergence of additive averaged semi-discrete scheme with respect to time variable
are studied. The investigated equation is kind of natural generalization, on the one hand, of
equations describing applied problems of mathematical physics and, on the other hand, of nonlinear
parabolic equations considered, for example, in [14] and [18]. The studied equation is based on well-
known Maxwell’s system arising in mathematical simulation of electromagnetic field penetration
into a substance [11].

Maxwell’s system is complex and its investigation and numerical resolution still yield for special
cases (see, for example, [9] and the references therein). In [3] the mentioned system was proposed
in the integro-differential form. The literature on the questions of existence, uniqueness, and
regularity of solutions to Maxwell’s system and models of such integro-differential types is very rich.
In [1–8, 12, 13], as well as in a number of other works the solvability of the initial-boundary value
problems for this type integro-differential models in scalar cases are studied. The well-posedness of
those problems in [1–8] are proved using a modified version of Galerkin’s method and compactness
arguments that are used in [14,18] for investigation nonlinear elliptic and parabolic equations.

Let us note that the unique solvability and large time behavior of initial-boundary value prob-
lems for investigated in this note multi-dimensional integro-differential type equations at first are
given in [4].

These questions and numerical resolution of initial-boundary value problems are discussed in
many works as well (see, for example, [1–9,12,13,16,17] and the references therein).

Many authors study Rothe’s type semi-discrete scheme with respect to time variable, semi-
discrete schemes with spatial variable, finite element and finite difference approximations for a
integro-differential models (see, for example, [5–10,14,16,17] and the references therein).

It is very important to study decomposition analogs for the above-mentioned multi-dimensional
integro-differential equation and systems too. At present there are some effective economic algo-
rithms for solving the multi-dimensional problems (see, for example, [14, 15] and the references
therein).

In this paper the existence and uniqueness of solutions of initial-boundary value problems is
given. Main attention is paid to investigation of Rothe’s type semi-discrete additive averaged
scheme.

Let us formulate the studied problem. Let Ω be bounded domain in the n-dimensional Euclidean
space Rn with sufficiently smooth boundary ∂Ω. In the domain Q = Ω × (0, T ) of the variables
(x, t) = (x1, x2, . . . , xn, t), where T is a positive constant, let us consider the following equation:

∂U

∂t
−

n∑
i=1

{
∂

∂xi

[
1 +

t∫
0

∣∣∣∂U
∂xi

∣∣∣q dτ]p ∣∣∣∂U
∂xi

∣∣∣q−2 ∂U

∂xi

}
= f(x, t), (x, t) ∈ Q, (1)
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with the homogeneous boundary and initial conditions:

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (2)

U(x, 0) = 0, x ∈ Ω, (3)

where p, q are constants and f is a given function.
Principal characteristic peculiarity of the equation (1) is connected with the appearance of

the nonlinear terms depended on the time integral in the coefficients with high order derivatives.
These circumstances requires different discussions than it is usually necessary for the solution of
local differential problems.

The problem (1)–(3) is similar to problems considered in [2, 4, 7, 12]. Unique solvability and
discrete analogs of initial-boundary value problem for one-dimensional case of equation (1) are
studied in [5]. Using modified version of Galerkin’s method and compactness arguments as in [14,18]
the following statement is obtained.

Theorem 1. If 0 < p ≤ 1, q ≥ 2, f ∈W 1
2 (Q), f(x, 0) = 0, then there exists the unique solution U

of problem (1)–(3) satisfying the following properties:

U ∈ Lpq+q(0, T ;
◦
W 1

pq+q(Ω)),
∂U

∂t
∈ L2(Q),√

ψ
∂U

∂xj

(∣∣∣∂U
∂xi

∣∣∣ q−2
2 ∂U

∂xi

)
∈ L2(Q),

√
T − t ∂U

∂t

(∣∣∣∂U
∂xi

∣∣∣ q−2
2 ∂U

∂xi

)
∈ L2(Q), i, j = 1, . . . , n,

where ψ ∈ C∞(Ω), ψ(x) > 0 for x ∈ Ω; ∂ψ
∂ν = 0 for x ∈ ∂Ω and ν is the outer normal of ∂Ω.

Here we used usual Lp and W k
p ,

◦
W k

p Sobolev spaces.
Using the scheme of investigation as in [4] it is not difficult to get the results of exponential

asymptotic behavior of solution as t→∞ of the initial-boundary value problems for the equation
(1) with nonhomogeneous initial condition.

On [0, T ], let us introduce a net with mesh points denoted by tj = jτ , j = 0, 1, . . . , J , with
τ = T/J .

Coming back to problem (1)–(3), let us construct the following additive averaged Rothe’s type
scheme:

ηi
uj+1
i − uj

τ
=

∂

∂xi

[(
1 + τ

j+1∑
k=1

∣∣∣∂uki
∂xj

∣∣∣q)p ∣∣∣∂uj+1
i

∂xi

∣∣∣q−2∂uj+1
i

∂xi

]
+ f j+1

i , (4)

with the homogeneous boundary and initial u0
i = u0 = 0 conditions, where uji (x), i = 1, . . . , n,

j = 0, 1, . . . , J − 1 are solutions of the problems (4). The notations in (4) are as follows:

uj(x) =

n∑
i=1

ηiu
j
i (x),

n∑
i=1

ηi = 1, ηi > 0,
n∑
i=1

f j+1
i (x) = f j+1(x) = f(x, tj+1),

where uj denotes approximation of an exact solution U of the problem (1)–(3) at tj . We use usual
norm ‖ · ‖ of the space L2(Ω).

Theorem 2. If problem (1)–(3) has sufficiently smooth solution, then the solution of the problem
(4) with homogeneous initial and boundary conditions converges to the solution of the problem
(1)–(3) and the following estimate is true

‖U j − uj‖ = O(τ1/2), j = 1, . . . , J.
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Let us note that the results analogous to Theorem 2 for the following integro-differential models
are obtained in the works [6–8]:

∂U

∂t
−

n∑
i=1

∂

∂xi

[(
1 +

t∫
0

∣∣∣∂U
∂xi

∣∣∣2 dτ) ∂U

∂xi

]
= f(x, t),

and

∂U

∂t
−

n∑
i=1

(
1 +

∫
Ω

t∫
0

∣∣∣∂U
∂xi

∣∣∣2 dx dτ) ∂2U

∂x2
i

= f(x, t).

It was mentioned in [7] that it is very important to construct and investigate (4) type semi-
discrete additive schemes for more general type nonlinearities. The purpose of this work was to
expand the previously studied cases. Thus, in this note we studied more wide class of nonlinearity.
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1 Introduction
Consider the second order half-linear differential equation

(p(t)φα(x
′))′ + q(t)φα(x) = 0, (E)

where α is a positive constant, p(t) and q(t) are positive continuous functions on [a,∞), a ≥ 0, and
φα(u) = |u|α sgnu, u ∈ R.

We assume that equation (E) is nonoscillatory. Given a solution x(t) of (E) we call the function
p(t)φα(x

′(t)) the quasi-derivative of x(t) and denote it by Dx(t). If u(t) and v(t) are defined by

u(t) =
Dx(t)

φα(x(t))
and v(t) =

x(t)

φ1/α(Dx(t))
,

then they satisfy the first order nonlinear differential equations

u′ = −q(t)− αp(t)−
1
α |u|1+

1
α , (R1)

v′ = p(t)−
1
α +

1

α
q(t)|v|1+α, (R2)

for all large t. Equations (R1) and (R2) are referred to as the first and the second Riccati equations
associated with (E). Note that (R2) has recently been discovered by Mirzov [3]. Conversely, suppose
that (R1) and (R2) have solutions u(t) and v(t) defined for all large t, say on [T,∞). Such solutions
u(t) and v(t) are termed global solutions of (R1) and (R2), respectively. Form the function x(t) on
[T,∞) by one of the following formulas which are collectively called the reproducing formulas

x(t) = exp

( t∫
T

p(s)−
1
αφ 1

α
(u(s)) ds

)
or x(t) = exp

(
−

∞∫
t

p(s)−
1
αφ 1

α
(u(s)) ds

)
, (1.1)



68 International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia

x(t) =
1

φ 1
α
(u(t))

exp

(
− 1

α

t∫
T

q(s)

u(s)
ds

)
or x(t) =

1

φ 1
α
(u(t))

exp

(
1

α

∞∫
t

q(s)

u(s)
ds

)
,

x(t) = exp

( t∫
T

ds

p(s)
1
α v(s)

)
or x(t) = exp

(
−

∞∫
t

ds

p(s)
1
α v(s)

)
,

x(t) = v(t) exp

(
− 1

α

t∫
T

q(s)φα(v(s)) ds

)
or x(t) = v(t) exp

(
1

α

∞∫
t

q(s)φα(v(s)) ds

)
. (1.2)

Then, x(t) gives a nonoscillatory solution of equation (E) on [T,∞). This shows that equation (E)
is nonoscillatory if and only if the Riccati equation (R1) (or (R2)) has a global solution.

We expect that the Riccati equations will be more productive in the sense that all nonoscillatory
solutions of equation (E) can be reproduced from the global solutions of (R1) and/or (R2). As a
result of our efforts made in [2] it has turned out that a majority of solutions of (E) can really be
reproduced by solving (R1) and (R2) by means of fixed point techniques. Worthy of note is that
both (R1) and (R2) are indispensable in the reproduction processes.

2 Main results
We need the following notations:

Ip =

∞∫
a

p(t)−
1
α dt, Iq =

∞∫
a

q(t) dt,

Pα(t) =

t∫
a

p(s)−
1
α ds if Ip = ∞, πα(t) =

∞∫
t

p(s)−
1
α ds if Ip < ∞,

Q(t) =

t∫
a

q(s) ds if Iq = ∞, ρ(t) =

∞∫
t

q(s) ds if Iq < ∞.

Of crucial importance is the following classification of nonoscillatory solutions of (E). Let x(t)
be a solution of (E) such that x(t)Dx(t) ̸= 0 on [T,∞). Both x(t) and Dx(t) are monotone and
have the limits x(∞) = lim

t→∞
x(t) and Dx(∞) = lim

t→∞
Dx(t) in the extended real number system.

The pair (x(∞), Dx(∞)), referred to as the terminal state of x(t), is a decisive indicator of the
asymptotic behavior at infinity of a solution x(t) of (E). All possible types of terminal states of
solutions x(t) of (E) can be enumerated as follows.

(I) (The case where Ip = ∞∧ Iq < ∞) (All solutions satisfy x(t)Dx(t) > 0)

I(i): |x(∞)| = ∞, 0 < |Dx(∞)| < ∞,
I(ii): |x(∞)| = ∞, Dx(∞) = 0,
I(iii): 0 < |x(∞)| < ∞, Dx(∞) = 0.

(II) (The case where Ip < ∞∧ Iq = ∞) (All solutions satisfy x(t)Dx(t) < 0)

II(i): 0 < |x(∞)| < ∞, |Dx(∞)| = ∞,
II(ii): x(∞) = 0, |Dx(∞)| = ∞,
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II(iii): x(∞) = 0, 0 < |Dx(∞)| < ∞.

(III) (The case where Ip < ∞∧ Iq < ∞)

III(i) = I(iii) (x(t)Dx(t) > 0),
III(ii) = II(iii) (x(t)Dx(t) < 0),

III(iii): 0 < |x(∞)| < ∞, 0 < |Dx(∞)| < ∞) (x(t)Dx(t) > 0 or x(t)Dx(t) < 0).

The existence of solutions of the types I(i), I(iii), II(i) and II(iii) can be completely characterized.

Theorem 2.1. Assume that Ip = ∞∧ Iq < ∞.

(i) (E) has a solution of type I(i) if and only if
∞∫
a
q(t)Pα(t)

α dt < ∞.

(ii) (E) has a solution of type I(iii) if and only if
∞∫
a
p(t)−

1
α ρ(t)

1
α dt < ∞.

Theorem 2.2. Assume that Ip < ∞∧ Iq = ∞.

(i) (E) has a solution of type II(i) if and only if
∞∫
a
p(t)−

1
αQ(t)

1
α dt < ∞.

(ii) (E) has a solution of type II(iii) if and only if
∞∫
a
q(t)πα(t)

α dt < ∞.

Only the proofs of the “if” parts of Theorem 2.1 are outlined.

Proof of the “if” part of Theorem 2.1-(i). Choose T > a so that
∞∫
T

q(s)Pα(s)
α ds ≤ α/(α +

1)2α+1, define the set

V =
{
v ∈ CPα [T,∞) : Pα(t) ≤ v(t) ≤ 2Pα(t), t ≥ T

}
,

where CPα [T,∞) denotes the Banach space of all continuous functions w(t) on [T,∞) such that
|w(t)|/Pα(t) is bounded with the norm ∥w∥Pα = sup{|w(t)|/Pα(t) : t ≥ T}, and show that the
integral operator given by

Gv(t) = Pα(t) +
1

α

t∫
T

q(s)|v(s)|α+1 ds, t ≥ T,

is a contraction such that ∥Gv1 − Gv2∥Pα ≤ 1
2∥v1 − v2∥Pα for any v1, v2 ∈ V. Therefore, G has a

unique fixed point v ∈ V which gives a solution v(t) of (R2) on [T,∞) such that v(t) ∼ Pα(t) as
t → ∞. With this v(t) define x(t) by the second formula in (1.2). Then, it is a solution of (E)
satisfying x(t) ∼ Pα(t) and Dx(t) ∼ 1 as t → ∞.

Proof of the “if” part of Theorem 2.1-(ii). Choose T > a so that
∞∫
T

p(s)−
1
α ρ(s)

1
α ds ≤

1/(α+ 1)21+
1
α and consider the set

U =
{
v ∈ C0[T,∞) : ρ(t) ≤ u(t) ≤ 2ρ(t), t ≥ T

}
,
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where C0[T,∞) denotes the set of all continuous functions w(t) on [T,∞) tending to zero as t → ∞.
It is a Banach space with the sup-norm ∥w∥0 = sup{|w(t)| : t ≥ T}. Show that the integral operator
given by

Fu(t) = ρ(t) + α

∞∫
t

p(s)−
1
α |u(s)|1+

1
α ds, t ≥ T,

is a contraction such that ∥Fu1 − Fu2∥0 ≤ 1
2∥u1 − u2∥0 for any u1, u2 ∈ U . Let u ∈ U be a unique

fixed point of F . Then, it is a solution u(t) of (R1) on [T,∞) such that u(t) ∼ ρ(t) as t → ∞. Using
this u(t) define x(t) according to the second reproducing formula of (1.1). Then, it is a positive
solution of (E) satisfying x(t) ∼ 1 and Dx(t) ∼ ρ(t) as t → ∞.

Note that any solution of the type III(iii) of (E) in the case Ip < ∞ ∧ Iq < ∞ can also be
reproduced from a suitable solution of (R1) or (R2).

As for solutions of the types I(ii) and II(ii) of (E), often referred to as intermediate solutions,
very little is known about their existence and asymptotic behavior at infinity. In [2] we have
indicated several nontrivial cases of (E) whose intermediate solutions can actually be reproduced
with the aid of (R1) and (R2).

Theorem 2.3.

(i) Assume that Ip = ∞∧ Iq < ∞. Equation (E) has an intermediate solution of the type I(ii) if
∞∫
a

p(t)−
1
α ρ(t)

1
α dt = ∞,

∞∫
a

q(t)Pα(t)
α dt < ∞.

(ii) Assume that Ip < ∞∧ Iq = ∞. Equation (E) has an intermediate solution of the type II(ii) if
∞∫
a

q(t)πα(t)
α dt = ∞,

∞∫
a

p(t)−
1
αQ(t)

1
α dt < ∞.

Outline of proof of (i). Let any constant A > 1 be given. Put r(t) =
∞∫
t

q(s)Pα(s)
α ds and choose

T > a so that r(T ) ≤ (A− 1)αA−α−1. Define the integral operator F by

Fu(t) = ρ(t) + α

∞∫
t

p(s)−
1
α |u(s)|1+

1
α ds, t ≥ T,

and let it act on the set U defined by

U =
{
u ∈ C[T,∞) : ρ(t) ≤ u(t) ≤ Ar(t)P (t)−α, t ≥ T

}
,

which is a closed convex subset of the locally convex space C[T,∞).
Then, it can be shown that F is a continuous self-map of U sending U into a relatively compact

subset of C[T,∞). Therefore, by the Schauder–Tychonoff fixed point theorem there exists a u in
U such that u = Fu, which means that u(t) is a global solution of (R1). With this u(t) apply the
first reproducing formula of (1.1) to construct a positive solution x(t) of (E) on [T,∞). This is an
intermediate solution of the type I(ii) since it is easily verified that x(∞) = ∞ and Dx(∞) = 0.

Remark. Some of our results are already known; see e.g., [1]. However, our approach based on
the Riccati equations makes the asymptotic analysis of equation (E) much easier and clearer.
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In the domain DT : 0 < x < l, 0 < t < T consider the following mixed problem

utt − uxx +Aux +But + Cu+ f(x, t, u) = F (x, t), (x, t) ∈ DT , (1)
u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l, (2)

(Mux +Nut + Su)(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T, (3)

where A, B, C, M , N , S are given n-th order quadratic real matrix-functions; f = (f1, . . . , fn),
F = (F1, . . . , Fn), φ = (φ1, . . . , φn) and ψ = (ψ1, . . . , ψn) are given and u = (u1, . . . , un) is an
unknown real vector-functions, n ≥ 2.

Below we consider the problem (1)–(3) in a classical statement, when its regular solution is
searched in the class C2(DT ) and it is supposed that the problem data have corresponding smooth-
ness and in the points (0, 0) and (l, 0) satisfy second order agreement conditions.

Divide the domain Dl, being a quadrat with the center in O1(
l
2 ,

l
2), into four triangles:

D1
l := OO1O2, D2

l := OO1O3, D3
l := O2O1O4, D4

l := O3O1O4,

where
O = (0, 0), O2 = (l, 0), O3 = (0, l), O4 = (l, l).

Assuming that
det(M −N)(0, t) ̸= 0, 0 ≤ t ≤ l,

the problem (1)–(3) can be equivalently reduced to the Volterra type nonlinear integro-differential
equation with respect to variable t by using the methods of Riemann matrices-functions and Lapla-
cian invariants

u(x, t) = (Tu)(x, t), (x, t) ∈ Dl,

where

(Tu)(x, t) = χ1
1
(x, t)φ(x− t) + χ1

2
(x, t)φ(x+ t)

+

∫
P 1
1 P

1
2

[
Λ1
1(x, t; ξ)φ(ξ) + Λ1

2(x, t; ξ)ψ(ξ)
]
dξ

+

∫
D1

x,t

K1(x, t; ξ, η)
[
F (ξ, η)− f(ξ, η, u)

]
dξ dη, P 1(x, t) ∈ D1

l , (4)
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where P 1
1 = (x− t, 0), P 1

2 = (x+ t, 0), D1
x,t is a triangle P 1

1P
1P 1

2 ;

(Tu)(x, t) = χ2
1
(x, t)φ(0) + χ2

2
(x, t)φ(t− x) + χ2

3
(x, t)φ(t+ x)

+

∫
OP 2

3

[
Λ2
1(x, t; ξ)φ(ξ) + Λ2

2(x, t; ξ)ψ(ξ)
]
dξ

+

∫
D2

x,t

K2(x, t; ξ, η)
[
F (ξ, η)− f(ξ, η, u)

]
dξ dη, P 2(x, t) ∈ D2

l , (5)

where P 2
1 = (0, t− x), P 2

3 = (t+ x, 0), D2
x,t is a quadrangle OP 2

1P
2P 2

3 ;

(Tu)(x, t) = χ3
1
(x, t)φ(x− t) + χ3

2
(x, t)φ(2l − x− t)

+

∫
P 3
1O1

[
Λ3
1(x, t; ξ)φ(ξ) + Λ3

2(x, t; ξ)ψ(ξ)
]
dξ

+

∫
D3

x,t

K3(x, t; ξ, η)
[
F (ξ, η)− f(ξ, η, u)

]
dξ dη, P 3(x, t) ∈ D3

l , (6)

where P 3
1 = (x− t, 0), P 3

3 = (l, x+ t− l), D3
x,t is a quadrangle P 3P 3

1O1P
3
3 ;

(Tu)(x, t) = χ4
1
(x, t)φ(0) + χ4

2
(x, t)φ(t− x) + χ4

3
(x, t)φ(2l − x− l)

+

∫
OO1

[
Λ4
1(x, t; ξ)φ(ξ) + Λ4

2(x, t; ξ)ψ(ξ)
]
dξ

+

∫
D4

x,t

K4(x, t; ξ, η)
[
F (ξ, η)− f(ξ, η, u)

]
dξ dη, P 4(x, t) ∈ D4

l , (7)

where P 4
1 = (0, t − x), P 4

4 = (l, x + t − l), D4
x,t is a quadrangle P 4P 4

1OO1P
4
4 ; everywhere here χj

i
,

Λj
k and Kj , i = 1, 2, 3, k = 1, 2, j = 1, 2, 3, 4 are well-known defined matrices.

For f = 0 the formulas (4)–(7) give the solution of the posed linear problem in quadratures.
Notice, on supposition that f ∈ C1(D∞ ×R) the problem (1)–(3) is locally always solvable, i.e.

there exists a number T0 = T0(F,φ, ψ) > 0 such that for T < T0 the problem is solvable in domain
DT . Besides, without additional requirements on the increment of nonlinearity of vector-function
f and its structure, the problem (1)–(3) may not have a solution.
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1 Notation and preliminaries
Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis (see, e.g. [5]), where Ω is a set of elementary probability
events, F is a σ-algebra of all events on Ω, (Ft)t≥0 is a right continuous family of σ-subalgebras
of F , P is a probability measure on F ; all the above σ-algebras are assumed to be complete with
respect to (w.r.t. in what follows) the measure P , i.e. they contain all subsets of zero measure; the
symbol E stands for the expectation related to the probability measure P .

In the sequel, we use an arbitrary yet fixed norm | · | in Rn, the real-valued index p satisfying
the assumption 0 ≤ p ≤ ∞ and a continuous positive function γ(t) defined for all t ≥ 0.

By Z = (z1, . . . , zm)T we denote an m-dimensional semimartingale (see, e.g. [5]). A most popu-
lar particular case of Z is the standard Brownian motion (the Wiener process) B = (B1, . . . ,Bm)T .

The general linear stochastic functional differential equation is defined as follows (see, e.g. [2]):

dx(t) = (V x)(t) dZ(t) (t ≥ 0), (1.1)

and the initial condition reads in this case as

x(0) = x0 ∈ Rn. (1.2)

Here V is a k-linear Volterra operator (see below), which is defined in certain linear spaces of
vector-valued stochastic processes.

By the k-linearity of the operator V we mean the property

V (α1x1 + α2x2) = α1V x1 + α2V x2,

which holds for all F0-measurable, bounded and scalar random values α1, α2 and all stochastic
processes x1, x2 belonging to the domain of the operator V .

According to the paper [3] the following classes of linear stochastic equations can be rewritten
in the form (1.2):

(a) Systems of linear ordinary (i.e. non-delay) stochastic differential equations driven by an
arbitrary semimartingale (in particular, systems of ordinary Itô equations);
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(b) Systems of linear stochastic differential equations with discrete delays driven by a semimartin-
gale (in particular, systems of Itô equations with discrete delays);

(c) Systems of linear stochastic differential equations with distributed delays driven by a semi-
martingale (in particular, systems of Itô equations with distributed delays);

(d) Systems of linear stochastic integro-differential equations driven by a semimartingale (in
particular, systems of Itô integro-differential equations);

(e) Systems of linear stochastic functional difference equations driven by a semimartingale (in
particular, systems of Itô functional difference equations).

2 Lyapunov stability and M-stability
In this section we study different kinds of stochastic Lyapunov stability of the zero solution of the
linear equation (1.1) with respect to the initial data (1.2). Let us start with the precise definitions.

Definition 2.1. The zero solution of the equation (1.1) is called

1. weakly stable in probability if for any ε > 0, δ > 0 there is η(ε, δ) > 0 such that P{ω ∈ Ω :
|x(t, x0)| > ε} < δ for all |x0| < η and t ≥ 0;

2. asymptotically weakly stable in probability if it is weakly stable in probability and if, in addi-
tion, for any ε > 0 and all x0 ∈ Rn one has

P
{
ω ∈ Ω : |x(t, x0)| > ε

}
−→ 0 as t → +∞;

3. stable in probability if for any ε, δ > 0 there is η(ε, δ) > 0 such that

P
{
ω ∈ Ω : sup

t≥0
|x(t, x0)| > ε

}
< δ for all |x0| < η;

4. asymptotically stable in probability if it is stable in probability and if, in addition, for any
ε > 0 and all x0 ∈ Rn one has P{ω ∈ Ω : |x(t, x0)| > ε} → 0 as t → +∞;

5. p-stable if for any ε > 0 there is η(ε) > 0 such that |x0| < η implies E|x(t, x0)|p ≤ ε for all
t ≥ 0;

6. asymptotically p-stable if it is p-stable and, in addition, lim
t→+∞

E|x(t, x0)|p = 0 for all x0 ∈ Rn;

7. exponentially p-stable if there exist positive constants K, β such that the inequality

E|x(t, x0)|p ≤ K|x0|p exp{−βt}

holds true for all t ≥ 0 and all x0 ∈ Rn;

8. stable with probability 1 if sup
t≥0

|x(t, xν)| → 0 with probability 1 whenever |xν | → 0 as ν → +∞;

9. asymptotically stable with probability 1 if it is stable with probability 1 and if, in addition,
|x(t, x0)| → 0 as t → +∞ for all x0 ∈ Rn;
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10. strongly stable with probability 1 if for any ε > 0 there exists η(ε) > 0 such that

P
{
ω ∈ Ω : sup

t≥0
|x(t, x0)| ≤ ε

}
= 1

whenever |x0| < η;

11. strongly asymptotically stable with probability 1 if it is strongly stable with probability 1 and
if, in addition, for any ε > 0, x(t, x0) tends to 0 with probability 1 as t → +∞ for all x0 ∈ Rn.

Remark 2.2. The initial condition x0 can also be random. In this case the norm of x0 should be
adjusted accordingly.

For brevity, we will also write “the equation (1.1) is stable” in a certain sense instead of “the
zero solution of the equation (1.1) is stable” in this sense.

In the sequel the following linear spaces of stochastic processes will be used:

- Ln(Z) consists of all predictable n ×m-matrix stochastic processes on [0,+∞), the rows of
which are locally integrable w.r.t. the semimartingale Z (see, e.g. [5]);

- Dn consists of all n-dimensional stochastic processes on [0,+∞), which can be represented as

x(t) = x(0) +

t∫
0

H(s) dZ(s),

where x(0) ∈ Rn, H ∈ Ln(Z).

In addition to Lyapunov stability, one can consider the so-called “M -stability”.

Definition 2.3. Let x( · , x0) be the solution of the initial value problem (1.1)–(1.2) defined on
[0,∞) and M be a certain subspace of the space Dn. We say that the equation (1.1) is M -stable
if x( · , x0) ∈ M for any x0 ∈ Rn.

The spaces below (“M -spaces”) are crucial for studying the stochastic Lyapunov stabilities
listed above.

- Mγ
0 =

{
x : x ∈ Dn such that for any δ > 0 there is K > 0,

for which sup
t≥0

P
{
ω : ω ∈ Ω, |γ(t)x(t)| > K

}
< δ

}
;

- M̂ γ
0 =

{
x : x ∈ Dn such that for any δ > 0 there is K > 0,

for which P
{
ω : ω ∈ Ω, sup

t≥0
|γ(t)x(t)| > K

}
< δ

}
;

- Mγ
p =

{
x : x ∈ Dn, sup

t≥0
E|γ(t)x(t)|p < ∞

}
(0 < p < ∞);

- M̂ γ
p =

{
x : x ∈ Dn, E sup

t≥0
|γ(t)x(t)|p < ∞

}
(0 < p < ∞);

- Mγ
∞ = M̂ γ

∞ =
{
x : x ∈ Dn, ess sup

(t,ω)∈[0,+∞[×Ω
|γ(t)x(t)| < ∞

}
;

For γ(t) = 1 (t ≥ 0) we also put



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 77

- M1
p = Mp and M̂ 1

p = M̂p (0 ≤ p ≤ ∞).

Let B be a linear subspace of the space Ln(Z) equipped with some norm ∥ · ∥B. For a given
positive and continuous function γ(t) (t ∈ [0,∞)) we define Bγ = {f : f ∈ B, γf ∈ B}. The
latter space becomes a linear normed space if we put ∥f∥Bγ := ∥γf∥B. By this, the linear spaces
Mγ

p , M̂ γ
p become normed spaces if 1 ≤ p ≤ ∞.

Remark 2.4. The above spaces can also be described as follows. Let L∞(X) be the space consisting
of all essentially bounded functions g : [0,∞) → X, while Lp(Y ) be the space of measurable
(p = 0), p-integrable (0 < p < ∞), essentially bounded (p = ∞) functions h : Ω → Y , where
X and Y are arbitrary separable Banach spaces. Then it is easy to see that Mγ

p = L∞(Lp(R
n))

and M̂ γ
p = Lp(L∞(Rn)) for all 0 ≤ p ≤ ∞ and an arbitrary positive and continuous function

γ : [0,∞) → R. This means that the above list of the M -spaces covers all possible combinations
of Lebesgue spaces with respect to the variable ω ∈ Ω and spaces of essentially bounded functions
with respect to the variable t ∈ [0,∞). As we will see, this list covers also all types of stochastic
Lyapunov stability described in Definition 2.1.

Below we use the following assumptions on a continuous positive function γ(t), t ∈ [0,∞):
Property γ1: the function γ satisfies the conditions γ(t) ≥ σ (t ∈ [0,+∞)), σ > 0 and

lim
t→+∞

γ(t) = +∞.

Property γ2: γ(t) = exp{βt} for some β > 0.

The theorem below describes relationships between the different kinds of the stochastic Lya-
punov stability and the associated M -stabilities.

Theorem 2.5. The following statements are valid for the equation (1.1):

1. weak stability in probability is equivalent to the M0-stability;

2. weak asymptotic stability in probability is equivalent to the Mγ
0 -stability for some γ satisfying

Property γ1;

3. stability in probability is equivalent to the M̂0-stability;

4. if 0 < p < ∞, then p-stability is equivalent to the Mp-stability;

5. if 0 < p < ∞, then asymptotic p-stability is equivalent to the Mγ
p -stability for some γ satisfying

Property γ1;

6. if 0 < p < ∞, then exponential p-stability is equivalent to the Mγ
p -stability for some γ

satisfying Property γ2;

7. stability with probability 1 is equivalent to the M̂0-stability;

8. strong stability with probability 1 is equivalent to the M∞-stability;

9. strong asymptotic stability with probability 1 is equivalent to the Mγ
∞-stability for some γ

satisfying Property γ1.

Using these results we can study relationships between different kinds of stochastic Lyapunov
stability and M -stability.

Corollary 2.6. Let p ∈ [0,∞]. Then the following are valid for the stochastic functional differential
equation (1.1):
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1. M̂p-stability implies stability with probability 1;

2. M̂ γ
p -stability with γ satisfying Property γ1 implies asymptotic stability with probability 1.

3. M̂ γ
∞-stability with γ satisfying Property γ1 implies strong asymptotic stability with probabili-

ty 1.

Corollary 2.7. For the equation (1.1) we have:

1. if 0 < q < p < ∞, then p-stability (resp. asymptotic, exponential p-stability) implies q-stability
(resp. asymptotic, exponential q-stability);

2. if 0 < p < ∞, then p-stability (resp. asymptotic p-stability) implies weak stability in probability
(resp. weak asymptotic stability in probability);

3. stability in probability (resp. asymptotic stability in probability) implies weak stability with
probability 1 (resp. weak asymptotic stability with probability 1).

4. stability in probability is equivalent to stability with probability 1.

The proof of the theorem and the corollaries as well as some applications can be found in [4].
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In the cylindrical domain DT := Ω × (0, T ), where Ω is a Lipschitz domain in Rn, consider a
boundary value problem on finding a solution u = u(x, t) to the equation

Lf :=
∂4ku

∂t4k
−

n∑
i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+ f(u) = F (1)

by the boundary conditions

u
∣∣
Γ
= 0, (2)

∂iu

∂ti

∣∣∣∣
Ω0∪ΩT

= 0, i = 0, . . . , 2k − 1, (3)

where f : R → R is a given continuous function, aij = aji = aij(x) ∈ C1(Ω), i, j = 1, . . . , n,
F = F (x, t) are the given, and u = u(x, t) is an unknown real functions, k is a natural number,
n ≥ 2. Here Γ := ∂Ω × (0, T ) is the lateral face of the cylinder DT , Ω0 : x ∈ Ω, t = 0 and
ΩT : x ∈ Ω, t = T are upper and lower bases of this cylinder, respectively.

Below, we assume that operator K :=
n∑

i,j=1

∂
∂xj

(
aij(x)

∂u
∂xi

)
is evenly elliptical in Ω, i.e.

k0|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ k1|ξ|2 ∀x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Rn, (4)

where k0, k1 = const > 0, |ξ|2 =
n∑

i=1
ξ2i . Note that (4) implies the hypoellipticity of the linear part

of operator Lf from (1), i.e. L0 is hypoelliptic for each x = x0 ∈ Ω.
Denote by C2,4k(DT , ∂DT ) the space of functions u continuous in DT , having continuous partial

derivatives ∂u
∂xi

, ∂2u
∂xi∂xj

, ∂lu
∂tl

, i, j = 1, . . . , n; l = 1, . . . , 4k, in DT . Assume

C2,4k
0 (DT , ∂DT ) :=

{
u ∈ C2,4k(DT ) : u

∣∣
Γ
= 0,

∂iu

∂ti

∣∣∣∣
Ω0∪ΩT

= 0, i = 0, . . . , 2k − 1

}
.

Introduce the Hilbert space W 1,2k
0 (DT ) as a completion with respect to the norm

∥u∥2
W 1,2k

0 (DT )
=

∫
DT

[
u2 +

2k∑
i=1

(∂iu

∂ti

)2

+

n∑
i=1

( ∂u

∂xi

)2]
dx dt

of the classical space C2,4k
0 (DT , ∂DT ).
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Remark 1. From definition of the space W 1,2k
0 (DT ) it follows that if u ∈ W 1,2k

0 (DT ), then
u ∈

◦
W 1

2(DT ) and ∂iu
∂ti

∈ L2(DT ), i = 2, . . . , 2k. Here W 1
2 (DT ) is the well-known Sobolev space

consisting of the elements of L2(DT ), having the first order generalized derivatives from L2(DT ),
and

◦
W 1

2(DT ) =
{
u ∈ W 1

2 (DT ) : u|∂DT
= 0

}
, where the equality u|∂DT

= 0 is understood in the
sense of the trace theory.

Below, on the function f = f(u) we impose the following requirements

f ∈ C(R), |f(u)| ≤ M1 +M2|u|α, u ∈ R, (5)

where Mi = const ≥ 0, i = 1, 2, and

0 ≤ α = const <
n+ 1

n− 1
. (6)

Remark 2. The embedding operator I : W 1
2 (DT ) → Lq(DT ) represents a linear continuous

compact operator for 1 < q < 2(n+1)
n−1 , when n > 1. At the same time the Nemitski operator

N : Lq(DT ) → L2(DT ), acting by the formula Nu = −f(u), due to (5) is continuous and bounded
if q ≥ 2α. Thus, since due to (6) we have 2α < 2(n+1)

n−1 , then there exists a number q such that
1 < q < 2(n+1)

n−1 and q ≥ 2α. Therefore, in this case the operator

N0 = NI :
◦
W 1

2(DT ) → L2(DT )

will be continuous and compact. Besides, from u ∈ W 1,2k
0 (DT ) it follows that f(u) ∈ L2(DT ) and,

if um → u in the space W 1,2k
0 (DT ), then f(um) → f(u) in the space L2(DT ).

Definition 1. Let function f satisfy the conditions (5) and (6), F ∈ L2(DT ). The function u ∈
W 1,2k

0 (DT ) is said to be a weak generalized solution of the problem (1)–(3), if for any φ ∈ W 1,2k
0 (DT )

the integral equality∫
DT

[
∂2ku

∂t2k
· ∂

2kφ

∂t2k
+

n∑
i,j=1

aij(x)
∂u

∂xi

∂φ

∂xj

]
dx dt+

∫
DT

f(u)φ dx dt

=

∫
DT

Fφ dx dt ∀φ ∈ C2,4k
0 (DT , ∂DT )

is valid.

It is not difficult to verify that if the solution of the problem (1)–(3) in the sense of Definition 1
belongs to the class C2,4k

0 (DT , ∂DT ), then it will also be a classical solution of this problem.

Theorem. Let the conditions (5), (6) and

lim
|u|→∞

inf
f(u)

u
≥ 0 (7)

be fulfilled. Then for any F ∈ L2(DT ) the problem (1)–(3) has at least one weak generalized solution
u ∈ W 1,2k

0 (DT ).

Remark 3. Let us note that if along with the conditions (5)–(7) imposed on function f to demand
that it is monotonous, then the solution u ∈ W 1,2k

0 (DT ) of the problem (1)–(3), the existence of
which is stated in the theorem, is unique. As show the examples, when the conditions imposed on
nonlinear function f are violated, then the problem (1)–(3) may not have a solution.
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We study functional-differential equations on the semi-axis which are nonlinear with respect to
the phase variables and linear with respect to the control. Sufficient conditions for existence of
optimal control in terms of the right-hand side and the quality criterion are obtained. Connection
between the solutions of the problems on infinite and finite intervals is studied and results about
these connections are proven.

Let h > 0 be a constant, describing the delay. By | · | we denote a vector norm in Rd, and by
∥ · ∥ the norm of d×m-matrices, which agrees with the vector norm. We introduce the necessary
functional spaces which we use in this paper. Let C = C([−h, 0];Rd) be the Banach space of
continuous functions from [−h, 0] into Rd with the uniform norm ∥φ∥C = max

θ∈[−h,0]
|φ(θ)|, and let

Lp = Lp([−h, 0];Rm), p > 1 be the Banach space of p-integrable m-dimensional vector-valued
functions with the norm

∥φ∥Lp =

( 0∫
−h

|φ(s)|p ds
)1/p

.

Let x be continuous function on [0,∞) and let φ ∈ C. If x(0) = φ(0), then the function

x(t, φ) =

{
φ(t), t ∈ [−h, 0],

x(t), t ≥ 0

is continuous for t ≥ 0. In the standard way for each t ≥ 0 we can introduce an element xt(φ) ∈ C
by the expression xt(φ) = x(t+ θ, φ), θ ∈ [−h, 0]. Further, instead of xt(φ) we write xt.

Let t ∈ [0,∞), and D be a domain in [−h,∞)× C with boundary ∂D.
In this paper, we study optimal control problems for systems of functional-differential equations

(ẋ = dx(t)/dt)

ẋ(t) = f1(t, xt) +

0∫
−h

f2(t, xt, y)u(t, y) dy, t ∈ [0, τ ], x(t) = φ0(t), t ∈ [−h, 0], (1)

with one of the next cost criterion

J [u] =

τ∫
0

(
e−γtA(t, xt) +B(t, u(t, · ))

)
dt −→ inf, (2)

J [u] =

τ∫
0

(
e−γtA(t, xt) +

0∫
−h

|u(t, y)|2 dy
)

−→ inf . (3)
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These problems are considered on the infinite horison t ≥ 0. Here φ0 ∈ C is a fixed element
such that (0, φ0) ∈ D, x(t) is the phase vector in Rd, and xt is the corresponding phase vector in C,
τ is the moment when (t, xt) reaches the boundary ∂D for the first time or τ = ∞ otherwise. Also,
f1 : D → Rd, f2 : D × [−h, 0] → Md×m – d×m-dimensional matrix such that for each (t, φ) ∈ D
f2(t, φ, · ) belongs to the space Lq([−h, 0];Md×m) with the norm

∥f2(t, φ)∥Lq =

( 0∫
−h

∥f2(t, φ, y)∥q dy
)1/q

,
1

p
+

1

q
= 1,

A : D → R+, B : [0,∞)× Lp → R+ are given mappings.
The control parameter u ∈ Lp([0,∞)× [−h, 0]) is m-dimensional vector function such that for

almost all (t, y), u(t, y) ∈ W , 0 ∈ W , where W is a convex and closed set in Rm.
For each control function, we define corresponding solution (trajectory) of (1). A continuous

function x(t) is a solution of (1) on the interval [−h, T ], if it satisfies the following conditions:
x(t) = φ0(t), t ∈ [−h, 0]; (t, xt) ∈ D for t ∈ [0, T ]; for t ∈ [0, T ] x(t) satisfies the integral equation

x(t) = φ0(0) +

t∫
0

[
f1(s, xs) +

0∫
−h

f2(s, xs, y)u(s, y) dy

]
ds.

The control function u(t, · ) is considered admissible for the problems (1), (2) and (1), (3), if:
u(t, y) ∈ Lp([0,∞) × [−h, 0]; u(t, y) ∈ W for almost all t ≥ 0, y ∈ [−h, 0]; the solution x(t)
corresponding to the control u(t, · ) exists on the interval [−h, τ ], τ > 0; |J [u]| < ∞.

Let V (φ0) denote the Bellman function for the problem on the infinite horison and let VT (φ0)
be the Bellman function for the corresponding problem on some finite interval [0, T ].

In [4] it was shown that system (1) includes as particular cases the usual optimal control problem
for functional-differential equations

ẋ(t) = f(t, xt) + g(t, xt)u(t), u ∈ Lp([0,∞);Rm), (4)

for equations with maximum, and for system of ordinary differential equations.
The choice of the control u(t, · ) ∈ Lp([0,∞); [−h, 0]) for each t as an element of the function

space is justified (determined) by two reasons:

1) the given problem to be similar to the general functional-operator form of an optimal control
problem where u(t) ∈ W and W is a topological space (see, for example, [1]).

2) the given class of problems includes some problems with applications to economics (see [2,3]).

The goal of this work is to generalize the results obtained in [4] to the infinite horison [0,∞)
and to clarify the relation between problems on finite and infinite intervals. It turns out that by
the means of optimal control for finite interval, it is possible to construct easily minimizers for the
problem on infinite horison.

Let D be a domain in [−h,∞) × C, and ∂D be its boundary. We introduce the notations
Dt = {φ ∈ C, (t, φ) ∈ D}, Dc =

∪
t≥0

Dt, where Dc is bounded in C.

Assumption 1. The admissible controls are m-dimensional vector functions u(t, y) ∈ Lp([0,∞)×
[−h, 0];Rm) such that for almost all t ≥ 0 and y ∈ [−h, 0] we have u(t, y) ∈ W , where W is a
convex closed set in Rm and 0 ∈ W and there exists J [u].

The set of admissible controls we denote as U .
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Assumption 2. The mappings f1(t, φ) : D → Rd and f2(t, φ, y) : D× [−h, 0] → Md×m are defined
and measurable with respect to all arguments in the domain D and D1 = {(t, φ) ∈ D, y ∈ [−h, 0]},
respectively. Moreover, these functions satisfy in D and D1, with respect to φ the condition for
linear growth and the Lipchitz condition, i.e., there exists constant K > 0 such that

|f1(t, φ)|+ ∥f2(t, φ, y)∥ ≤ K(1 + ∥φ∥C), (5)

for (t, φ) ∈ D, y ∈ [−h, 0],∣∣f1(t, φ1)− f1(t, φ2)
∣∣+ ∥∥f2(t, φ1, y)− f2(t, φ2, y)

∥∥ ≤ K∥φ1 − φ2∥C , (6)

for (t, φ1), (t, φ2) ∈ D.

Assumption 3.

1) The mapping A : D → R, A(t, φ) ≥ 0 for (t, φ) ∈ D is defined and continuous in D and for
(t, φ) ∈ D there is a constant KA > 0 such that A(t, φ) ≤ KA(1 + ∥φ∥C);

2) the mapping B : [0,∞) × Lp → R is measurable with respect to all its arguments and there
are constants a > 0, a1 > 0 such that a1∥z∥pLp

≥ B(t, z) ≥ a∥z∥pLp
if t ≥ 0;

3) for each t ≥ 0, B(t, z) is strongly differentiable with respect to z and for t ≥ 0 and z ∈ Lp the
Frechet derivative ∂B

∂z satisfies the estimate∥∥∥∂B
∂z

∥∥∥
L(Lp;R1)

≤ a2∥z∥p−1
Lp

for some constant a2 > 0, independently of t and z. Here ∥ · ∥L(Lp;R1) is the uniform operator
norm in the space of linear continuous functionals over Lp.

The main results of this work are given by the following theorems.

Theorem 1. Suppose that Assumptions 1–3 are satisfied. Then there exists a solution (x∗, u∗) of
the problems (1), (2) and (1), (3).

Let T > 0 be fixed. By (x∗T , u
∗
T ) we denote the solution of the problems (1), (2) or (1), (3)

on [0, T ].
For the problem on infinite horison, we define

uT,∞(t, · ) =

{
u∗T (t, · ), t ∈ [0, T ],

0, t > T
(7)

and xT,∞(t) is corresponding trajectory.
It is obvious that the given control is admissible for the original problem. Again, (u∗(t, · ), x∗(t))

is an optimal pair for the problem (1), (2), τ – the time at which the solution x∗t reaches the
boundary ∂D.

Theorem 2. Suppose that Assumptions 1–3 are satisfied, then we have:

1)
VT (φ0) → V (φ0), T → ∞;

2) there is a sequence Tn → ∞, n → ∞, such that the sequence {uTn,∞} is minimizer for the
problem (1), (2), i.e.

J [uTn,∞] −→ V, n → ∞; (8)
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3) there is a sequence Tn → ∞, n → ∞, such that

uTn,∞
w−→ u∗, n → ∞ (9)

weekly in Lp([0,∞)× [−h, 0];Rm);

4) pointwise on [0, τ∗], uniformly on each finite interval

xTn,∞(t) −→ x∗(t), n → ∞.

If the problem (1), (2) has unique solution, then the convergence in (8), (9) occurs for all T → ∞.

Remark. In the conditions of Theorem 2 for the functional (3) all statements of Theorem 2
are valid, if the weak convergence of optimal controls (9) is replaced with strong convergence in
L2([0,∞)× [−h, 0];Rm).

The next theorem is about the case when the domain Dc in the statement of the problem is
unbounded. As it is shown in [4], the solution of the original problem cannot go to infinity in
finite time. However, it can increase without bound in such a way that the integrals in (2) and (6)
become divergent for all admissible controls. Now we give a theorem which guarantees existence
of optimal control in this case. So, we assume that it is possible that D is unbounded domain in
[−h,∞)×C but the set of control values W is bounded in Rm. Without loss of generality, we can
assume that W is a ball with radius r.

Theorem 3. If the conditions of Theorem 1 are satisfied and γ < (hr + 1)K, then the problems
(1), (2) and (1), (3) have solutions.
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On a finite open interval ]a, b[ , we consider the differential equation

u′′ = f(t, u) (1)

with the Dirichlet boundary conditions

u(a+) = 0, u(b−) = 0, (2)

where f : ]a, b[×R → R is a continuous function, u(a+) and u(b−) are, respectively, the right and
the left limits of the function u at the points a and b.

We are interested in the case where the function f has a nonintegrable singularity in the time
variable at the points a and b.

In the earlier known theorems of the existence and uniqueness of a solution of the singular
boundary value problem (1), (2) it was assumed that

b∫
a

(t− a)(b− t)|f(t, 0)| dt < +∞

(see, e.g., [1–9] and the references therein). Unlike them, the results below cover the case when for
arbitrary x ∈ R and ℓ > 0 the condition

b∫
a

(t− a)ℓ(b− t)ℓ|f(t, x)| dt = +∞ (3)

is fulfilled. The results are new also for the linear differential equation

u′′ = p(t)u+ q(t), (4)

where p and q : ]a, b[→ R are continuous functions with singularities at the points a and b.
We use the following notation.
R is the set of real numbers, [x]− = |x|−x

2 .

Definition 1. The linear homogeneous differential equation

u′′ = p(t)u (40)

with continuous coefficients p : ]a, b[→ R is said to be nonoscillatory in the interval [a, b] if
every its nontrivial solution, satisfying the initial condition

u(a+) = 0,

satisfies also the inequalities

u(t) ̸= 0 for a < t < b, lim inf
t→b

|u(t)| > 0.
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Definition 2. The function G : ]a, b[× ]a, b[→ R is said to be Green’s function of problem
(40), (2) if for every s ∈ ]a, b[ the function u(t) = G(t, s) is continuous in the interval ]a, b[ and
satisfies the boundary conditions (2), while the restrictions of u to ]a, s[ and ]s, b[ are the solutions
of equation (40) and

u′(s+)− u′(s−) = 1.

If G is Green’s function of problem (40), (2), we put

H(p)(s) = sup
{
|G(t, s)| : a < t < b

}
for a < s < b.

Proposition 1. If
b∫

a

(t− a)(b− t)[p(t)]− dt < +∞ (5)

and the homogeneous problem (40), (2) has only the trivial solution, then there exists a unique
Green’s function of that problem, and

sup
{ H(p)(s)

(s− a)(b− s)
: a < s < b

}
< +∞.

Theorem 1. If the homogeneous problem (40), (2) has only the trivial solution and along with (5)
the condition

b∫
a

H(p)(t)|q(t)| dt < +∞ (6)

is fulfilled, then problem (4), (2) is uniquely solvable and its solution admits the representation

u(t) =

b∫
a

G(t, s)q(s) ds for a < t < b, (7)

where G is Green’s function of problem (40), (2).

Corollary 1. Let there exist a nondecreasing in some right neighbourhood of the point a and a
nonincreasing in some left neighbourhood of the point b continuously differentiable function δ :
]a, b[→ ]0,+∞[ such that

δ(a+) = δ′(a+) = 0, δ(b−) = δ′(b−) = 0,

lim inf
t→a

(δ2(t)p(t)) > 0, lim inf
t→b

(δ2(t)p(t)) > 0.

If, moreover,
b∫

a

(t− a)(b− t)[p(t)]− dt ≤ b− a,

b∫
a

δ(t)|q(t)| dt < +∞,

then problem (4), (2) is uniquely solvable and its solution admits representation (7).

Remark 1. Green’s formula (7) has been derived earlier only in the case, where

b∫
a

(t− a)(b− t)|p(t)| dt < +∞,

b∫
a

(t− a)(b− t)|q(t)| dt < +∞



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 87

(see [6, Theorem 1.1]), but Theorem 1 covers the case in which these functions have at the points
a and b singularities of infinite order. Indeed, if

δ(t) ≡ exp
(
− 1

t− a
− 1

b− t

)
,

p(t) ≡ p0(t)δ
−2(t), q(t) ≡ q0(t)δ

−1(t),

where p0 : ]a, b[→ ]1,+∞[ , q0 : [a, b] → [1,+∞[ are arbitrary continuous functions, then for any
ℓ > 0, the equalities

b∫
a

(t− a)ℓ(b− t)ℓp(t) dt = +∞,

b∫
a

(t− a)ℓ(b− t)ℓq(t) dt = +∞

are fulfilled. Nevertheless, according to Corollary 1, problem (4), (2) is uniquely solvable and its
solution admits representation (7).
Theorem 2. Let on the set ]a, b[×R the inequality

f(t, x) sgn(x) ≥ p(t)|x|+ q(t) (8)

be fulfilled, where p : ]a, b[→ R and q : ]a, b[→ ]−∞, 0] are continuous functions. If, moreover, the
homogeneous equation (40) is nonoscillatory and conditions (5) and (6) hold, then problem (1), (2)
has at least one solution.
Corollary 2. Let on the set ]a, b[×R inequality (8) be fulfilled, where p : ]a, b[→ R and q : ]a, b[→
[0,+∞[ are continuous functions and, in addition, p is continuously differentiable and nonincreasing
(nondecreasing) in some right neighbourhood of the point a (in some left neighbourhood of the
point b). If, moreover,

p(a+) = +∞, lim
t→a

(
p−3/2(t)p′(t)

)
= 0, p(b−) = +∞, lim

t→b

(
p−3/2(t)p′(t)

)
= 0,

b∫
a

(t− a)(b− t)[p(t)]− dt ≤ b− a,

b∫
a

|q(t)|√
1 + |p(t)|

dt < +∞,

then problem (1), (2) has at least one solution.
Theorem 3. Let on the set ]a, b[×R the condition

(f(t, x)− f(t, y)) sgn(x− y) ≥ p(t)|x− y| (9)

be fulfilled, where p : ]a, b[→ R is a continuous function satisfying condition (5). If, moreover, the
homogeneous equation (40) is nonoscillatory and

b∫
a

H(p)(t)|f(t, 0)| dt < +∞,

then problem (1), (2) has one and only one solution.
Corollary 3. Let on the set ]a, b[×R condition (9) be fulfilled, where p : ]a, b[→ R is a function
satisfying the conditions of Corollary 2. If, moreover,

b∫
a

|f(t, 0)|√
1 + |p(t)|

dt < +∞,

then problem (1), (2) has one and only one solution.
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Example 1. Let

f(t, x) =
n∑

k=1

pk(t)|x|λk sgnx+ p0(t) exp
( 2

t− a
+

2

b− t

)
u+ q0(t) exp

( 1

t− a
+

1

b− t

)
,

where pk : ]a, b[→ [0,+∞[ (k = 1, . . . , n), p0 : ]a, b[→ [1,+∞[ , q0 : [a, b] → [1,+∞[ are continuous
function, λk = const > 0 (k = 1, . . . , n). Then for arbitrary x ∈ R and ℓ > 0 condition (3)
is fulfilled. On the other hand, according to Corollary 3, problem (1), (2) has one and only one
solution.
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Let m1, . . . ,mn be positive integers. Consider the periodic problem

u(m) = f
(
x, D̃m[u]

)
, (1)

u(x+ ωi) = u(x) (i = 1, . . . , n). (2)

Here x = (x1, . . . , xn), ω = (ω1, . . . , ωn), ωi = (0, . . . , ωi, . . . , 0), m = (m1, . . . ,mn) is a multi-index,

u(m)(x) =
∂m1+···+mnu(x)

∂xm1
1 · · · ∂xmn

n
,

Dm[u] = (u(α))α≤m, D̃m[u] = (u(α))α<m, f ∈ Cω(Rn × Rm+1) and Cω(Rn × Rm+1) is the space
of continuous functions v(x,Z) that are ω-periodic with respect to the variable x, i.e.

v(x+ ωi,Z) = v(x,Z) (i = 1, . . . , n).

By a solution of problem (1),(2) we understand a classical solution, i.e., a function u ∈ Cm
ω (Rn)

satisfying equation (1) everywhere in Rn.
Problems on doubly periodic solutions for hyperbolic equations of the second and fourth orders

were studied in [1–3]. Problem (1), (2) for the case n > 2 remained virtually unstudied until
recently. The linear case of problem (1), (2) was investigated in [4].

Throughout the paper the following notations will be used:
m = (m1, . . . ,mn), α = (α1, . . . , αn).
Rα = Rα1×···×αn .
α = (α1, . . . , αn) < β = (β1, . . . , βn) ⇐⇒ αi ≤ βi (i = 1, . . . , n) and α ̸= β.
α = (α1, . . . , αn) ≤ β = (β1, . . . , βn) ⇐⇒ α < β, or α = β.
0 = (0, . . . , 0), 1 = (1, . . . , 1), 1i = (0, . . . , 0, 1, 0, . . . , 0).
suppα = {i αi > 0}, ∥α∥ = |α1|+ · · ·+ |αn|.
Υm = {α < m : αi = mi for some i ∈ {1, . . . , n}}.
ω = (ω1, . . . , ωn), ωi = (0, . . . , ωi, . . . , 0).
Ω = [0, ω1]× · · · × [0, ωn].
xα = (χ(α1)x1, . . . , χ(αn)xn), where χ(α) = 0 if α = 0, and χ(α) = 1 if α > 0. xα will be

identified with (xi1 , . . . , xil), where {i1, . . . , il} = suppα.
Z = (zα)α<m; fα(x,Z) = ∂f(x,Z)

∂zα
.

The variables zα (α ∈ Υm) are called principal phase variables of the function f(x,Z).
Cm(Ω) is the Banach space of functions u : Ω → R, having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm(Ω) =
∑
α≤m

∥u(α)∥C(Ω).
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Cm
ω (Rn) is the Banach space of ω-periodic continuous functions, i.e. functions that are ωi-

periodic with respect to the variable xi (i = 1, . . . , n), having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm
ω

=
∑
α≤m

∥u(α)∥C(Ω).

C̃m
ω (Rn) is the Banach space of ω-periodic continuous functions, i.e. functions that are ωi-

periodic with respect to the variable xi (i = 1, . . . , n), having continuous partial derivatives u(α)

(α ≤ m), endowed with the norm

∥u∥Cm
ω

=
∑
α<m

∥u(α)∥C(Ω).

If z0 ∈ C̃m
ω (Rn) and r > 0, then

B̃m
ω (z0; r) =

{
z ∈ C̃m

ω (Rn) : ∥z − z0∥C̃m
ω

≤ r
}
.

Cm,k
ω (Rn×Rβ) the space of continuous functions v(x,Z) such that v( · ,Z) ∈ Cm

ω (Rn) for every
Z ∈ Rβ and v(x, · ) ∈ Ck(Rβ) for every x ∈ Rn.

Let p0α ∈ Cω(Rn) (α < m) and let z ∈ Cm
ω (Rn) be an arbitrary function. Along with the

equation (1) consider the following equations

u(m) =
∑
α<m

pλα[z](x)u
(α) + q(x), (3)

u(m) =
∑
α<m

pλα[z](x)u
(α), (4)

and

u(m) = (1− λ)
∑
α<m

p0α(x)u
(α) + λf

(
x, D̃m[u]

)
, (5)

where λ ∈ [0, 1], pα[z](x) = fα(x, D̃m[z](x)), and

pλα[z](x) = (1− λ)p0α(x) + λpα[z](x).

Definition 1. Let the function f(x,Z) be continuously differentiable with respect to the phase
variables v. We say that problem (1), (2) to is strongly (u0, r)-well-posed, if:

(I) it has a solution u0(x);

(II) in the neighborhood B̃m
ω (u0; r) u0 is the unique solution;

(III) there exists ε0 > 0, δ0 > 0 and M0 > 0 such that for any δ ∈ (0, δ0), and f̃(x,Z) satisfying
the inequalities ∑

α<m

∣∣fα(x,Z)− f̃α(x,Z)
∣∣ < ε0, (6)∣∣f(x,Z)− f̃(x,Z)
∣∣ < δ (7)
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in the neighborhood B̃m
ω (u0; r) the problem

u(m) = f̃(x, D̃m[u]),

u(x+ ωi) = u(x) (i = 1, . . . , n)

has a unique solution ũ and
∥u− ũ∥Cm

ω
< M0δ.

Definition 2. Problem (1), (2) is called strongly well-posed if it is strongly (u0, r)-well-posed for
every r > 0.

Theorem 1. Let the function f(x, Z) be continuously differentiable with respect to the phase
variables, and let there exist a positive number M0 such that

|fα(x, Z)| ≤ M0 for (x, Z) ∈ Rn × Rm+1.

Furthermore, let for arbitrary z ∈ Cm
ω (Rn) and λ ∈ [0, 1) problem (3), (2) be well–posed and its

solution uλ admit the estimate
∥uλ∥Cm

ω
≤ M∥q∥Cω ,

where M is a positive number independent of λ, z and q. Then problem (1), (2) is strongly well–
posed.

Consider the “perturbed” equation

u(m) = f(x, D̃m[u]) + q(x,Dm-1[u]). (8)

Theorem 2. Let the function f satisfy all of the conditions of Theorem 1, and let q ∈ Cω(Rn×Rm)
be such that

lim
∥Z∥→+∞

|q(x,Z)|
∥Z∥

= 0 (9)

uniformly on Rn × Rm. Then problem (8), (2) has at least one solution

Theorem 3. Let the function f(x, Z) be continuously differentiable with respect to the phase
variables, and let there exist a positive number M and a nondecreasing continuous function η :
[0,+∞) → [0,+∞), η(0) = 0 such that:

(i) for every λ ∈ [0, 1) an arbitrary solution uλ of problem (5), (2) admits the estimates

uλ ∈ B̃m
ω (0;M), ∥wλ δ∥Cm

ω
≤ η(|δ|),

where wλ δ(x) = uλ(x+ δ)− uλ(x);

(ii) problem (4), (2) is well–posed for every λ ∈ [0, 1) and z ∈ Cm
ω (Rn) , ∥z∥Cm

ω
≤ M ;

(iii) problem (4), (2) has only the trivial solution for λ = 1 and arbitrary z ∈ Cm
ω (Rn), ∥z∥Cm

ω
≤ M .

Then problem (1), (2) has a solution u0 ∈ B̃m
ω (0;M), and it is strongly strongly (u0, r) well-posed

for some r > 0.
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Consider the equations of even and odd orders:

u(2m) =
∑

α,β≤m

(
pα+β

(
x,Dα[u]

)
u(α)

)(β)
+ q(x,Dm-1[u]), (10)

u(2m) =
∑
α≤m

(
pα

(
x,Dα[u]

)
u(α)

)(α)
+ q(x,Dm-1[u]) (11)

and

u(2m+1n) =
∑

α,β≤m

(
pα+β+1n(x,Dα+1n [u]))(β) +

∑
α≤m

p2α(x̂α)u
(2α) + q(x,Dm-1[u]). (12)

Theorem 4. Let pα+β ∈ C
β,∥β∥
ω (Rn×Rα+1) (α,β ≤ m), and let q ∈ Cω(Rn×Rm) satisfy equality

(9) uniformly on Rn × Rm. Furthermore, let there exist δ > 0 such that∑
α,β≤m

(−1)∥m∥+∥β∥−1pα+β(x,Z)vαvβ ≥ δ
∑
α≤m

v2α for (x,Z) ∈ Rn × R2m+1.

Then problem (10), (2) has at least one solution.

Corollary 1. Let pα ∈ C
α,∥α∥
ω (Rn × Rα+1) (α ≤ m), and let q ∈ Cω(Rn × Rm) satisfy equality

(9) uniformly on Rn × Rm. Furthermore, let there exist δ > 0 such that

(−1)∥m∥+∥α∥−1pα(x,Z) ≥ δ for (x,Z) ∈ Rn × R2m+1 (α ≤ m).

Then problem (11), (2) has at least one solution.

Theorem 5. Let pα+β ∈ C
β,∥β∥
ω (Rn×Rα+1) (α,β ≤ m), and let q ∈ Cω(Rn×Rm) satisfy equality

(14) uniformly on Rn × Rm. Furthermore, let there exist δ > 0 such that∑
α,β≤m

(−1)∥m∥+∥β∥−1pα+β+1n(x,Z)zα zβ ≥ δ
∑
α≤m

z2α for (x,Z) ∈ Rn × R2m+1

and
(−1)∥α∥σp2α(x̂α) ≥ δ for x ∈ Rn (α ≤ m).

Then problem (12), (2) has at least one solution.

Remark 1. In Theorems 1–3 continuous differentiability of the function f(x,Z) with respect to the
phase variables Z can be replaced by Lipschitz continuity, although that will make the formulation
of the theorems more cumbersome. However, Lipschitz continuity of the function f(x,Z) with
respect to the principal phase variables zα (α ∈ Υm) is essential and cannot be replaced by Hölder
continuity with the exponent γ ∈ (0, 1).

As an example consider the two–dimensional problem

u(2,2) = u(2,0) + u(0,2) − δ1−γ |u(0,2) − u|γ sgn(u(0,2) − u)− u− sinx2, (13)
u(x1 + 2π, x2) = u(x1 + 2π, x2), u(x1, x2 + 2π) = u(x1, x2) (14)

where δ ≥ 0 and γ ∈ (0, 1).
Let u be a solution of problem (10), (11). Set:

v(x1, x2) = u(0,2)(x1, x2)− u(x1, x2). (15)
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Then v is a solution of the problem

v(2,0) = v − δ1−γ |v|γ sgn(v)− sinx2, (16)
v(x1 + 2π, x2) = v(x1, x2). (17)

If δ = 0, then it is clear that problem (16), (17) is a uniquely solvable linear periodic problem
with the solution

v(x1, x2) ≡ sinx2,

and problem (10), (11) is a well–posed linear problem with the solution

u(x1, x2) ≡ u(x2) =

x2∫
x2−2π

cosh(x2 − t− π)

2 sinh(π)
sin t dt.

Let us show that problem (10), (11) has no classical solutions for sufficiently small δ > 0. For
that it is sufficient to show that for sufficiently small δ > 0 problem (16), (17) has no solution that
is continuous with respect to x2.

Problem (16), (17) is a periodic problem for an ordinary differential equation depending on the
parameter x2. It has a solution v(x1, x2) ≡ v∗(x2), where, for every x2, v∗(x2) is the root of the
equation

v − δ1−γ |v|γ sgn(v)− sinx2 = 0. (18)

One can easily show that problem (16), (17) is solvable for every x2 if δ ∈ (0, 1). Moreover, if
δ ∈ (0, 2

1
γ−1 ), then problem (16), (17) is uniquely solvable for x2 = π

2 , and its solution is positive.
The latter fact implies that v∗(π2 ) > δ.

Let δ ∈
(
0, 2

1
γ−1

)
, and let v(x1, x2) be a solution of problem (16), (17) that is a continuous

function of x2. Then v(x1,
π
2 ) = v∗(π2 ) > δ. Due to continuity there exists ε > 0 such that

v(x1, x2) ≥ δ for x2 ∈
[π
2
− ε,

π

2
+ ε

]
⊂ (0, π). (19)

But then problem (16), (17) is uniquely solvable for x2 ∈ [π2 − ε, π2 + ε]. Indeed, let v1(x1) ≥ δ
and v2(x1) ≥ δ be arbitrary solutions of problem (16),(17) for some x2 ∈ [π2 − ε, π2 + ε]. Then
v(x1) = v2(x1)− v1(x1) is a solution of the problem

v′′ = (1− θ(x1, x2))v, v(x1 + 2π) = v(x1), (20)

where

θ(x1, x2) = γ

1∫
0

δ1−γ

(v1(x1, x2) + (1− t)(v2(x1, x2)− v1(x2, x1)))1−γ
dt ≤ γ < 1. (21)

The latter inequality implies that problem (20) has only the trivial solution, i.e. problem (16), (17)
is uniquely solvable. Consequently, v(x1, x2) = v∗(x2) for x2 ∈ [π2 − ε, π2 + ε]. However, it is easy
to see that a positive root of equation (18) is strictly bigger than δ for x2 ∈ (0, π). Hence

v(x1, x2) = v∗(x2) > δ for x2 ∈
[π
2
− ε,

π

2
+ ε

]
⊂ (0, π). (22)

From (19)–(22) one can easily deduce that

v(x1, x2) = v∗(x2) > δ for x2 ∈ (0, π). (23)
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Similarly one can show that

v(x1, x2) = v∗(x2) < −δ for x2 ∈ (−π, 0). (24)

(23) and (24) imply that v∗(0+) = δ and v∗(0−) = −δ. Thus v(x1, x2) ≡ v∗(x2) is discontinuous
at 0. Consequently, problem (13), (14) has no classical solutions for sufficiently small δ ∈ (0, 2

1
γ−1 ).

This is the result of the fact that the righthand side of equation (13) is not Lipschitz continuous
with respect to the principal phase variables, but instead is a Hölder continuous function with the
exponent γ ∈ (0, 1).

Remark 2. The aforementioned example also demonstrates that:

(A) Condition (6) in Definition 1 is optimal and cannot be relaxed;

(B) Only inequality (7), without inequality (6) does not guarantee even solvability of a perturbed
problem.
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Let us consider the following system of nonlinear integro-differential equations:

∂U

∂t
− ∂

∂x

[
a(S)

∂U

∂x

]
+ f(U) = 0,

∂U

∂t
− ∂

∂x

[
a(S)

∂V

∂x

]
+ f(V ) = 0, (1)

where

S(x, t) = 1 +

t∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2
]
dτ

and a = a(S), f = f(U) and f = f(V ) are given functions, constraints on which will be specified
later.

The above-mentioned system with source terms is based on the well-known system of Maxwell’s
equations [12] by reducing it to the following integro-differential model [4]

∂H

∂t
= − rot

[
a

( t∫
0

| rotH|2 dτ
)
rotH

]
, (2)

where H = (H1,H2,H3) is a vector of the magnetic field.
In the rectangle [0, 1]× [0,∞] let us consider the following initial-boundary value problem with

mixed boundary conditions:

U(0, t) =
∂U(x, t)

∂x

∣∣∣∣
x=1

= V (0, t) =
∂V (x, t)

∂x

∣∣∣∣
x=1

= 0, t ≥ 0, (3)

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (4)

where U0 and V0 are given functions.
Study of the models of type (2) have begun in [4]. In that work, in particular, based on Galerkin’s

modified method and compactness arguments as in [14, 18] for nonlinear parabolic equations the
theorems of existence of a solution of the initial-boundary value problem with first kind boundary
conditions for scalar and one-dimensional space case when a(S) = 1 + S and uniqueness for more
general cases are proven. One-dimensional scalar variant for the case a(S) = (1+S)p, 0 < p ≤ 1 is
studied in [2]. Asymptotic behavior as t → ∞ of solutions of initial-boundary value problems for
(2) type models are studied in [3, 6, 7, 9, 13, 16] and in a number of other works as well. In those
works main attention is paid to one-dimensional cases. Finite element analogues and Galerkin’s
method algorithm as well as construction and investigation of semi-discrete and finite difference
schemes for (2) type one-dimensional integro-differential models are studied in [1,5,7–11,13,15–17]
and in other works as well for the linear case of diffusion coefficient.

The following statement is true [5, 8].
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Theorem 1. If a = a(S) ≥ a0 = Const > 0, a′(S) ≥ 0, a′′(S) ≤ 0, f is positively defined and
monotonically increased function, U0, V0 ∈ H1(0, 1), U0(0) =

dU0(x)
dx

∣∣
x=1

= V0(0) =
dV0(x)
dx

∣∣
x=1

= 0,
and problem (1), (3), (4) has a solution, then it is unique and exponential stabilization of solution
as t → ∞ takes place.

On [0, 1]× [0, T ], where T is a positive constant, let us introduce a net with mesh points denoted
by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N with h = 1/M , τ = T/N and let us
consider the finite discrete scheme for problem (1), (3), (4):

uj+1
i − uji

τ
−

{
a
(
τ

j+1∑
k=1

[
(ukx̄,i)

2 + (vkx̄,i)
2
])

uj+1
x̄,i

}
x

+ f(uj+1
i ) = 0,

vj+1
i − vji

τ
−
{
a
(
τ

j+1∑
k=1

[
(ukx̄,i)

2 + (vkx̄,i)
2
])

vj+1
x̄,i

}
x

+ f(vj+1
i ) = 0,

i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

uj0 = ujx̄,M = vj0 = vjx̄,M = 0, j = 0, 1, . . . , N,

ui(0) = U0,i, vi(0) = V0,i, i = 0, 1, . . . ,M,

(5)

where the well-known notations of forward and backward derivatives are used.
Applying the uj+1

i and vj+1
i multiplicators for the first and second equations of system (5)

respectively, it is not difficult to get the inequalities:

∥un∥2 + τh
n∑

j=1

M∑
i=1

(uji,x̄)
2 < C, ∥vn∥2 + τh

n∑
j=1

M∑
i=1

(vji,x̄)
2 < C, n = 1, 2, . . . , N. (6)

Here and in what follows C is a positive constant independent of τ and h.
The a priori estimates (6) guarantee the global solvability of problem (5).
The following statement is true.

Theorem 2. If a = a(S) ≥ a0 = Const > 0, a′(S) ≥ 0, a′′(S) ≤ 0, f is positively defined and
monotonically increased function and problem (1), (3), (4) has a sufficiently smooth solution, then
the solution of problem (5) tends to the solution of the continuous problem (1), (3), (4) as h → 0,
τ → 0 and the following estimates are true:

∥uj − U j∥ ≤ C(τ + h), ∥vj − V j∥ ≤ C(τ + h).

We have carried out numerous numerical experiments for problem (1), (3), (4) with different
kinds of right hand sides and initial-boundary conditions. The obtained numerical results are in
accordance to the theoretical findings.
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of Pω(Y0, 0)-Solutions of Second-Order Nonlinear Differential Equations

with Regularly and Rapidly Varying Nonlinearities
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Consider the differential equation

y′′ =
m∑
i=1

αipi(t)φi(y), (1)

where αi ∈ {−1, 1} (i = 1,m), pi : [a, ω[→ ]0,+∞[ (i = 1,m) are continuous functions, −∞ < a <
ω ≤ +∞; φi : ∆Y0 → ]0,+∞[ (i = 1,m), where ∆Y0 is a one-sided neighborhood of Y0, Y0 is equal
either to zero or ±∞, are continuous functions for i = 1, l and twice continuously differentiable for
i = l + 1,m, and for each i ∈ {1, . . . , l} for some σi ∈ R

lim
y→Y0
y∈∆Y0

φi(λy)

φi(y)
= λσi for any λ > 0, (2)

and for each i ∈ {l + 1, . . . ,m} –

φ′
i(y) ̸= 0 as y ∈ ∆Y0 , lim

y→Y0
y∈∆Y0

φi(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ′′
i (y)φi(y)

φ′2
i (y)

= 1. (3)

It follows from the conditions (2) and (3) that φi (i = 1, l) are regularly varying functions,
as y → Y0, of orders σi and φi (i = l + 1,m) are rapidly varying functions, as y → Y0 (see [4,
Introduction, pp. 2, 4]).

Definition. A solution y of the differential equation (1) is called Pω(Y0, λ0) – solution, where
−∞ ≤ λ0 ≤ +∞, if it is defined on some interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

lim
t↑ω

y(t) = Y0, lim
t↑ω

y′(t) =

{
either 0,

or ±∞,
lim
t↑ω

y′2(t)

y′′(t)y(t)
= λ0.

By its asymptotic properties, the class of Pω(Y0, λ0) – solutions is split into 4 non-intersecting
subsets that correspond to the next value of the parameter λ0

λ0 ∈ R \ {0, 1}, λ0 = 1, λ0 = 0, λ0 = ±∞.

The existence conditions of Pω(Y0, λ0) – solutions of the differential equation (1) and asymptotic
representations, as t ↑ ω, of such solutions and their first-order derivatives, are established for each
of these cases in the case where, for some s ∈ {1, . . . ,m}

lim
t↑ω

pi(t)φi(y(t))

ps(t)φs(y(t))
= 0 for all i ∈ {1, . . . ,m} \ {s}, (4)
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i.e., where the right-hand side of Eq. (1) for each such solution y is equivalent for t ↑ ω to one term
with regularly or rapidly varying nonlinearity (see [1–3]).

In this paper, we formulate the main results obtained for the case λ0 = 0.
Let

∆Y0 = ∆Y0(b), where ∆Y0(b) =

{
[b, Y0[ , if ∆Y0 is a left neighborhood of Y0,
]Y0, b], if ∆Y0 is a right neighborhood of Y0,

and the number b satisfy the inequalities

|b| < 1 as Y0 = 0 and b > 1 (b < −1) as Y0 = +∞ (Y0 = −∞).

We set

ν0 = sign b, ν1 =

{
1, if ∆Y0(b) = [b, Y0[ ,

−1, if ∆Y0(b) = ]Y0, b],
πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,

J1s(t) =

t∫
A1s

ps(τ) dτ, J2s(t) =

t∫
A2s

J1s(τ) dτ, J3s(t) =

t∫
A3s

πω(τ)p0s(τ) dτ,

Hs(y) =

y∫
Bs

du

φs(u)
, Bs =



b, if
Y0∫
b

dy

φs(y)
= ±∞,

Y0, if
Y0∫
b

dy

φs(y)
= const,

Zs = lim
y→Y0

y∈∆Y0
(b)

Hs(y),

Jφs(t) =

t∫
Aφs

p0s(τ)φs

(
H−1

s (−αsJ3s(τ))
)
dτ, Es(t) = αsπ

2
ω(t)p0s(t)φ

′
s

(
H−1

s (−αsJ3s(t))
)
,

Gs(t) =
yφ′

s(y)

φs(y)

∣∣∣∣
y=H−1

s (−αsJ3s(t))

, Φs(t) =
y(φ

′
s(y)

φs(y)
)′

φ′
s(y)

φs(y)

∣∣∣∣∣
y=H−1

s (−αsJ3s(t))

,

µs = signφ′
s(y), γs = lim

t↑ω

Es(t)Φs(t)

Gs(t)
, ψs(t) =

t∫
t0

|Es(τ)|
1
2

πω(τ)
dτ,

where s ∈ {1, . . . ,m}, p0s : [a, ω[→ ]0,+∞[ are continuous functions so that p0s(t) ∼ ps(t) as t ↑ ω,
every limit of integration A1s, A2s, A3s, Aφs is equal to either a or ω and is chosen so that the
corresponding integral tends either to ±∞, or to zero with t ↑ ω, t0 is some number of [a, ω[ .

Theorem 1. Let σs ̸= 1 for some s ∈ {1, . . . , l} and there exist finite or equal to infinity limit

lim
t↑ω

πω(t)J
′
1s(t)

J1s(t)
.

For existence of Pω(Y0, 0) – solutions of equation (1), satisfied the limit relations (4), it is necessary
that the inequalities

αsν0(1− σs)J2s(t) > 0, αsν1πω(t) < 0 as t ∈ ]a, ω[ (5)
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and conditions

αs lim
t↑ω

J2s(t) = Zs, lim
t↑ω

πω(t)J
′
1s(t)

J1s(t)
= −1, lim

t↑ω

J2
1s(t)

ps(t)J2s(t)
= 0, (6)

lim
t↑ω

pi(t)φi(H
−1
s (αsJ2s(t)))

ps(t)φs(H
−1
s (αsJ2s(t)))

= 0 for all i ∈ {1, . . . , l} \ {s}, (7)

lim
t↑ω

pi(t)φi(H
−1
s (αsJ2s(t)(1 + δi)))

ps(t)φs(H
−1
s (αsJ2s(t)))

= 0 for all i ∈ {l + 1, . . . ,m}

hold, where δi are arbitrary numbers of a one-sided neighborhood of zero. Moreover, for each of
such solutions the following asymptotic representations hold

y(t) = H−1
s (αsJ2s(t))[1 + o(1)] at t ↑ ω, (8)

y′(t) =
J1s(t)H

−1
s (αsJ2s(t))

(1− σs)J2s(t)
[1 + o(1)] at t ↑ ω. (9)

Theorem 2. Let σs ̸= 1 for some s ∈ {1, . . . , l}, conditions (5)–(7) hold and

lim
t↑ω

pi(t)φi(H
−1
s (αsJ2s(t)(1 + u)))

ps(t)φs(H
−1
s (αsJ2s(t)))

= 0 for all i ∈ {l + 1, . . . ,m}

uniformly with respect to u ∈ [−δ, δ] for any 0 < δ < 1. Then the differential equation (1)
has Pω(Y0, 0) – solutions that admit the asymptotic representations (8) and (9). Moreover, if
αsν0(1 − σs)πω(t) < 0 as t ∈ ]a, ω[ , there is a one-parameter family of such solutions in case
ω = +∞ and two-parameter family in case ω < +∞.

Theorem 3. Let for some s ∈ {l + 1, . . . ,m} the function ps might be representable in the form

ps(t) = p0s(t)[1 + rs(t)], where lim
t↑ω

rs(t) = 0, (10)

p0s : [a, ω[→ ]0,+∞[ is a continuously differentiable function, rs : [a, ω[→ ]−1,+∞[ is a continuous
function, and let the conditions

φs(y)φ
′
i(y)

φ′
s(y)φi(y)

= O(1) (i = l + 1,m) for y → Y0 (11)

hold. Then, for the existence of Pω(Y0, 0) – solutions of the differential equation (1) satisfying
conditions (4), it is necessary that, there exist finite or equal to infinity limit

lim
t↑ω

πω(t)J
′
φs
(t)

Jφs(t)
,

and the conditions

αsν1πω(t) < 0, αsµsJ3s(t) > 0 as t ∈ ]a, ω[ , (12)

−αs lim
t↑ω

J3s(t) = Zs, lim
t↑ω

πω(t)J
′
φs
(t)

Jφs(t)
= −1, lim

t↑ω

π2ω(t)p0s(t)φs(H
−1
s (−αsJ3s(t)))

H−1
s (−αsJ3s(t))

= 0, (13)

lim
t↑ω

pi(t)φi(H
−1
s (−αsJ3s(t)))

ps(t)φs(H
−1
s (−αsJ3s(t)))

= 0 for all i ∈ {1, . . . ,m} \ {s} (14)

be satisfied. Moreover, each such solutions has the asymptotic representations

y(t) = H−1
s (−αsJ3s(t))

[
1 +

o(1)

Gs(t)

]
at t ↑ ω, (15)

y′(t) = −αsπω(t)p0s(t)φs

(
H−1

s (−αsJ3s(t))
)
[1 + o(1)] at t ↑ ω. (16)
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Theorem 4. Let for some s ∈ {l + 1, . . . ,m} the conditions (10), (11), (12)–(14) be satisfied and

lim
t↑ω

πω(t)J
′
3s(t)

J3s(t)
= ηs, where ηs ∈ R.

Then:

1) if ηs > 0 or ηs = 0 and αsµs = 1, the differential equation (1) has a one-parameter family of
Pω(Y0, 0) – solutions with the asymptotic representations (15) and (16);

2) if ηs < 0 or ηs = 0 and αsµs = −1, there is a two-parameter family of Pω(Y0, 0) – solutions
which admit the asymptotic representations (15), (16) in case ω < +∞ and there is at least
one such solution in case ω = +∞.

Theorem 5. Let for some s ∈ {l+1, . . . ,m} the function ps be representable in the form (10), let
conditions (11), (12)–(14) hold, and let the limits (which are finite or equal to ±∞)

lim
t↑ω

πω(t)J
′′
φs
(t)

J ′
φs
(t)

, lim
y→Y0

y∈∆Y0
(b)

(φ
′
s(y)

φs(y)
)′

(φ
′
s(y)

φs(y)
)2

·

√∣∣∣yφ′
s(y)

φs(y)

∣∣∣ , γs = lim
t↑ω

Es(t)Φs(t)

Gs(t)
, lim

t↑ω

ψ′′
s (t)ψs(t)

ψ′2
s (t)

exist. Then:

1) if αsµs = 1, the differential equation (1) has a one-parameter family of Pω(Y0, 0) – solutions
which admit the asymptotic representations (15) and (16) and are such that their derivatives
satisfy the asymptotic relation

y′(t) = −αsπω(t)p0s(t)φs

(
H−1

s (−αsJ3s(t))
)[
1 + |Es(t)|−

1
2 o(1)

]
at t ↑ ω;

2) if αsµs = −1 and

γs ̸=
1

3
; lim

t↑ω
ψs(t)rs(t) = 0, lim

t↑ω
ψ2
s(t)

[
rs(t) + 2 +

πω(t)J
′′
φs
(t)

J ′
φs
(t)

]
= 0,

lim
t↑ω

ψs(t)

Es(t)
= 0 at γs = 0, lim

t↑ω
ψ2
s(t)

m∑
i=1
i ̸=s

pi(t)φi(H
−1
s (−αsJ3s(t)))

ps(t)φs(H
−1
s (−αsJ3s(t)))

= 0,

the differential equation (1) has a Pω(Y0, 0) – solution with asymptotic representations

y(t) = H−1
s (−αsJ3s(t))

[
1 +

o(1)

Gs(t)ψs(t)

]
at t ↑ ω,

y′(t) = −αsπω(t)p0s(t)φs

(
H−1

s (−αsJ3s(t))
)[
1 + |Es(t)|−

1
2ψ−1

s (t)o(1)
]

at t ↑ ω.

Moreover, there exists a two-parameter family of such solutions in case when γs ∈ (0, 1/3) or
γs = 0 and αsν1 = 1.
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1 Introduction
Consider the second-order nonlinear differential equation

y′′ = p(x, y, y′)|y|k0 |y′|k1 sgn(yy′), k0 > 0, k1 > 0, k0, k1 ∈ R (1.1)

with positive continuous in x and Lipschitz continuous in u, v function p(x, u, v) satisfying the
inequalities

0 < m ≤ p(x, u, v) ≤ M < +∞. (1.2)
The results on the behavior of solutions depending on the nonlinearity exponents k0, k1 and

qualitative properties of solutions was studied in [11].
The asymptoptic behavior of solutions to (1.1) in the case k1 = 0 is described in [5, 6]. In the

case p = p(x) asymptotic behavior of solutions to (1.1) is obtained by V. M. Evtukhov [7]. Using
methods described in [1, 2, 4] by I. V. Astashova, the behavior of solutions to (1.1) near domain
boundaries is considered with respect to the values k0 and k1.

The following definitions are used further.
Definition 1.1 ([4]). A solution y : (a, b) → R, −∞ ≤ a < b ≤ +∞ to an ordinary differential
equation is called a µ-solution if

(1) the equation has no other solutions equal to y on some subinterval (a, b) and not equal to y
at some point in (a, b);

(2) the equation either has no solution equal to y on (a, b) and defined on another interval
containing (a, b) or has at least two such solutions which differ from each other at points
arbitrary close to the boundary of (a, b).

Definition 1.2 ([8]). A solution satisfying at some finite point x∗ the conditions lim
x→x∗

|y′(x)| = ∞,
lim
x→x∗

|y(x)| < ∞ is called a black hole solution.

Definition 1.3 ([9]). A µ-solution satisfying at finite point (its domain boundary) x̃ the conditions
lim
x→x̃

y′(x) = 0 and lim
x→x̃

y(x) ̸= 0 is called a white hole solution.

Definition 1.4 ([10]). A solution to equation (1.1) is called a Kneser solution at decreasing argu-
ment on the interval (−∞;x0) if y(x) > 0, y′(x) > 0 for any x < x0.
Definition 1.5 ([10]). A solution to equation (1.1) is called a negative Kneser solution on the
interval (x0; +∞) if y(x) < 0, y′(x) > 0 for any x > x0.
Definition 1.6 ([10]). A µ-solution y(x) to equation (1.1) is called a singular of the type II at a
point a ∈ R if lim

x→a
y(x) = lim

x→a
y′(x) = 0.
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2 Main results
Lemma 2.1. Let the function p(x, u, v) be continuous in x, Lipschitz continuous in u, v and
satisfying inequalities (1.2). Then all µ-solutions to equation (1.1) are monotonous.

Denote
α =

2− k1
k0 + k1 − 1

, C =
( |α|1−k1 |α+ 1|

p0

) 1
k0+k1−1

.

Theorem 2.1. Suppose k0 + k1 < 1. Let the function p(x, u, v) be continuous in x, Lipschitz
continuous in u, v and satisfying inequalities (1.2). Let there also exist the following limits of
p(x, u, v):

(1) p+ as x → +∞, u → +∞, v → +∞;

(2) p− as x → −∞, u → −∞, v → +∞.

Denote pa = p(a, 0, 0) for any a ∈ R. Then α < −1 and all increasing µ-solutions to equation (1.1)
according to their asymptotic behavior can be divided into three types:

1. Increasing solutions defined on the whole axis with zero at some point x0:

y(x) = C(p−)(x0 − x)−α(1 + o(1)), x → −∞,

y(x) = C(p+)(x− x0)
−α(1 + o(1)), x → +∞.

2. Positive singular solutions defined on semi-axis (a,+∞):

y(x) = C(pa)(x− a)−α(1 + o(1)), x → a+ 0,

y(x) = C(p+)(x− a)−α(1 + o(1)), x → +∞.

3. Negative singular solutions defined on semi-axis (−∞, b):

y(x) = C(p−)(b− x)−α(1 + o(1)), x → −∞,

y(x) = C(pb)(b− x)−α(1 + o(1)), x → b− 0.

Theorem 2.2. Suppose k0 + k1 > 1, k1 < 2. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Let there also exist the following
limits of p(x, u, v):

(1) P a as x → a− 0, u → +∞, v → +∞, for every a ∈ R;

(2) Pa as x → a+ 0, u → −∞, v → +∞, for every a ∈ R;

(3) P+ as x → +∞, u → 0, v → 0;

(4) P− as x → −∞, u → 0, v → 0.

Then α > 0 and all maximally extended increasing solutions to (1.1) according to their asymptotic
behavior can be divided into three types:

1. Increasing solutions with two vertical asymptotes x = x∗ and x = x∗, x∗ < x∗:

y = C(P x∗
)(x∗ − x)−α(1 + o(1)), x → x∗ − 0,

y = −C(Px∗)(x− x∗)
−α(1 + o(1)), x → x∗ + 0.
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2. Kneser solution at decreasing argument defined on semi-axis (−∞, x∗):

y = C(P−)|x|−α(1 + o(1)), x → −∞,

y = C(P x∗
)(x∗ − x)−α(1 + o(1)), x → x∗ − 0.

3. Negative Kneser solutions defined on semi-axis (x∗,+∞):

y = −C(Px∗)(x− x∗)
−α(1 + o(1)), x → x∗ + 0,

y = −C(P+)x
−α(1 + o(1)), x → +∞.

Theorem 2.3. Suppose 0 < k1 < 1. Let the function p(x, u, v) be continuous in x, Lipschitz con-
tinuous in u, v and satisfying inequalities (1.2). Then any maximally extended increasing solution
y(x) to (1.1) is a black hole solution defined on the interval (x∗, x∗), and the limit lim

x→x∗−0
y(x) = y∗

satisfies the following inequalities:

( k0 + 1

M(k1 − 2)

) 1
k0+1

(y′(x0))
− k1−2

k0+1 ≤ |y∗| ≤
( k0 + 1

m(k1 − 2)

) 1
k0+1

(y′(x0))
− k1−2

k0+1 .

The same inequalities hold for the limit y∗ = lim
x→x∗+0

y(x).

Theorem 2.4. Suppose k1 > 2. Let the function p(x, u, v) be continuous in x, Lipschitz continuous
in u, v and satisfying inequalities (1.2). Let there also exist limits p+ as x → +∞, u → −∞, v → 0
and p− as x → −∞, u → −∞, v → 0. Then −1 < α < 0 and any increasing solution to (1.1) has
a zero at some point x0 and has the following asymptotic behavior:

y(x) = −C(p+)(x− x0)
−α(1 + o(1)), x → +∞,

y(x) = C(p−)(x0 − x)−α(1 + o(1)), x → −∞.

Theorem 2.5. Suppose k0 > 0, 1 ≤ k1 < 2. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Then any decreasing solution y(x)
to equation (1.1) is defined on the whole axis, has a zero at some point x0 and has two horizontal
asymptotes y = y+ < 0 at x → +∞ and y = y− > 0 at x → −∞. Moreover,

k0 + 1

M(2− k1)
|y′(x0)|2−k1 ≤ |y±|k0+1 ≤ k0 + 1

m(2− k1)
|y′(x0)|2−k1 .

Theorem 2.6. Suppose k0 > 0, 0 < k1 < 1. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Then any decreasing µ-solution y(x)
to equation (1.1) is defined on a finite interval (x−, x+), has a zero at some point x0 and the limits
y+ = lim

x→x+−0
y(x) and y− = lim

x→x−+0
satisfy the estimate from Theorem 2.5.

Corollary 2.1. Suppose k0 > 0, 0 < k1 < 2. Let the function p(x, u, v) be continuous in x,
Lipschitz continuous in u, v and satisfying inequalities (1.2). Then any decreasing solution y(x)
to equation (1.1) is defined on the whole axis and the limits y± = lim

x→±∞
y(x) satisfy the following

inequalities: (m

M

) 1
k0+1 ≤

∣∣∣y+
y−

∣∣∣ ≤ (M
m

) 1
k0+1

.
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Consider the differential equation

y′′ = α0p(t)φ0(y)φ1(y
′)[1 + ψ(t, y, y′)], (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, φi : ∆Yi →
]0,+∞[ (i = 0, 1) are continuous and regular varying as y(i) → Yi (i = 0, 1) functions of orders
σi (i = 0, 1), ∆Yi (i ∈ {0, 1}) is a one-side neighborhood of Yi and Yi ∈ {0;±∞} (i ∈ {0, 1}),
ψ : [a, ω[×∆Y0 ×∆Y1 → R is a continuous function such that the condition

lim
t↑ω

(y,z)→(Y0,Y1)
(y,z)∈∆Y0

×∆Y1

ψ(t, y, z) = 0

holds. We assume that the numbers µi (i = 0, 1) given by the formula

µi =

{
1, if either Yi = +∞, or Yi = 0 and ∆Yi is a right neighborhood of the point 0,

−1, if either Yi = −∞, or Yi = 0 and ∆Yi is a left neighborhood of the point 0,

satisfy the relations

µ0µ1 > 0 for Y0 = ±∞ and µ0µ1 < 0 for Y0 = 0. (2)

Conditions (2) are necessary for the existence of solutions of Eq. (1) defined in the left neigh-
borhood of ω and satisfying the conditions

y(i)(t) ∈ ∆Yi for t ∈ [t0, ω[ , lim
t↑ω

y(i)(t) = Yi (i = 0, 1). (3)

We study Eq. (1) on class Pω(Y0, Y1, λ0)-solutions, that is defined as follows.

Definition. A solution y of Eq. (1) on the interval [t0, ω[⊂ [a, ω[ is called Pω(Y0, Y1, λ0)-solution,
where −∞ ≤ λ0 ≤ +∞, if, in addition to (3), it satisfies the condition

lim
t↑ω

[y′(t)]2

y(t)y′′(t)
= λ0.

Depending on λ0 these solutions have different asymptotic properties. For λ0 ∈ R \ {0, 1} in [1]
such ratios

lim
t↑ω

πω(t)y
′(t)

y(t)
=

λ0
λ0 − 1

, lim
t↑ω

πω(t)y
′′(t)

y′(t)
=

1

λ0 − 1
,

where

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞
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are established.
By the definition of a regularly varying function [5, Chapter 1, Section 1.1, 9–10 of the Russian

translation], each of the functions φi (i ∈ {0, 1}) admits a representation of the form

φi(z) = |z|σiLi(z),

where Li : ∆Yi → ]0,+∞[ is a continuous function slowly varying as y → Yi. Moreover, there
exist continuously differentiable functions (see [5, Chapter 1, Section 1.1, 10–15 of the Russian
translation]) Lii : ∆Yi → ]0,+∞[ slowly varying as y → Yi (i = 0, 1) and satisfying the conditions

lim
z→Yi
z∈∆Yi

c

Li(z)

Lii(z)
= 1, lim

z→Yi
z∈∆Yi

zL′
ii(z)

Lii(z)
= 0 (i = 0, 1).

Asymptotic representations and conditions of the existence of Pω(Y0, Y1, λ0)-solutions in case
σ0 + σ1 ̸= 1 are obtained in [4]. Here we study the behavior of Pω(Y0, Y1, λ0)-solutions in case
σ0+σ1 = 1 and λ0 ∈ R \ {0, 1}, when it becomes close in some sense to the linear, which is studied
in detail in the monograph [3]. The theorem is a generalization of the result of work [2] for Eq. (1).

We choose a number b ∈ ∆Y0 such that the inequality

|b| < 1 for Y0 = 0, b > 1 (b < −1) for Y0 = +∞ (Y0 = −∞)

is respected and put

∆Y0(b) = [b, Y0[ if ∆Y0 is a left neighborhood of Y0,
∆Y0(b) = ]Y0, b] if ∆Y0 is a right neighborhood of Y0.

Now we introduce auxiliary functions and notation as follows:

Φ : ∆Y0(b) → R, Φ(y) =

y∫
B

ds

sL0(s)
, B =


b if

Y0∫
b

ds

sL0(s)
= ±∞,

Y0 if
Y0∫
b

ds

sL0(s)
= const,

Z = lim
y→Y0

Φ(y) =


0 if B = Y0,

+∞ if B = b, µ0µ1 > 0,

−∞ if B = b, µ0µ1 < 0,

µ2 =

{
1 if B = b,

−1 if B = Y0,

I0(t) =

t∫
A0

p(τ)|πω(τ)|−σ1L1

(
µ1|πω(τ)|

1
λ0−1

)
dτ, I1(t) =

t∫
A1

p(τ)|πω(τ)|σ0L1

(
µ1|πω(τ)|

1
λ0−1

)
dτ,

where the integration limits Ai ∈ {a;ω} (i = 0, 1) are chosen so as to ensure that the integrals Ii
(i = 0, 1) tend either to zero or to ±∞ as t ↑ ω.

Theorem. Let λ0 ∈ R \ {0, 1} and let the function L0(Φ
−1(z)) is regular varying of γ-th order as

z → Z, moreover, let the orders σi (i = 0, 1) of the functions φi (i = 0, 1) regularly varying as
y(i) → Yi (i = 0, 1) satisfy the condition σ0 + σ1 = 1. Then, for the existence of Pω(Y0, Y1, λ0)-
solutions of the differential equation (1), it is necessary and, if the condition

(1 + λ0)(1 + λ0 + λ0γ) ̸= 0



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 109

is satisfied, sufficient that

lim
t↑ω

|πω(t)|σ0p(t)L1(µ1|πω(t)|
1

λ0−1 )

I0(t)
= −β, lim

t↑ω
µ0µ1|λ0|σ1 |λ0 − 1|σ0I1(t) = Z,

lim
t↑ω

p(t)|πω(t)|1+σ0L1

(
µ1|πω(t)|

1
λ0−1

)
L0

(
Φ−1

(
µ0µ1|λ0|σ1 |λ0 − 1|σ0I1(t)

))
=

|λ0|σ0

|λ0 − 1|1+σ0
,

and the sign conditions

µ2πω(t)I1(t) > 0, µ0µ1λ0(λ0 − 1)πω(t) > 0 for t ∈ ]a, ω[

hold. Moreover, each solution of this kind admits the asymptotic representations

Φ(y(t)) = µ0µ1|λ0|σ1 |λ0 − 1|σ0I1(t)[1 + o(1)],

y′(t)

y(t)
= µ0µ1|λ0|σ1 |λ0 − 1|σ0p(t)|πω(t)|σ0

× L1

(
µ1|πω(t)|

1
λ0−1

)
L0

(
Φ−1

(
µ0µ1|λ0|σ1 |λ0 − 1|σ0I1(t)

))
as t ↑ ω,

and such solutions form a one-parameter family if

(λ0 − 1)(1 + λ0 + γλ0)I1(t) < 0 for t ∈ ]a, ω[ ,

and two-parameter family if
(λ0 − 1)(1 + λ0 + γλ0)I1(t) > 0

and
(λ20 − 1)πω(t) > 0 for t ∈ ]a, ω[ .
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One of the methods of investigation of systems of differential equations which are not re-
solved relatively to the derivatives in the real-valued domain was suggested by R. Grabovskaya and
J. Diblic [1]. It was developed in the complex domain in the articles by G. Samkova, N. Sharay,
E. Michalenko, D. Limanska [2–6] and others. The current article is a continuation of the resear-
ching of systems of differential equations that are not resolved relatively to the derivatives in the
complex domain.

Let us consider the system of ordinary differential equations

A(z)Y ′ = B(z)Y + f(z, Y, Y ′), (1)

where matrices A,B : D1 → Cm×p, D1 = {z : |z| < R1, R1 > 0} ⊂ C, matrices A(z), B(z) are
analytic in the domain D10, D10 = D1 \ {0}, the pencil of matrices A(z)λ−B(z) is singular on the
condition that z → 0, function f : D1 ×G1 ×G2 → Cm, where domains Gk ⊂ Cp, 0 ∈ Gk, k = 1, 2,
function f(z, Y, Y ′) is analytic in D10 ×G10 ×G20, Gk0 = Gk \ {0}, k = 1, 2.

Let us study the system of ordinary differential equations (1) on the conditions that m > p and
rangA(z) = p on condition that z ∈ D1.

Without loss of the generality, let’s assume that matrices A(z), B(z) and vector-function
f(z, Y, Y ′) take the forms

A(z) =

(
A1(z)
A2(z)

)
, B(z) =

(
B1(z)
B2(z)

)
, f(z, Y, Y ′) =

(
f1(z, Y, Y

′)

f2(z, Y, Y
′)

)
,

A1 : D1 → Cp×p, A2 : D1 → C(m−p)×p, B1 : D1 → Cp×p, B2 : D1 → C(m−p)×p, detA1(z) ̸= 0 on
the condition that z ∈ D1, f1 : D1 ×G1 ×G2 → Cp, f2 : D1 ×G1 ×G2 → Cm−p.

In this view the system (1) may be written as:{
Y ′ = A−1

1 (z)B1(z)Y +A−1
1 (z)f1(z, Y, Y

′), (2.1)

A2(z)Y
′ = B2(z)Y + f2(z, Y, Y

′), (2.2)
(2)

where A−1
1 (z)B1(z) is analytic matrix in the domain D10, A−1

1 (z)f1(z, Y, Y
′) is analytic vector-

function in the domain D10 ×G10 ×G20. Then vector-function A−1
1 (z)f1(z, Y, Y

′) has an isolated
singularity in the point (0, 0, 0). Thus, according to the theorem about an isolated singularity for
a function of several complex variables, point (0, 0, 0) is a removable singularity of the function
A−1

1 (z)f1(z, Y, Y
′).

Let us complete definition of vector-function A−1
1 (z)f1(z, Y, Y

′) in the point (0, 0, 0) thus it
became analytic function in the domain D1 × G1 × G2 and, without loss of the generality, let’s
assume that A−1

1 (0)f1(0, 0, 0) = 0.
Let us consider two cases:
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1. A−1
1 (z)B1(z) is analytic matrix in the domain D10 and has a removable singularity in the

point z = 0;

2. A−1
1 (z)B1(z) is analytic matrix in the domain D10 and has a pole of order r in the point

z = 0.

For the first case let us introduce the following notations

A−1
1 (z)B1(z) = P (1)(z), A−1

1 f1(z, Y, Y
′) = F (z, Y, Y ′).

Then the system (2.1) may be written as

Y ′ = P (1)(z)Y + F (z, Y, Y ′), (3)

where P (1) : D1 → Cp×p, P (1)(z) is analytic matrix in the domain D1, F (z, Y, Y ′) is analytic
vector-function in the domain D1 ×G1 ×G2.

For the second case let us introduce the following notations

A−1
1 (z)B1(z) = z−rP (2)(z), A−1

1 f1(z, Y, Y
′) = F (z, Y, Y ′).

Then the system (2.1) may be written as

Y ′ = z−rP (2)(z)Y + F (z, Y, Y ′), (4)

where P (2) : D1 → Cp×p, P (2)(z) is analytic matrix in the domain D1.
We study the questions of the analytic solutions existence of the system (2) for both cases that

satisfy the initial condition

Y (z) → 0 on the condition that z → 0, z ∈ D10, (5)

and additional condition

Y ′(z) → 0 on the condition that z → 0, z ∈ D10, (6)

are considered.
The sufficient conditions of the existence of analytical solutions for the systems of differential

equations (3) and (4), partially solved relatively to the derivatives, in the presence of a removable
singularity or a pole z=0, were found. It was found an estimate for these solutions in the domain
with the zero-point on a border.

The theorems on the existence of at least one analytic solution in the complex domain of the
Cauchy problem (1)–(5) with the additional condition (6) are established for both cases. Moreover,
the asymptotic behavior of these solutions in this domain is studied.
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We consider one-parameter family of linear differential systems

ẋ = Aµ(t)x, x ∈ R2, t ≥ 0 (1µ)

with the coefficient matrix Aµ(t) := dk(µ) diag[1,−1], 2k− 1 ≤ t < 2k, Aµ(t) := (µ+ bk)

(
0 1
−1 0

)
,

2k − 2 ≤ t < 2k − 1, where µ, bk ∈ R, dk( · ) : R → R, k ∈ N.
In [4] we established the positivity of senior Lyapunov characteristic exponent of system (1µ)

for parameter values of positive Lebesgue measure, assumed that dk( · ) is independent on µ and
the condition dk(µ) ≡ dk ≥ d > 0, k ∈ N, holds. The proof of the result above substantially uses
special complex matrices.

For all αn ∈ R, n ∈ N, let

b2n := b2n−1 + αn, b2n+k := bk, k = 1, 2n − 1, dk(µ) ≡ d0(µ) > 220, k ∈ N. (2)

Systems of this type give rise to various one-parameter families with a wide range of asymptotic
properties. For example, V. M. Millionshchikov used them in works [5, 6] (see, as well [3]) to
prove an existence of irregular under Lyapunov linear differential systems with limit-periodic and
quasi-periodic coefficients.

Method of these papers essentially use the estimations for eigenvalues and eigenvectors of system
(1µ) Cauchy matrix. Another way for investigation was initiated by the criterium due E. A. Bara-
banov of linear system regularity, that consist in the application of Cauchy matrix singular form
(see the equality (5n)).

In this paper we prove an existence of parameter value µ ∈ R such that the corresponding
system (1µ) is unstable under condition (2) and if the function d0( · ) is continuous.

Let us denote the sequences {ψk(µ)}+∞
k=1 ⊂ R and {ηk(µ)}+∞

k=1 ⊂ R by the equalities ψ1(µ) := µ,
η1(µ) = d0(µ), ψk+1 = ψk + φk/2,

(ch ηk+1) sinφk = sin ξk, k ∈ N, (3)

where ξk := 2ψk + ζk, ζk :=
k∑

j=1
αj , � φk ∈ (−2−1π, 2−1π] are defined by the formula

ctgφk = (ch 2ηk) ctg ξk. (4)

Let XAµ(t, s), t, s ≥ 0, is the Cauchy matrix for system (1µ).

Lemma 1. Foe all n ∈ N, µ ∈ R under conditions (2) and (3) the next equalities hold

XAµ(2
n, 0) = U(ξn − ψn)

(
ηn 0
0 η−1

n

)
U(ψn), (5n)

sh ηk+1 = (sh 2ηk) cos ξk. (6)
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Lemma 2. For every continuous function f( · ) : [a, b] → R, a, b ∈ R, such that f(a) ≤ c < d ≤ f(b),
the closed interval [p, q] ⊂ [a, b] exists with the property f([p, q]) = [c, d].

Theorem. For all αn ∈ [−π/2, π/2], n ∈ N, bk and dk( · ), chosen accordinaly (2), the senior
characteristic exponent of system (1µ) is positive for some µ ∈ R, whereas the function d0( · ) is
continuous.

Proof. Let us denote

Vε(α) :=
{
κ ∈ [−2−1π, 2−1π] : | sin(κ − α)| < sin ε

}
.

For every k ∈ N let

Wk+1 := [−2−1π, 2−1π] \
( k∪

j=1

V2−j−2−k−1(ζj − 2−1π)
)
, W1 := (−π, π].

For all j ∈ {1, . . . , k} a unic β2j(k), β2j+1(k) ∈ (−2−1π, 2−1π] exist such that

sin(β2j+δ(k)− ζj + 2−1π) = (−1)δ sin(2−j − 2−k−1), δ ∈ {0, 1}.

A substitution j( · ) : {1, . . . , 2k} → {1, . . . , 2k} exist with the facility that the sequence
{βj(i)(k)}2ki=1 ⊂ (−2−1π, 2−1π) do not decrease.

Let βj(0) := −2−1π, βj(2k+1) := 2−1π.
The bound ∂Wk+1 of the set Wk+1 satisfies the inclusions

∂Wk+1 ⊂ {−2−1π, 2−1π} ∪
( k∪

j=1

∂V2−j−2−k−1(ζj − 2−1π)
)
⊂ {βj(k)}2k+1

j=0 . (7)

We shall build the set Ik ⊂ {0, . . . , 2k} by the next way. Because of (7) for all i ∈ {0, . . . , 2k} or
the relation Li,k+1 := [βj(i), βj(i+1)] ∈ Wk+1 holds, in this case we set Ik ∋ i, or, otherwise, the
inclusion Li,k+1 ∈ [−2−1π, 2−1π] \Wk+1 is true. In the last case let Ik ̸∋ i.

For every i ∈ Ik let

bi := 2−1(βj(i) + βj(i+1)) ∈ [−2−1π, 2−1π], ci := 2−1(βj(i+1) − βj(i)) ∈ [−2−1π, 2−1π].

Next equalities hold

Li,k+1 =
{
φ ∈ [−2−1π, 2−1π] : | sin(φ− bi)| ≤ sin ci

}
, Wk =

∪
i∈Ik

Li,k+1.

If k = 0, we set I0 = 1, L1,1 = [−2−1π, 2−1π].
Assume the first that µ2j−1, µ2j ∈ R, j ∈ Ik−1, exist for some k ∈ N such that the equality

holds
sin ξk(Mi,k) = sinLi,k, Mi,k := [µ2i−1, µ2i], i ∈ Ik−1 (8k)

and, the second, that in the case k > 1 we have the inclusion

Mk :=
∪

j∈Ik−1

Mj,k ⊂Mk−1. (9k)

Let us denote

sk :=
k−1∑
j=1

2−jj, s1 := 0.
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Assume that the next inequality holds

sh ln ηk(µ) ≥ 2(9−sk)2
k
. (10k)

Due to (8k) for all µ ∈ Mk the inclusion ξk(µ) ∈ R \ V2−k−1(ζk − 2−1π)) is true, that imply the
inequalities

| cos ξk(µ)| ≥ sin 2−k−1 ≥ 2−k−2. (11)

For all µ ∈Mk the formulas (6), (10k) and (11) give the estimation

sh ln ηk+1(µ)
(6)
= sh ln η2k cos ξk(µ)

(11)
≥ 2−k−2 sh ln η2k(µ)

(10k)

≥ 2(9−sk)2
k+1−2k ≥ 2(9−sk+1)2

k+1
.

Hence we have the relation (10k+1).
We set

Sk(α) :=
k∑

j=1

αjj.

For all α ∈ (−1, 1) we obtain the equalities

S+∞(α) =
( +∞∑

j=1

αj
)′

α
=

(
(1− α)−1

)′
α
= 2(1− α)−2.

Since that the next relations hold

sk ≤ s+∞ =
+∞∑
j=1

2−jj = S+∞(2−1) = 8.

Hence, in view of (10k), we have the estimate

sh ln ηk(µ) ≥ 22
k
. (12k)

For all i ∈ Ik the inclusion V2−k−1(Li,k+1) ⊂ Wk is true. Since that, because of Li,k+1 is the
closed interval, there exists ji ∈ Ik−1 such that the relation V2−k−1(Li,k+1) ⊂ Lji,k holds.

Due to (4), (11) and (12k), we have the estimates

|φk(µ) ≤ 2| sinφk(µ)|

≤ 2| tgφk(µ)|
(4)
= 2(ch 2ηk(µ))

−1 tg ξk(µ) ≤ 4e−2ηk(µ)| cos ξk(µ)|−1
(11), (12k)

≤ 2−k−1. (13)

Hence the next inclusion holds

ψk+1(µ2j−δ)
(12)
∈ V2−k−1(ψk(µ2j−δ)), δ = 0, 1. (14)

Let us denote the function f( · ) : R → [−1, 1] by the formula f(µ) := sin ξk+1(µ).
Because of (14) and due to (8k), we have the inequality

|f(µ2j−δ)| ≥ sin(cj,k − 2−k−1) =: κ. (15)

Let us denote s := sgn(f(µ2j)− f(µ2j−1)), g(µ) := sf(µ).
The relation (15) implies the estimates

g(µ2j−1,k) ≤ −κ < 0 < κ ≤ g(µ2j,k). (16)
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Because of continuity of the function η1( · ), φk+1( · ) is also continuous, hence such is the function
g( · ). Since that and in view of (16) the function g( · ) satisfies conditions of Lemma 2, in which
one have denote [a, b] := [µ2j−1,k, µ2j,k], [c, d] := [−κ,κ].

Hence, because of this lemma, there exists a closed interval Mi,k+1 := [µ2i−1,k+1, µ2i,k+1] ⊂Mj,k

such that g(Mi,k+1) = [−κ,κ] = sinLi,k+1, that is (8k+1) holds. Beside of that we have the
inclusion (9k+1).

Note that in the case k = 1 the equalities I0 = 1, L1 = [−2−1π, 2−1π] are true, since that, if
denote M1 :=M1,1 = [µ1,1, µ1,2] := [−2−1π, 2−1π], we obtain the relation sin ξ1(M1,1) = sin([−π +
a1, π + a1]) = [−1, 1] = sinL1, that is, the equality (81) holds.

Due to (2), we have the inequalities

sh ln η1(µ) = 2−1(η1(µ)− η−1
1 (µ))

(2)
≥ 2−1(220 − 2−20) ≥ 218 = 2(9−s1)21 ,

that implies the estimates (101).
Under induction, we obtain the relations (8n), (9n) and (10n) for every 1 < n ∈ N.
Due to (8k), the positivity of Lebesgue measure for the set Wk implies the inequality Mk ̸= ∅.

Hence, in view of (8n), n ∈ N, we have the existence of µ+∞ ∈M+∞ := Lim
k→+∞

Mk.
Because of (5n) and (12n), in view of the Lyapunov formula for the senior characteristic exponent

of system (1µ) [2], the next estimates hold

λmax(Aµ+∞) = lim
t→+∞

t−1 ln ∥XAµ+∞
(t, 0)∥ ≥ lim

n→+∞
2−n ln ∥XAµ+∞

(2n, 0)∥
(5n),(12n)

≥ 1.

They theorem is proved.
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In this paper we study the topological structure of the set of positive bounded variation solutions
of the quasilinear Neumann problem−

( u′√
1 + u′2

)′
= λa(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0,

(1)

where λ ∈ R is a parameter, a ∈ L∞(0, 1) changes sign, f ∈ C1(R) satisfies f(s), s > 0 for all s ̸= 0
and f ′(0) = 1. Problem (1) is a particular version of

−div
( ∇u√

1 + |∇u|2
)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

(2)

where Ω is a bounded regular domain in RN , with outward pointing normal ν and g : Ω×R → R and
σ : ∂Ω → R are given functions. This model plays a central role in the mathematical analysis of a
number of geometrical and physical issues, such as prescribed mean curvature problems for cartesian
surfaces in the Euclidean space [11, 19, 22–25, 30, 45, 46], capillarity phenomena for incompressible
fluids [16, 20, 21, 27, 28], and reaction-diffusion processes where the flux features saturation at high
regimes [12,29,44].

Although there is a large amount of literature devoted to the existence of positive solutions
for semilinear elliptic problems with indefinite nonlinearities [1–3, 7, 8, 26, 33, 37], no results were
available for the problem (2), even in the one-dimensional case (1), before [35,36], where we began
the analysis of the effects of spatial heterogeneities in the simplest prototype problem (1). Even if
part of our discussion in this paper has been influenced by some results in the context of semilinear
equations, it must be stressed that the specific structure of the mean curvature operator, u 7→
−div

(
∇u/

√
1 + |∇u|2

)
, makes the analysis in this paper much more delicate and sophisticated,

as (1) may determine spatial patterns which exhibit sharp transitions between adjacent profiles,
up to the formation of discontinuities [9, 10,12,17, 18,29, 40,42]. This special feature explains why
the existence intervals of regular positive solutions of [14,15,39] are smaller than those given in the
former references when dealing with bounded variation solutions. It is a well-agreed fact that the
space of bounded variation functions is the most appropriate setting for discussing these topics. The
precise notion of bounded variation solution of (1) used in this paper has been basically introduced
in [5, 6] and it has been extensively used and discussed later (see, e.g., [35, 38,40–43]).
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Definition 1 (Bounded variation solution). A bounded variation solution of problem (1) is a
function u ∈ BV (0, 1) such that

1∫
0

DuaDϕa√
1 + (Dua)2

dx+

1∫
0

Dus

|Dus|
Dsϕ =

1∫
0

λaf(u)ϕdx (3)

for all ϕ ∈ BV (0, 1) such that |Dϕs| is absolutely continuous with respect to |Dus|.
In Definition 1 the following notations are used for every v ∈ BV (0, 1) (we refer to, e.g., [4, 13]

for any required additional detail):
• Dv = Dvadx + Dvs is the Lebesgue–Nikodym decomposition of the Radon measure Dv in

its absolutely continuous part Dvadx, with density function Dva, and its singular part Dvs,
with respect to the Lebesgue measure dx in R.

• |Dv|, |Dva| and |Dvs| stand for the absolute variations of the measures Dv, Dva and Dvs,
respectively; thus, the Lebesgue–Nikodym decomposition of |Dv| is given by

|Dv| = |Dv|a dx+ |Dv|s = |Dva| dx+ |Dvs|.

• Dv
|Dv| and Dvs

|Dvs| denote the density functions of Dv and Dvs, respectively, with respect to their
absolute variations |Dv| and |Dvs|.

In [35], we discussed the existence and the multiplicity of positive bounded variation solutions
of (1) under various representative configurations of the behavior at zero and at infinity of the
function f . The solutions of [35] can be singular, for as they may exhibit jump discontinuities
at the nodal points of the weight function a, while they are regular, at least of class C1, on each
open interval where the weight function a has a constant sign. Instead, in [36] we investigated the
existence and the non-existence of positive regular solutions. Some of the most intriguing findings
of [35,36] can be synthesized by saying that the solutions of (1) obtained in [35] are regular as long
as they are small, in a sense to be precised later, whereas they develop singularities as they become
sufficiently large. This is in complete agreement with the peculiar structure of the mean curvature
operator, which combines the regularizing features of the 2-laplacian, when ∇u is sufficiently small,
with the severe sharpening effects of the 1-laplacian, when ∇u becomes larger.

A natural question arising at the light of these novelties is the problem of ascertaining whether
or not these regular and singular solutions can be obtained, simultaneously, by establishing the
existence of connected components of bounded variation solutions bifurcating from (l, u) = (l, 0),
which stem regular from (l, 0) and develop singularities as their sizes increase; thus establishing
the coexistence along the same component of both regular and singular solutions, as synoptically
illustrated by the two bifurcation diagrams in Figure 1. Although this phenomenology has been
already documented by the special example of [36, Section 8], by means of a rather sophisticated
phase plane analysis, solving this problem in our general setting still was a challenge.

The main aim of this work is establishing the existence of two connected components, C>
0 and

C+
λ0

, of the closure of the set of positive bounded variation solutions of problem (1),

S> =
{
(λ, u) ∈ [0,+∞)×BV (0, 1) : u > 0 is a solution of (1)

}
∪
{
(0, 0), (λ0, 0)

}
,

emanating from the line {(l, 0) : l ∈ R} of the trivial solutions, at the two principal eigenvalues
l = 0 and l = l0 of the linearization of (1) at u = 0,{

−u′′ = λa(x)u in (0, 1),

u′(0) = u′(1) = 0.
(4)
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∥u∥∞

l0
•

l

regular solutions

singular solutions

∥u∥∞

l0
•

l

regular solutions

singular solutions

Figure 1. Global bifurcation diagrams emanating from the positive principal

eigenvalue l0, according to the nature of the potential
s∫
0

f(t) dt of f : superlinear at

infinity (on the left), or sublinear at infinity (on the right).

Precisely, our main global bifurcation theorem (see [34] for the proof) can be stated as follows.

Theorem 1. Assume that f ∈ C1(R) satisfies f(s)s > 0 for all s ̸= 0, f ′(0) = 1, and, for some
constants κ > 0 and p > 2, |f ′(s)| ≤ κ (|s|p−2 + 1) for all s ∈ R. Moreover, suppose that a satisfies
1∫
0

a(x) dx < 0 and there is z ∈ (0, 1) such that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1).

Then there exist two subsets of S>, C>
0 and C>

λ0
such that

• C>
0 and C>

λ0
are maximal in S> with respect to the inclusion, are connected with respect to the

topology of the strict convergence in BV (0, 1)1, and are unbounded in R× Lp(0, 1);

• (0, 0) ∈ C>
0 and (λ0, 0) ∈ C>

λ0
;

• {(0, r) : r ∈ [0,+∞)} ⊆ C>
0 ;

• if (λ, u) ∈ C>
0 ∪ C>

λ0
and u ̸= 0, then ess inf u > 0;

• if (λ, 0) ∈ C>
0 ∪ C>

λ0
for some λ > 0, then λ = λ0;

• either C>
0 ∩ C>

λ0
= ∅, or (λ0, 0) ∈ C+

0 and (0, 0) ∈ C>
λ0

and, in such case, C>
0 = C>

λ0
;

• there exists a neighborhood U of (0, 0) in R × Lp(0, 1) such that C>
0 ∩ U consists of regular

solutions of (1);

• there exists a neighborhood V of (λ0, 0) in R× Lp(0, 1) such that C>
λ0

∩ V consists of regular
solutions of (1).

Theorem 1 appears to be the first global bifurcation result for a quasilinear elliptic problem
driven by the mean curvature operator in the setting of bounded variation functions. The absence in
the existing literature of any previous result in this direction might be attributable to the fact that
mean curvature problems are fraught with a number of serious technical difficulties which do not

1See [4, Definition 3.14]
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arise when dealing with other non-degenerate quasilinear problems. As a consequence, our proof
of Theorem 1 is extremely delicate, even though the problem (1) is one-dimensional. The main
technical difficulties coming from the eventual lack of regularity of solutions of (1) as they grow,
which does not allow us to work neither in spaces of differentiable functions, nor in Sobolev spaces.
Instead, this lack of regularity forces us to work in the frame of the Lebesgue spaces Lp, where
the cone of positive functions has empty interior and most of the global path-following techniques
in bifurcation theory fail. Thus, to get most of the conclusions of Theorem 1, a number of highly
non-trivial technical issues must be previously overcome. Among them count the reformulation of
(1) as a suitable fixed point equation, the proof of the differentiability of the associated underlying
operator, the search for the most appropriate global bifurcation setting, as well as solving the
tricky problem of the preservation of the positivity of the solutions along both components, for as
in the Lp context a positive solution, a priori, could be approximated by changing sign solutions.
Naturally, none of these rather pathological situations cannot arise when dealing with classical
regular problems, like those considered in [32].

For simplicity, here we have restricted ourselves to deal with the simplest situation when the
function a possesses a single interior node z, and thus the positive solutions of (1) are monotone.
As our proof relies, on a pivotal basis, on this special feature, getting a proof of this theorem in the
general case when a has an intricate nodal behavior might be a real challenge plenty of technical
difficulties. The validity of Theorem 1 in more general settings remains therefore an open problem.

References
[1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities.

Calc. Var. Partial Differential Equations 1 (1993), no. 4, 439–475.
[2] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign. J. Funct.

Anal. 141 (1996), no. 1, 159–215.
[3] H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indef-

inite elliptic problems. J. Differential Equations 146 (1998), no. 2, 336–374.
[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity

Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press,
New York, 2000.

[5] G. Anzellotti, The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc.
290 (1985), no. 2, 483–501.

[6] G. Anzellotti, BV solutions of quasilinear PDEs in divergence form. Comm. Partial Differential
Equations 12 (1987), no. 1, 77–122.

[7] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems
and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 59–78.

[8] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite su-
perlinear homogeneous elliptic problems. NoDEA Nonlinear Differential Equations Appl. 2
(1995), no. 4, 553–572.

[9] D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a
prescribed curvature equation. J. Differential Equations 243 (2007), no. 2, 208–237.

[10] D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solu-
tions of a prescribed curvature equation with singularities. Rend. Istit. Mat. Univ. Trieste 39
(2007), 63–85.



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 121

[11] E. Bombieri, E. De Giorgi and M. Miranda, Una maggiorazione a priori relativa alle ipersu-
perfici minimali non parametriche. (Italian) Arch. Rational Mech. Anal. 32 (1969), 255–267.

[12] M. Burns and M. Grinfeld, Steady state solutions of a bi-stable quasi-linear equation with
saturating flux. European J. Appl. Math. 22 (2011), no. 4, 317–331.

[13] G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-Dimensional Variational Problems. An
Introduction. Oxford Lecture Series in Mathematics and its Applications, 15. The Clarendon
Press, Oxford University Press, New York, 1998.

[14] S. Cano-Casanova, J. López-Gómez and K. Takimoto, A quasilinear parabolic perturbation of
the linear heat equation. J. Differential Equations 252 (2012), no. 1, 323–343.

[15] S. Cano-Casanova, J. López-Gómez and K. Takimoto, A weighted quasilinear equation related
to the mean curvature operator. Nonlinear Anal. 75 (2012), no. 15, 5905–5923.

[16] P. Concus and R. Finn, On a class of capillary surfaces. J. Analyse Math. 23 (1970), 65–70.
[17] Ch. Corsato, C. De Coster and P. Omari, The Dirichlet problem for a prescribed anisotropic

mean curvature equation: existence, uniqueness and regularity of solutions. J. Differential
Equations 260 (2016), no. 5, 4572–4618.

[18] Ch. Corsato, P. Omari and F. Zanolin, Subharmonic solutions of the prescribed curvature
equation. Commun. Contemp. Math. 18 (2016), no. 3, 1550042, 33 pp.

[19] M. Emmer, Esistenza, unicità e regolarità nelle superfici de equilibrio nei capillari. (Italian)
Ann. Univ. Ferrara Sez. VII (N.S.) 18 (1973), 79–94.

[20] R. Finn, The sessile liquid drop. I. Symmetric case. Pacific J. Math. 88 (1980), no. 2, 541–587.
[21] R. Finn, Equilibrium Capillary Surfaces. Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences], 284. Springer-Verlag, New York, 1986.
[22] C. Gerhardt, Boundary value problems for surfaces of prescribed mean curvature. J. Math.

Pures Appl. (9) 58 (1979), no. 1, 75–109.
[23] C. Gerhardt, Global C1,1-regularity for solutions of quasilinear variational inequalities. Arch.

Rational Mech. Anal. 89 (1985), no. 1, 83–92.
[24] E. Giusti, Boundary value problems for non-parametric surfaces of prescribed mean curvature.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 3, 501–548.
[25] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics,

80. Birkhäuser Verlag, Basel, 1984.
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Consider a linear system
ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with piecewise continuous and bounded coefficient matrix A and with the Cauchy matrix XA.
Together with the system (1) consider a perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (2)

with piecewise continuous and bounded perturbation matrix Q. Denote the higher exponent of (2)
by λn(A+Q).

One of the basic problem of Lyapunov exponents theory is to describe the influence of per-
turbations of coefficients from various classes on asymptotic properties of system (2). Usually
these perturbations are considered as small in some sense. For example, the value Λ(M, A) :=
sup{λn(A+Q) : Q ∈ M} is known as attainable bound of upward mobility of higher exponent of
(2) with perturbations from M, see [4, p. 157], [8], [11, p. 39], [10, p. 46], [17]. The following classes
are commonly used to calculate Λ(M, A):

Infinitesimal perturbations [18]

Q(t) → 0, t → +∞, (3)

exponentially small perturbations [9]

∥Q(t)∥ ≤ C(Q) exp(−σ(Q)t), C(Q) > 0, σ(Q) > 0; (4)

σ-perturbations [7]:

∥Q(t)∥ ≤ C(Q) exp(−σt), C(Q) > 0, σ > 0; (5)

power perturbations
∥Q(t)∥ ≤ C(Q)t−γ , C(Q) > 0, γ > 0; (6)

generalized power perturbations [1, 2]

∥Q(t)∥ ≤ C(Q) exp(−σθ(t)), C(Q) > 0, σ > 0, (7)

∥Q(t)∥ ≤ C(Q) exp(−σ(Q)θ(t)), C(Q) > 0, σ(Q) > 0, (8)

where θ is a positive function satisfying some additional conditions;
infinitesimal average [18] and integrable perturbations [3]

lim
t→+∞

1

t

t∫
0

∥Q(t)∥ dt = 0,

+∞∫
0

∥Q(t)∥ dt < +∞, (9)
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and their modifications with some positive weights φ and powers p ≥ 1, see [4, p. 309], [5, 12, 13,
15,16],

lim
t→+∞

1

t

t∫
0

φ(τ)∥Q(τ)∥p dτ = 0,

+∞∫
0

φ(τ)∥Q(t)∥p dt < +∞. (10)

Sometimes [1–3, 12, 13, 15, 16] to calculate Λ(M) we can construct an algorithm analogous to a
famous Izobov algorithm for σ-exponent [7]

∇σ(A) = lim
k→∞

ξk(σ)

k
, (11)

ξk(σ) = max
i≤k

{
ln ∥XA(k, i)∥+ ξi(σ)− σi

}
, ξ0 = 0, k ∈ N ∪ {0}.

For classes (5)–(7), (10), and the first of (9) we can write it in the general form

Λ(M, A) = lim
k→∞

ln ηk
k

, (12)

ηk = max
i≤k

{
∥XA(k, i)∥β(i)ηi

}
, η0 = 1, k ∈ N ∪ {0},

where β(k), β(0) > 0 is some nonegative function depending on M, e.g. β(i) = e−σi for σ-
perturbations. We shall consider β as a functional parameter of the algorithm.

The quantity ηk is always positive, because the maximum in (12) can not be reached at some
i ∈ N if β(i) is zero. We shall refer to this property of the algorithm (12) as adaptivity.

Alternatively, in some other cases [1,2,9,18] we have formulas like the following Millionshcikov
formula [4, p. 99], [8], [10, p. 48], [17]

Ω(A) = lim
T→+∞

lim
k→∞

1

mT

m∑
k=1

ln ∥XA(kT, kT − T )∥, (13)

for the central exponent. One of such classes is the class of exponential perturbations, see formula
(4). For exponential exponent ∇0(A) corresponding to them [9] we have

∇0(A) = lim
θ→1+0

lim
m→∞

1

θm

m∑
k=1

ln ∥XA(θ
k, θk−1)∥, (14)

Also classes (3), (4), (8), and the second of (9) have the analogous expression for Λ(M, A). The
smallness classes M for which Λ(M) has the representation of the form similar to (13), are called
limit classes [1, 2].

One of the most important differences between representations (13) or (14) and algorithm (12)
is that the sequence to calculate ∇σ(A) is determined by system (1) itself, and ∇0(A) or Ω(A)
are calculated using strictly prescribed sequences. This rigidity does not allow us to construct
analogues of formulas (13) and (14) for the perturbation classes with degenerations as it was done
for algorithms of the type (12) in [14].

Let T be the set of all sequences tk ∈ N, k ∈ N ∪ {0}, monotonically increasing to +∞. For
each τ ∈ T put

Ω(A, τ) = lim
k→∞

1

tk+1

k∑
i=0

ln ∥XA(ti+1, ti)∥.

We say that some family of sequences depending on a functional parameter β is adaptive if β
is not zero at any element of each of these sequences.
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We say that a one-parametric family Sα of sequences is admissible for a class M if for some α0

the equality
Λ(M, A) = lim

α→α0

sup
τ∈Sα

Ω(A, τ)

holds.
For any θ > 1 �� Tθ by T let us denote the set of all sequences from T satisfying the condition

lim
k→+∞

t−1
k tk+1 ≥ θ.

Lemma. The equality
∇0(A) = lim

θ→1+0
sup
τ∈Tθ

Ω(A, τ)

holds.

Together with the property A established in [7] for the families of finite sequences implementing
the σ-exponent ∇σ(A), the above lemma allow us to give an algorithm for adaptive construction
of sequences implementing the exponential exponent ∇0(A). We can prove analogous lemmas for
some other limit classes of perturbations.

Theorem. For each of classes (5)–(7), there exist a one-parametric family of admissible sequences.
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1 Introduction
The classical formulation of the general linear boundary value problem (BVP) for linear ordinary
differential system

(Lx)(t) ≡ ẋ(t) +A(t)x(t) = f(t), t ∈ [0, T ], (1.1)

where A(t) is a n × n-matrix with elements summable on [0, T ], supposes that we are interested
in the study of the question about the existence of solutions to (1.1) that satisfy the boundary
conditions

ℓx = β (1.2)

with linear bounded vector-functional ℓ = col(ℓ1, . . . , ℓn) defined on the space of absolutely conti-
nuous functions x : [0, T ] → Rn (see below more in detail). The key point in (1.1), (1.2) is that
the number of linearly independent components ℓi in (1.2) equals the dimension of (1.1). In such a
case, the unique solvability of BVP (1.1), (1.2) for f = 0, β = 0 implies the everywhere and unique
solvability. If this is not the case, we have very specific situation with either the underdetermined
BVP or the overdetermined BVP [11].

Linear BVP’s for differential equations with ordinary derivatives, that lack the everywhere
and unique solvability, are met with in various applications. Among these applications are some
problems in Economic Dynamics [10, 12]. Results on the solvability and solutions representation
for these BVP’s are widely used as an instrument of investigating weakly nonlinear BVP’s [6].
General results concerning linear BVP’s for an abstract functional differential equation (AFDE)
are given in [5]. As for linear overdetermined BVP’s for AFDE in general, the principal results by
L. F. Rakhmatullina are given in detail in [2, 3, 5].

In this paper, we consider the case that the number of linearly independent boundary conditions
is greater than the dimension of the null-space of the corresponding homogeneous equation and
study the BVP for FDE in an essentially different statement. Namely, the question we discuss is
as follows: does there exist at least one free term f in the given linear FDE such that (1.2) holds
for a fixed β, taking into account some given pointwise constraints with respect to f(t) on [0, T ].
Next we give a description for the set of unreachable β’s, i.e. those for which f does not exist.

2 A class of boundary value problems
In this section, we consider a system of functional differential equations with aftereffect that, for-
mally speaking, is a concrete realization of the AFDE, and, on the other hand, it covers many
kinds of dynamic models with aftereffect (integro-differential, delayed differential, differential dif-
ference) [9, 12].
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Let us introduce the functional spaces where operators and equations are considered. Fix a
segment [0, T ] ⊂ R. By Ln

2 = Ln
2 [0, T ] we denote the Hilbert space of square summable functions

v : [0, T ] → Rn endowed with the inner product (u, v) =
T∫
0

u′(t)v(t) dt ( · ′ is the symbol of transpo-

sition). The space ACn
2 = ACn

2 [0, T ] is the space of absolutely continuous functions x : [0, T ] → Rn

such that ẋ ∈ Ln
2 with the norm ∥x∥ACn

2
= |x(0)|+

√
(ẋ, ẋ), where | · | stands for the norm of Rn.

Consider the functional differential equation

Lx ≡ ẋ−Kẋ−A(·)x(0) = f, (2.1)

where the linear bounded operator K : Ln
2 → Ln

2 is defined by

(Kz)(t) =

t∫
0

K(t, s)z(s) ds, t ∈ [0, T ],

the elements kij(t, s) of the kernel K(t, s) are measurable on the set 0 ≤ s ≤ t ≤ T and such that
|kij(t, s)| ≤ u(t)v(s), i, j = 1, . . . , n, u, v ∈ L1

2[0, T ], (n× n)-matrix A has elements that are square
summable on [0, T ].

In what follows we will use some results from [1, 3, 8, 9] concerning (2.1). The homogeneous
equation (2.1) (f(t) = 0, t ∈ [0, T ]) has the fundamental (n× n)-matrix X(t):

X(t) = En + V (t),

where En is the identity (n× n)-matrix, each column vi(t) of the (n× n)-matrix V (t) is a unique
solution to the Cauchy problem

v̇(t) =

t∫
0

K(t, s)v̇(s) ds+ ai(t), v(0) = 0, t ∈ [0, T ],

where ai(t) is the i-th column of A.
The solution to (2.1) with the initial condition x(0) = 0 has the representation

x(t) = (Cf)(t) =

t∫
0

C(t, s)f(s) ds,

where C(t, s) is the Cauchy matrix [8] of the operator L. This matrix can be defined (and con-
structed) as the solution to

∂

∂t
C(t, s) =

t∫
s

K(t, τ)
∂

∂τ
C(τ, s) dτ +K(t, s), 0 ≤ s ≤ t ≤ T,

under the condition C(s, s) = En. The properties of the Cauchy matrix used below are studied in
detail in [9].

The matrix C(t, s) is expressed in terms of the resolvent kernel R(t, s) of the kernel K(t, s).
Namely,

C(t, s) = En +

t∫
s

R(τ, s) dτ.
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The general solution to (2.1) has the form

x(t) = X(t)α+

t∫
0

C(t, s)f(s) ds,

with an arbitrary α ∈ Rn.
The general linear BVP is the system (2.1) supplemented by the linear boundary conditions

ℓx = β, β ∈ RN , (2.2)

where ℓ : ACn
2 → RN is a linear bounded vector functional. Let us recall the representation of ℓ:

ℓx =

T∫
0

Φ(s)ẋ(s) ds+Ψx(0). (2.3)

Here Ψ is a constant (N×n)-matrix, Φ is (N×n)-matrix with elements that are square summable on
[0, T ]. We assume that the components ℓi : AC

n
2 → R, i = 1, . . . , N , of ℓ are linearly independent.

BVP (2.1), (2.2) is well-posed if N = n. In such a situation, the BVP is uniquely solvable for
any f ∈ Ln

2 [0, T ] and β ∈ Rn if and only if the matrix

ℓX = (ℓX1, . . . , ℓXn),

where Xj is the j-th column of X, is nonsingular, i.e. det ℓX ̸= 0.
In the sequel we assume that N > n and the system ℓi : ACn

2 → R, i = 1, . . . , N , can be splitted
into two subsystems ℓ1 : ACn

2 → Rn and ℓ2 : ACn
2 → RN−n such that the BVP

Lx = f, ℓ1x = β1 (2.4)

is uniquely solvable. Without loss of generality we will consider the case that ℓ1 is defined by
ℓ1x ≡ x(0), formed by the first n components of ℓ, and the elements of β1 = 0 in (2.4) are the
corresponding components of β. Thus ℓ2 will stand for the final (N − n) components of ℓ, and
elements of β2 ∈ RN−n are defined as the final (N−n) components of β. Let us write ℓ1 in the form

ℓ1x =

T∫
0

Φ1(s)ẋ(s) ds+Ψ1x(0),

where Φ1(s) = 0 and Ψ1 = En are the corresponding rows of Φ(s) and Ψ, respectively, in (2.3).
Similarly,

ℓ2x =

T∫
0

Φ2(s)ẋ(s) ds+Ψ2x(0).

Put

Θi(s) = Φi(s) +

T∫
s

Φi(τ)C
′
τ (τ, s) dτ, i = 1, 2.

In the case that f is not constrained, it is shown in [11] that under the condition of nonsingularity
of the matrix

W =

T∫
0

Θ2(s)Θ
′
2(s) ds (2.5)
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BVP (2.1), (2.2) is solvable for all β2 ∈ RN−n if

f(t) = f0(t) + φ(t),

where
f0(t) = Θ′

2(t)[W
−1β2]

and φ( · ) ∈ Ln
2 is an arbitrary function that is orthogonal to each column of Θ′

2( · ):

T∫
0

Θ2(s)φ(s) ds = 0.

Here we consider the case of the pointwise constraints

ci ≤ fi(t) ≤ di, t ∈ [0, T ], ci ≤ di, i = 1, . . . , n, (2.6)

with respect to components fi(t) of the column f(t) = col(f1(t), . . . , fn(t)). Denote V = [c1, d1]×
· · · × [cn, dn].

In the sequel it is assumed that the elements of Φ2(t) are piecewise continuous on [0, T ].
To formulate the main theorem, let us introduce some notation. For any λ ∈ RN−n and

t ∈ [0, T ], we define z(t, λ) by the equality

z(t, λ) = max
(
λ′Θ2(t)v : v ∈ V

)
.

Define v(t, λ) as the centroid of the collection of the unite mass points belonging to V and
bringing the value z(t, λ) to the functional v → λ′ ·Θ2(t) · v.

Theorem. Let a collection {λi ∈ RN−n, i = 1, . . . ,m} be fixed, and a collection {qi ∈ R, i =
1, . . . ,m} be such that the inequalities

λ′
i

T∫
0

Θ(t) · v(t, λi) dt ≤ qi, i = 1, . . . ,m,

hold. Define P as the set of all ρ ∈ RN−n such that the inequalities

λ′
i · ρ ≤ qi, i = 1, . . . ,m,

are fulfilled. Then all β2 ∈ RN−n outside the polyhedron P are unreachable for BVP (2.1), (2.2)
under constraints (2.6).

The proof of the theorem is based on [7, Theorem 7.1 ].

Example. Let us consider the system

ẋ1(t) = x2(t− 1) + f1(t),

ẋ2(t) = −x2(t) + f2(t),
t ∈ [0, 3],

where x2(s) = 0 if s < 0, with the initial conditions

x1(0) = 0, x2(0) = 0,

and additional conditions as follows:

x1(3)− x2(2) = β1, x2(3) + x1(2) = β2,
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under the constraints
0 ≤ fi(t) ≤ 2, i = 1, 2.

Here we have

C(t, s) =

1

t∫
s

χ
[1,3]

(τ)χ
[0,τ−1]

(s) exp(1− τ + s) dτ

0 exp(s− t)

 ,

ℓ2x = col
(
x1(3)− x2(2), x2(3) + x1(2)

)
,

Θ2(s) =

(
C1,1(3, s)− χ

[0,2]
(s)C2,1(2, s) C1,2(3, s)− χ

[0,2]
(s)C2,2(2, s)

C2,1(3, s) + χ
[0,2]

(s)C1,1(2, s) C2,2(3, s) + χ
[0,2]

(s)C1,2(2, s)

)
,

where Cj,k(t, s), j, k = 1, 2 are the components of C(t, s). It should be noted that for W defined
by (2.5) the inequality detW > 5 holds.

By application of theorem for the case λi = col(sin(iπ/4), cos(iπ/4)), i = 1, . . . , 8, we obtain that
all points (β1, β2) outside the intersection of the quadrangle with corners
{(−1.35, 1.10), (1.02,−1.30), (5.40, 7.90), (7.90, 5.50)} and the quadrangle with corners
{(−0.60, 0), (−0.60, 6.55), (7.05, 0), (7.05, 6.55)} are unreachable for the problem under consider-
ation.
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On the interval I = [0, ω], consider the second order linear integro-differential equation

u′′(t) = p0(t)u(t) +

ω∫
0

p(t, s)u(τ(t, s)) ds+ q(t), (0.1)

and the nonlinear functional differential equation

u′′(t) = F (u)(t) + q(t), (0.2)

with the periodic two-point boundary conditions

u(i−1)(ω)− u(i−1)(0) = ci (i = 1, 2), (0.3)

where c1, c2 ∈ R, p0, f, q ∈ L∞(I,R), p ∈ L∞(I2, R), τ : I2 → I is a measurable function, and
F : C ′(I,R) → L∞(I,R) is a continuous operator.

By a solution of problem (0.2), (0.3) we understand a function u : I → R, which is absolutely
continuous together with its first derivative, satisfies equation (0.2) almost everywhere on I and
satisfies conditions (0.3).

Our work is motivated by some original results for the functional differential equations with
argument deviation (see [1, 2, 4]), and the results of Nieto [5] and Kuo-Shou Chiu [3].

Here we establish theorems which in some sense complete and generalize the results of the
works cited above as well as some other known results. We first describe some classes of unique
solvability for linear problems (0.1), (0.3), and then on the basis of these results, we prove the
existence theorems for nonlinear problem (0.2), (0.3). The conditions we obtain take into account
the effect of argument deviation, and in some sense are optimal.

Throughout the paper we use the following notation.
R = ]−∞,+∞[ , R+ = [0,+∞[ .
C(I;R) is the Banach space of continuous functions u : I → R with the norm ∥u∥C =

max{|u(t)| : t ∈ I}.
C ′(I;R) is the Banach space of functions u : I → R which are continuous together with their

first derivatives with the norm ∥u∥C′ = max{|u(t)|+ |u′(t)| : t ∈ I}.
L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm ∥p∥L =

ω∫
0

|p(s)| ds.
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L∞(I,R) is the space of essentially bounded measurable functions p : I → R with the norm
∥p∥∞ = ess sup{|p(t)| : t ∈ I}.

L∞(I2, R) is the set of such functions p : I2 → R, that for any fixed t ∈ I, p(t, · ) ∈ L(I,R),
and

ω∫
0

|p( · , s)| ds ∈ L∞(I,R).

Also for arbitrary p0, p1 ∈ L∞(I,R), p ∈ L∞(I2, R), and measurable τ : I2 → I we will use the
notation:

ℓ0(p0, p)(t) = |p0(t)|+
ω∫

0

|p(t, s)| ds,

ℓ1(p, τ) =
2π

ω

( ω∫
0

( ω∫
0

|p(ξ, s)| |τ(ξ, s)− ξ| ds
)
dξ

)1/2

.

Definition 0.1. Let σ ∈ {−1, 1}, and τ : I → I be the measurable function. We say that the
vector-function (h0, h) : I → R2, where h0 ∈ L∞(I,R+) and h ∈ L∞(I2, R+), belongs to the set
P σ
τ , if for an arbitrary vector-function (p0, p) : I → R2 with such measurable components, that

0 ≤ σp0(t) ≤ h0(t), 0 ≤ σp(t, s) ≤ h(t, s) for t, s ∈ I,

p0(t) +

ω∫
0

p(t, s) ds ̸≡ 0, (0.4)

the homogeneous problem

v′′(t) = p0(t)v(t) +

ω∫
0

p(t, s)v(τ(t, s)) ds,

v(i−1)(ω)− v(i−1)(0) = 0 (i = 1, 2),

has no nontrivial solution.

1 Linear problem
Proposition 1.1. Let σ ∈ {−1, 1},

h0 ∈ L∞(I,R+), h ∈ L∞(I2, R+), h0(t) +

ω∫
0

h(t, s) ds ̸≡ 0,

and for almost all t ∈ I the inequality

1− σ

2
ℓ0(h0, h)(t) + ℓ1(h, τ)ℓ

1/2
0 (h0, h)(t) <

4π2

ω2

holds. Then
(h0, h) ∈ P σ

τ . (1.1)
Theorem 1.1. Let σ ∈ {−1, 1}, σp0 ∈ L∞(I,R+), σp ∈ L∞(I2, R+), and condition (0.4) be
fulfilled. Moreover, let for almost all t ∈ I the inequality

1− σ

2
ℓ0(p0, p)(t) + ℓ1(p, τ)ℓ

1/2
0 (p0, p)(t) <

4π2

ω2
(1.2)

hold. Then problem (0.1), (0.3) is uniquely solvable.
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Let p0 ≡ 0, τ(t, s) ≡ t− ν(t, s), and 0 ≤ ν(t, s) ≤ t for t, s ∈ I. Then equation (0.1) transforms
to the next equation

u′′(t) =

ω∫
0

p(t, s)u(t− ν(t, s)) ds+ q(t), (1.3)

and from Theorem 1.1 it follows

Corollary 1.1. Let conditions p ∈ L∞(I2, R+),
ω∫
0

p(t, s) ds ̸≡ 0, and for almost all t ∈ I the

inequality
ω∫

0

ω∫
0

p(ξ, s)ν(ξ, s) ds dξ

ω∫
0

p(t, s) ds <
4π2

ω2

hold. Then problem (1.3), (0.3) is uniquely solvable.

Corollary 1.2. Let n ≥ 3, and the function p1 ∈ L∞(I,R+) be such that for almost all t ∈ I the
inequality

ω∫
0

t∫
0

p1(s)|τ(s)− t| ds dt
ω∫

0

p1(s) ds ≤
4π2[(n− 3)! ]2

ω2(n−2)

holds. Then the problem
u(n)(t) = p1(t)u(τ(t)) + q(t), (1.4)

under the two-point boundary conditions

u(i−1)(ω)− u(i−1)(0) = ci, u(j−1)(0) = cj (i = 1, 2; j = 3, . . . , n),

where ck ∈ R (k = 1, . . . , n), p1 ∈ L∞(I,R), and τ : I → I is a measurable function, is uniquely
solvable.

If p0 ≡ 0 and τ(t, s) = τ(t) for t, s ∈ I, then equation (0.1) transforms to the equation (1.4)
with n = 2, p1(t) =

ω∫
0

p(t, s) ds, and then from Theorem 1.1 it follows

Corollary 1.3. Let p1 ∈ L∞(I,R+) be such that for almost all t ∈ I the inequality

p1(t)

ω∫
0

p1(s)|τ(s)− s| ds < 4π2

ω2

holds. Then problem (1.4), (0.3) when n = 2 is uniquely solvable.

2 Nonlinear problem

Definition 2.1. We say that the operator F belongs to the Carathéodory’s local class and write
F ∈ K(C ′, L∞), if F : C ′(I,R) → L∞(I,R) is the continuous operator, and for an arbitrary r > 0,

sup
{
|F (x)(t)| : ∥x∥C′ ≤ r, x ∈ C ′(I,R)

}
∈ L∞(I,R+).
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Definition 2.2. Let σ ∈ {−1, 1}, inclusion (1.1) hold and the operators V0 : C
′(I,R) → L∞(I,R),

V : C ′(I,R) → L∞(I2, R) be continuous. Then we say that (V0, V ) ∈ E(h0, h, P
σ
τ ), if for all

x ∈ C ′(I,R) the conditions

0 ≤ σV0(x)(t) ≤ h0(t), 0 ≤ σV (x)(t, s) ≤ h(t, s) for t, s ∈ I

hold, and
inf

{
∥L(x, 1)∥L : x ∈ C ′(I,R)

}
> 0,

where

L(x, y)(t) = V0(x)(t)y(t) +

ω∫
0

V (x)(t, s)y(τ(t, s)) ds.

Also here it is assumed that the function sgn is defined by the equality

sgnx =

{
1 if x ≥ 0,

−1 if x < 0.

Then the next theorem is true.

Theorem 2.1. Let σ ∈ {−1, 1}, and

(V0 + Ṽ0, V ) ∈ E(h0, h, P
σ
τ ),

where the operators σV0, σṼ0 are nonnegative.
Moreover, let the constant r0 > 0, the operator F ∈ K(C ′, L∞), and the function g0 ∈ L(I,R+),

be such that the conditions

g0(t) ≤ σ
(
F (x)(t)− L(x, x)(t)

)
sgnx(t) ≤

∣∣Ṽ0(x)(t)x(t)
∣∣+ η

(
t, ∥x∥C′

)
for t ∈ I, ∥x∥C′ ≥ r0,

and

|c2| ≤
ω∫

0

g0(s) ds−
∣∣∣∣

ω∫
0

q(s) ds

∣∣∣∣
hold, where the function η : I ×R+ → R+ is summable in the first argument, nondecreasing in the
second one, and admits the condition

lim
ρ→+∞

1

ρ

ω∫
0

η(s, ρ) ds = 0.

Then problem (0.2), (0.3) has at least one solution.
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On a finite interval [a, b], we consider the differential equation

u′′ = f(t, u) (1)

with the Neumann two-point boundary conditions

u′(a) = c1, u′(b) = c2, (2)

where f : [a, b]×R → R is a function satisfying the local Carathéodory conditions, while c1 and c2
are real constants.

A number of interesting and unimprovable in a certain sense results concerning the existence and
uniqueness of a solution of problem (1), (2) are known (see, e.g., [1–8] and the references therein).
Jointly with I. Kiguradze [9] we have proved a general theorem on the existence and uniqueness of
a solution of that problem which is a nonlinear analogue of the first Fredholm theorem. Below we
give this theorem and its corollaries containing unimprovable sufficient conditions, different from
the above mentioned results, for the unique solvability of problem (1), (2).

We use the following notation.
R is the set of real numbers; R− = ]−∞, 0];

[x]− =
|x| − x

2
;

L([a, b]) is the space of Lebesgue integrable on [a, b] real functions.

Definition 1. Let pi ∈ L([a, b]) (i = 1, 2) and

p1(t) ≤ p2(t) for almost all t ∈ [a, b]. (3)

We say that the vector function (p1, p2) belongs to the set Neum([a, b]) if for any measurable
function p : [a, b] → R, satisfying the inequality

p1(t) ≤ p(t) ≤ p2(t) for almost all t ∈ [a, b],

the homogeneous Neumann problem

u′′ = p(t)u, (4)
u′(a) = 0, u′(b) = 0 (5)

has only the trivial solution.

Theorem 1. Let on the set [a, b]× R the inequality

p1(t)|x− y| ≤ (f(t, x)− f(t, y)) sgn(x− y) ≤ p2(t)|x− y| (6)

be satisfed, where (p1, p2) ∈ Neum([a, b]). Then problem (1), (2) has one and only one solution.
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Corollary 1. Let on the set [a, b] × R condition (6) hold, where pi ∈ L([a, b]) (i = 1, 2) are the
functions satisfying inequalities (3). Let, moreover,

b∫
a

p2(t) dt ≤ 0, mes {[t ∈ [a, b] : p2(t) < 0} > 0, (7)

and there exist a number λ ≥ 1 such that
b∫

a

[p1(t)]
λ
− dt ≤ 4(b− a)

π2

( π

b− a

)2λ
. (8)

Then problem (1), (2) has one and only one solution.

Corollary 2. Let on the set [a, b]×R inequality (6) hold, where p1 : [a, b] → R− and p2 : [a, b] → R
are integrable functions satisfying inequalities (3) and (7). Let, moreover, there exist t0 ∈ ]a, b[
such that the function p2 is non-increasing and non-decreasing in the intervals ]a, t0[ and ]t0, b[ ,
respectively, and

t0∫
a

√
|p1(t)| dt ≤

π

2
,

b∫
t0

√
|p1(t)| dt ≤

π

2
,

b∫
a

√
|p1(t)| dt < π. (9)

Then problem (1), (2) has one and only one solution.

The following two corollaries concern the linear differential equation

u′′ = p(t)u+ q(t), (10)

where p and q ∈ L([a, b]).

Corollary 3. Let
b∫

a

p(t) dt ≤ 0, mes {t ∈ [a, b] : p(t) < 0} > 0, (11)

and let there exist a number λ ≥ 1 such that
b∫

a

[p(t)]λ− dt ≤ 4(b− a)

π2

( π

b− a

)2λ
. (12)

Then problem (10), (2) has one and only one solution.

Corollary 4. Let there exist a number t0 ∈ ]a, b[ such that the function p along with (11) satisfies
the conditions

p0(t) = ess sup
{
[p(s)]− : a < s < t

}
< +∞ for a < t < t0, (13)

p0(t) = ess sup
{
[p(s)]− : t < s < b

}
< +∞ for t0 < t < b, (14)

t0∫
a

√
p0(t) dt ≤

π

2
,

b∫
t0

√
p0(t) dt ≤

π

2
,

b∫
a

√
p0(t) dt < π. (15)

Then problem (10), (2) has one and only one solution.
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Remark 1. In the case, where instead of (11) the more hard condition

p(t) ≤ 0 for a < t < b, mes {t ∈ [a, b] : p(t) < 0} > 0 (16)

is satisfied, the results analogous to Corollary 3 previously were obtained in [4,5,8]. More precisely,
in [8] it is required that along with (16) the inequalities

b∫
a

|p(t)| dt ≤ 4

b− a
, ess sup {|p(t)| : a ≤ t ≤ b} < +∞

be satisfied (see [8, Theorem 3]), while in [4] and [5] it is assumed, respectively, that

b∫
a

|p(t)| dt ≤ 4

b− a

(see [4, Corollary 1.2]), and
b∫

a

|p(t)|λ dt ≤ 4(b− a)

π2

( π

b− a

)2λ
,

where λ ≡ const ≥ 1 (see [5, Corollary 1.3]).

Example 1. Suppose
p(t) ≡ −

( π

b− a

)2
,

ε is arbitrarily small positive number, while λ is so large that(
1 +

ε

π

)λ
>

π

2
.

Then instead of (12) the inequality

b∫
a

[p(t)]λ− dt <
4(b− a)

π2

(π + ε

b− a

)2λ
(17)

is satisfied. On the other hand, the homogeneous problem (4), (5) has a nontrivial solution u0(t) =

cos π(t−a)
b−a , and the nonhomogeneous problem (10), (2) has no solution if only

c1 + c2 +

b∫
a

u0(t)q(t) dt ̸= 0.

Consequently, condition (12) in Corollary 3 is unimprovable and it cannot be replaced by condi-
tion (17).

The above example shows also that condition (8) in Corollary 1 is unimprovable in the sense
that it cannot be replaced by the condition

b∫
a

[p1(t)]
λ
− dt <

4(b− a)

π2

(π + ε

b− a

)2λ
,
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where ε is a positive constant independent of λ.
Note that condition (8) in Corollary 1 is unimprovable also in the case where λ = 1, and it

cannot be replaced by the condition

b∫
a

[p1(t)]− dt <
4 + ε

b− a

no matter how small ε > 0 would be (see [4, p. 357, Remark 1.1]).

Example 2. Suppose t0 ∈ ]a, b[ and

p(t) =


− π2

4(t0 − a)2
for a ≤ t ≤ t0,

− π2

4(b− t0)2
for t0 < t ≤ b.

Then inequalities (13), (14) hold, and instead of (15) we have

t0∫
a

√
p0(t) dt =

π

2
,

b∫
t0

√
p0(t) dt =

π

2
.

On the other hand, the homogeneous problem (4), (5) has a nontrivial solution

u0(t) =


(t0 − a) cos

π(t− a)

2(t0 − a)
for a ≤ t ≤ t0,

(t0 − b) cos
π(b− t)

2(b− t0)
for t0 < t ≤ b,

while the nonhomogeneous problem (10), (2) has no solution if only

(t0 − a)c1 + (b− t0)c2 +

b∫
a

u0(t)q(t) dt ̸= 0.

Consequently, condition (15) in Corollary 4 is unimprovable in the sense that it cannot be replaced
by the condition

t0∫
a

√
p0(t) dt ≤

π

2
,

b∫
t0

√
p0(t) dt ≤

π

2
.

From the above said it is also clear that condition (9) in Corollary 2 is unimprovable and it
cannot be replaced by the condition

t0∫
a

√
|p1(t)| dt ≤

π

2
,

b∫
t0

√
|p1(t)| dt ≤

π

2
.
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An important problem in the theory of impulsive systems of differential equations [13] is a
qualitative study of discontinuous (or impulsive) dynamical systems. In the case of an infinite-
dimensional phase space, one of the most effective tools for studying the qualitative behavior of
solutions is the theory of global attractors [4, 7]. The transfer of basic concepts and results of the
theory of attractors to impulsive dynamical systems has a fundamental problem – the absence of
continuous dependence of solutions on the initial data. Using the notion of a uniform attractor
[4, 12], in [8], we were able to prove the existence of a minimal compact uniformly attracting set
for a class of weakly nonlinear impulsive parabolic equations. Later in the works [5, 6, 9] this
approach was extended to other classes of impulsive systems. It turned out that in the case when
the trajectories of an impulsive dynamical system reach the impulsive set infinitely many times,
the uniform attractor can have a non-empty intersection with the impulsive set and be neither
invariant nor stable with respect to the impulsive semi-flow. The invariance of the non-impulsive
part of a uniform attractor for different classes of impulsive systems was proved in [3, 5]. In [10],
for the first time conditions for the impulsive semi-flow, which guarantee the stability of the non-
impulsive part of the uniform attractors, were proposed. In this paper, we refine these conditions
and apply them to study the stability of a uniform attractor of a weakly nonlinear two-dimensional
impulsive-perturbed parabolic system.

Let us consider the impulsive dynamical system (further the impulsive DS) G = G(V,M, I),
which is defined on the normalized space X. It means that we consider the mapping G : R+×X →
X, which is constructed from the continuous semigroup V : R+ × X → X, the impulsive set
M ⊂ X and the impulsive map I : M → X using the following rule [11]: if for x ∈ X for every
t > 0 V (t, x) ̸∈M , then G(t, x) = V (t, x); otherwise

G(t, x) =

{
V (t− tn), t ∈ [tn, tn+1),

x+n+1, t = tn+1,
(1)

where t0 = 0, tn+1 =
n∑

k=0

sk, x+n+1 = IV (sn, x
+
n ), x+0 = x, sn are moments of impulsive perturbation,

characterized by a condition V (sn, x
+
n ) ∈M . Under conditions

M is closed, M ∩ IM = ∅,
∀x ∈M ∃ τ = τ(x) > 0, ∀ t ∈ (0, τ) V (t, x) ̸∈M,

∀x ∈ X t→ G(t, x) is defined on [0,+∞)

(2)

formula (1) defines a semigroup G : R+ ×X → X [2, 8].

Remark 1. From the condition (2) and the continuity of V follows [2, 5] that for every x ∈ X
either there is moments of time s := s(x) > 0 such that ∀ t ∈ (0, s) V (t, x) ̸∈ M , V (s, x) ∈ M , or
∀ t > 0 V (t, x) ∩M = ∅ (and in this case we set s(x) = ∞).
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Definition 1 ([8]). A compact set Θ ⊂ X is called a uniform attractor of the impulsive DS G, if

1) Θ is uniformly attracting set, i.e.,

∀B ∈ β(X) dist(G(t, B),Θ) −→ 0, t→ ∞;

2) Θ is minimal closed set which satisfies 1).

Remark 2. A uniform attractor can be not invariant with respect to G. In that case the equality

∀ t ≥ 0 Θ = G(t,Θ)

will not be fulfilled [8].

Theorem 1 ([5]). Let impulsive DS G be dissipative, that is

∃B0 ∈ β(X) ∀B ∈ β(X), ∃T = T (B) ∀ t ≥ T G(t, B) ⊂ B0. (3)

Then G has a uniform attractor Θ if and only if G is asymptotically compact, i.e. ∀ {xn} ∈ β(X)
∀ {tn ↗ ∞} the sequence {G(tn, xn)} is precompact. Herewith,

Θ = ω(B0) :=
∩
τ>0

∪
t≥τ

G(t, B0).

Definition 2 ([1]). The set A ⊂ X is called a stable with respect to the semi-flow G, if

A = D+(A) :=
∪
x∈A

{
y | y = limG(tn, xn), xn → x, tn ≥ 0

}
. (4)

In [10] it was shown that the uniform attractor of an impulsive DS may not satisfy the property
(4), however, using additional assumptions about the nature of the behavior of the trajectories in
the neighborhood of the impulsive set, we manage to obtain the following result which clarifies the
statement of Theorem 1, 2 from [10].

Theorem 2. Let impulsive DS G = (V,M, I) satisfy conditions (2), (3) and have the uniform
attractor Θ. Let impulsive mapping I : M → X and semi-group V : R+ ×X → X be continuous
and in addition, the conditions met:

- for an arbitrary sequence xn → x ∈ Θ \M{
s(x) = ∞, if s(xn) = ∞ for infinitely many n,
s(xn) → s(x), otherwise;

- for an arbitrary sequence xn → x ∈ Θ ∩M

either s(xn) = ∞ for infinitely many n, or s(xn) → 0.

Then the following equality is fulfilled:
Θ = Θ \M. (5)

Moreover, Θ is invariant in the sense that

∀ t ≥ 0 G(t,Θ \M) = Θ \M, (6)

and stable in the sense that
D+(Θ \M) ⊂ Θ \M. (7)
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Let Ω ⊂ Rn, n ≥ 1 is a bounded domain. Using the unknown functions u(t, x), v(t, x) in
(0,+∞)× Ω we consider the following problem:

∂u

∂t
= a∆u+ εf1(u, v),

∂v

∂t
= a∆v + 2b∆u+ εf2(u, v),

u
∣∣
∂Ω

= v
∣∣
∂Ω

= 0,

(8)

where ε > 0 is a small parameter,
a > 0, |b| < a. (9)

Nonlinear perturbation f =

(
f1
f2

)
∈ C1(R2) satisfies the conditions:

∃C > 0 ∀u, v ∈ R |f1(u, v)|+ |f2(u, v)| ≤ C, Df(u, v) ≥ −C, (10)

which guarantee the single-valued global solvability of the problem (8) in a phase space X =
L2(Ω)× L2(Ω) with the norm ∥z∥X =

√
∥u∥2 + ∥v∥2 , where here and further ∥ · ∥ and ( · , · ) are

the norm and the scalar product in L2(Ω).
Let {λi}∞i=1 ⊂ (0,+∞), {ψi}∞i=1 ⊂ H1

0 (Ω) be solutions of the spectral problem ∆ψ = −λψ,
ψ ∈ H1

0 (Ω).
For fixed α > 0, β > 0, γ > 0, µ > 0 the following impulsive problem is considered on the

solutions of (8):

when the phase point z(t) meets the impulsive set

M =

{
z =

(
u
v

)
∈ X | |(u, ψ1)| ≤ γ, α(u, ψ1) + β(v, ψ1) = 1

}
, (11)

it is instantly translated by the impulsive map I : M → M ′ to the new position Iz ∈ M ′,
where

M ′ =

{
z =

(
u
v

)
∈ X | |(u, ψ1)| ≤ γ, α(u, ψ1) + β(v, ψ1) = 1 + µ

}
. (12)

We will consider the following class of impulsive mappings:

for z =
∞∑
i=1

(
ci
di

)
ψi ∈M, I(z) = I1

(
c1
d1

)
ψ1 +

∞∑
i=2

(
ci
di

)
ψi ∈M ′,

where I1 : R2 → R2 is specified continuous mapping.
In [9], it was proved that under the additional condition

2βγ ≤ 1

the problem (8)–(12) for sufficiently small ε generates an impulsive DS Gε which has a uniform
attractor Θε.

The main result of this paper is the following theorem.

Theorem 3. Let f1 ≡ 0. Then for sufficiently small ε > 0 the uniform attractor Θε of the impulsive
DS Gε, generated by the problem (8)–(12), is invariant and stable in the sense (5)–(7).
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1 Introduction
Consider the canonical Hamiltonian system with n degrees of freedom

dqi
dt

= ∂pi
H(t, q, p),

dpi
dt

= − ∂qi
H(t, q, p), i = 1, . . . , n, (1.1)

where q = (q1, . . . , qn) ∈ Rn and p = (p1, . . . , pn) ∈ Rn are the generalized coordinates and
momenta, respectively, t ∈ R, and the Hamiltonian H : D → R is a twice continuously differentiable
function on the domain D = T ×G, T ⊂ R, G ⊂ R2n.

To avoid ambiguity, we give the following notation and definitions.
The Poisson bracket of functions u, v ∈ C1(D) is the function

[u, v] : (t, q, p) −→
n∑

i=1

(
∂qi

u(t, q, p) ∂pi
v(t, q, p)− ∂pi

u(t, q, p) ∂qi
v(t, q, p)

)
for all (t, q, p) ∈ D.

A function g ∈ C1(D ′) is called a first integral on the domain D ′ ⊂ D of the Hamiltonian
system (1.1) if Gg(t, q, p) = 0 for all (t, q, p) ∈ D ′, where the linear differential operator

G(t, q, p) = ∂t +
n∑

i=1

(
∂pi

H(t, q, p)∂qi
− ∂qi

H(t, q, p)∂pi

)
for all (t, q, p) ∈ D.

A smooth manifold g(t, q, p) = 0 is said to be an integral manifold of the Hamiltonian sys-
tem (1.1) if the derivative of the function g ∈ C1(D ′) by virtue of the Hamiltonian system (1.1) is
the identically zero on the manifold g(t, q, p) = 0, i.e.,

Cg(t, q, p) = Φ(t, q, p), Φ(t, q, p)|g(t,q,p)=0
= 0 for all (t, q, p) ∈ D ′.

By I
D ′ (M

D ′ ) denote the set of all first integrals (integral manifolds) on the domain D ′ of the
Hamiltonian system (1.1). The phrase “the function g is an integral manifold with function Φ on
the domain D ′ of the Hamiltonian system (1.1)” is denoted by (g,Φ) ∈ M

D ′ . For the current state
of the theory of integrability see the monographs [2, 4, 5, 7–9] and the references therein.

Among the general methods of building first integrals of the Hamiltonian system (1.1), the
Jacobi–Poisson method is of particular importance. It gives the possibility to find the additional
(third) first integral of the Hamiltonian system (1.1) by two known first integrals of the Hamiltonian
system (1.1). And thus, in certain cases, to build an integral basis of the Hamiltonian system (1.1).
Due to this property, the Jacobi-Poisson method is included in almost all monographs and textbooks
on analytical mechanics (see, for example, [6, pp. 298–306], [1, p. 216], [3, pp. 85–86]) and formulated
as the following statement.
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Theorem 1.1 (the Jacobi–Poisson theorem). Suppose twice continuously differentiable functions
g1 : D

′ → R and g2 : D
′ → R are first integrals on the domain D ′ of the Hamiltonian system (1.1).

Then the Poisson bracket

g12 : (t, q, p) −→
[
g1(t, q, p), g2(t, q, p)

]
for all (t, q, p) ∈ D ′, D ′ ⊂ D, (1.2)

of the functions g1 and g2 is also a first integral of the Hamiltonian system (1.1).

In his Lectures on Dynamics [7, pp. 298–306], C. G. J. Jacobi referred to Poisson’s theorem
as “one of the most remarkable theorems of the whole of integral calculus. In the particular case
when H = T − U , it is the fundamental theorem of analytical mechanics. . . .After I discovered
this theorem I communicated it to the Academies of Berlin and Paris as an entirely new discovery.
But I noticed soon after that this theorem had already been discovered and forgotton for 30 years,
because one did not appreciate its real meaning, but had only used it as a lemma in a entirely
different problem”.

Of course, the Jacobi–Poisson theorem does not always supply further first integrals. In some
cases the result is trivial, the Poisson bracket being a constant. In other cases the first integral
obtained is simply a function of the original integrals. If neither of these two possibilities occurs,
however, then the Poisson bracket is a further first integral of the Hamiltonian system (1.1).

The aim of this paper is to develop the Jacobi–Poisson method for integral manifolds of the
Hamiltonian system (1.1).

2 Main results
Theorem 2.1. Suppose (gk,Φk) ∈ M

D ′ and gk ∈ C 2(D ′), k = 1, 2. Then the Poisson bracket
[g1, g2] ∈ I

D ′ if and only if the following identity holds[
g1(t, q, p),Φ2(t, q, p)

]
=

[
g2(t, q, p),Φ1(t, q, p)

]
for all (t, q, p) ∈ D ′. (2.1)

Proof. Since (gk,Φk) ∈ M
D ′ , k = 1, 2, we have

Ggk(t, q, p) = Φk(t, q, p) for all (t, q, p) ∈ D ′, k = 1, 2.

From these identities it follows that

∂tgk(t, q, p) = Φk(t, q, p)−
[
gk(t, q, p),H(t, q, p)

]
for all (t, q, p) ∈ D ′, k = 1, 2.

Using these identities and the properties of Poisson brackets (time derivative, bilinearity, anticom-
mutativity, and Jacobi identity), we obtain the derivative of the function (1.2) by virtue of the
Hamiltonian system (1.1)

G
[
g1(t, q, p), g2(t, q, p)

]
= ∂t

[
g1(t, q, p), g2(t, q, p)

]
+
[[

g1(t, q, p), g2(t, q, p)
]
,H(t, q, p)

]
=

[
∂tg1(t, q, p), g2(t, q, p)

]
+
[
g1(t, q, p), ∂tg2(t, q, p)

]
+
[[

g1(t, q, p), g2(t, q, p)
]
,H(t, q, p)

]
=

[
Φ1(t, q, p)−

[
g1(t, q, p),H(t, q, p)

]
, g2(t, q, p)

]
+
[
g1(t, q, p),Φ2(t, q, p)−

[
g2(t, q, p),H(t, q, p)

]]
+
[[

g1(t, q, p), g2(t, q, p)
]
,H(t, q, p)

]
=

[
Φ1(t, q, p), g2(t, q, p)

]
−
[[

g1(t, q, p),H(t, q, p)
]
, g2(t, q, p)

]
+
[
g1(t, q, p),Φ2(t, q, p)

]
−
[
g1(t, q, p),

[
g2(t, q, p),H(t, q, p)

]]
+
[[

g1(t, q, p), g2(t, q, p)
]
,H(t, q, p)

]
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=
[
g1(t, q, p),Φ2(t, q, p)

]
−
[
g2(t, q, p),Φ1(t, q, p)

]
+

([[
H(t, q, p), g1(t, q, p)

]
, g2(t, q, p)

]
+
[[

g2(t, q, p),H(t, q, p)
]
, g1(t, q, p)

]
+
[[

g1(t, q, p), g2(t, q, p)
]
,H(t, q, p)

])
=

[
g1(t, q, p),Φ2(t, q, p)

]
−
[
g2(t, q, p),Φ1(t, q, p)

]
for all (t, q, p) ∈ D ′.

Therefore the Poisson bracket (1.2) of the integral manifolds g1 and g2 of system (1.1) is a first
integral of the Hamiltonian system (1.1) if and only if the identity (2.1) is true.

Remark. If the function

Φ : (t, q, p) −→
[
g1(t, q, p),Φ2(t, q, p)

]
−
[
g2(t, q, p),Φ1(t, q, p)

]
for all (t, q, p) ∈ D ′

such that the following identity holds

Φ(t, q, p)|[g1(t,q,p),g2(t,q,p)]=0
= 0 for all (t, q, p) ∈ D ′,

then the Poisson bracket (1.2) is an integral manifold of the Hamiltonian system (1.1).

As a consequence of Theorem 2.1, we obtain

Corollary 2.1. Let g1 ∈ I
D ′ , (g2,Φ2) ∈ M

D ′ , gk ∈ C 2(D ′), k = 1, 2. Then the Poisson bracket
[g1, g2] ∈ I

D ′ if and only if the functions g1 and Φ2 are in involution, i.e.,[
g1(t, q, p),Φ2(t, q, p)

]
= 0 for all (t, q, p) ∈ D ′.

If g1, g2 ∈ I
D ′ , then from Theorem 2.1 (or Corollary 2.1), we have the statement of the Jacobi–

Poisson theorem (Theorem 1.1).
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We study the weighted boundary value problem

u′(t) = (gu)(t), t ∈ (a, b], (1)
lim
t→a+

ϱ(t)u(t) ∈ R exists, (2)
b∫
a

ϱ(t)|u′(t)| dt < +∞, (3)

where −∞ < a < b < ∞, ϱ : (a, b] → (0,+∞) is a non-decreasing absolutely continuous function
such that lim

t→a+
ϱ(t) = 0. We assume that g : C((a, b],R) → L1; loc((a, b],R) is non-increasing in the

sense that (gu1)(t) ≤ (gu0)(t) for a.e. t ∈ (a, b] for arbitrary pairs of functions {u0, u1} ⊂ C((a, b],R)
such that u1(t) ≥ u0(t), t ∈ (a, b]. In particular, the case of neutral type equations is excluded from
consideration.

By a solution of equation (1), we mean a locally absolutely continuous function u : (a, b] → R
satisfying (1) almost everywhere on the interval (a, b]. In particular, solutions of (1) may be unbo-
unded in a neighbourhood of the point a.

The formulation has been motivated, in particular, by a relation to boundary value problems
with conditions at infinity, integral boundary conditions on unbounded intervals [1,3], and Kneser
type solutions with possible blow-up [2, 4].

The following notation is used.
C((a, b],R) is the set of continuous functions u : (a, b] → R.
L1([a, b],R) is the set of Lebesgue integrable functions u : [a, b] → R.
L1; loc((a, b],R) is the set of functions u : (a, b] → R such that u|[a0,b] ∈ L1([a0, b],R) for any

a0 ∈ (a, b).
C̃([a, b],R) is the set of absolutely continuous functions u : [a, b] → R.
C̃loc((a, b],R) is the set of all the locally absolutely continuous functions u : (a, b] → R (i. e.,

u|[a0,b] ∈ C̃([a0, b],R) for any a0 ∈ (a, b)).
C̃loc; ϱ((a, b],R) is the set of all u ∈ C̃loc((a, b],R) with ϱu′ ∈ L1((a, b],R) such that the limit

lim
t→a+

ϱ(t)u(t) exists and is finite.

Let ψ0, ψ1 be functions from C̃loc; ϱ((a, b],R) such that

(−1)i(ψ
(i)
1 (t)− ψ

(i)
0 (t)) ≥ 0, t ∈ (a, b], i = 0, 1, (4)
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and
lψ0,ψ1 := inf

{
ψ1(t)− ψ0(t) : t ∈ (a, b]

}
. (5)

The value lψ0,ψ1 is positive if the graphs of ψ0 and ψ1 do not touch each other. For any pair
ψ0, ψ1 with the above properties, the set of functions u such that

ψ0(t) + (1− θ)lψ0,ψ1 ≤ u(t) ≤ ψ1(t)− θ lψ0,ψ1 , t ∈ (a, b], (6)
ψ′
1(t) ≤ u′(t) ≤ ψ′

0(t), t ∈ (a, b], (7)

is non-empty for any θ ∈ [0, 1]. Introduce the set Sθ(ψ0, ψ1) by putting

Sθ(ψ0, ψ1) :=
{
u ∈ C̃loc; ϱ((a, b],R) : (6) and (7) hold

}
(8)

for θ ∈ [0, 1].
For any θ ∈ [0, 1], the set Sθ(ψ0, ψ1) describes the area obtained by shifting the graphs of ψ0

and ψ1, respectively, upwards and downwards, in the ratio 1 − θ : θ, until they touch each other.
Clearly, this happens at the points of the set{

t ∈ (a, b] : ψ1(t)− ψ0(t) = lψ0,ψ1

}
. (9)

The typical situation is that where (−1)iψi, i = 0, 1, are non-decreasing and, hence, set (9) is a
singleton consisting of the point b.

Theorem. Let the mapping g : C((a, b],R) → L1; loc((a, b],R) in (1) be non-increasing and, more-
over,

ϱ g
(λ
ϱ

)
∈ L1((a, b],R) (10)

for any λ ∈ R. Furthermore, let there exist certain functions ψ0 and ψ1 in C̃loc; ϱ((a, b],R) with
properties (4) such that

(−1)k
(
ψ′
k(t)− (gψk)(t)

)
≥ 0, t ∈ (a, b], k = 0, 1. (11)

Then for any θ ∈ [0, 1] equation (1) has a solution u ∈ C̃loc; ϱ((a, b],R) such that u ∈ Sθ(ψ0, ψ1).

Under the conditions assumed, one can guarantee the existence of solutions in the corresponding
weighted space and specify certain bounds for u and u′. These bounds allow us to select solutions
with different growth rates while we are still working in the same weighted space. Indeed, consider,
e. g., the simple equation

u′(t) =
ϕ(u(1))

t
− ψ(u(1))

t2
, t ∈ (0, 1], (12)

where ϕ(s) = 2π−1 arccot s− 1/2 and ψ(s) = 2π−1 arctan s+1/2 for all s ∈ (−∞,∞). It is easy to
see that any u satisfying (12) has the form

uλ(t) = λ+ ϕ(λ) ln t+
(1
t
− 1

)
ψ(λ), t ∈ (0, 1], (13)

where λ ∈ R, and since |ϕ(λ)| + |ψ(λ)| > 0, it follows that uλ(t) is unbounded as t → 0+ for
any λ. If λ ̸= −1, then ψ(λ) ̸= 0 and the growth of |uλ(t)| as t → 0+ is of order 1/t, whereas
u−1(t) = −1+ ln t has only logarithmic growth. Note that the corresponding operator g for (12) is
non-increasing.

For equation (12), conditions (4), (11) are satisfied, in particular, with

ψ0(t) = 0, ψ1(t) =
1

t
− 1,
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and, hence, the theorem claims that (12) has solutions u with the properties 0 ≤ u(t) ≤ −1 + 1/t,
−1/t2 ≤ u′(t) ≤ 0, u(1) = 0, which indeed hold, e. g., for u0(t) = (ln t+ t−1 − 1)/2 (see (13)). On
the other hand, by choosing

ψ0(t) = −1 + µ ln t, ψ1(t) = −1

with µ > 1, we get the bounds −1 + µ ln t ≤ u(t) ≤ −1, 0 ≤ u′(t) ≤ µt−1, u(1) = −1 that fit only
the solution u−1(t) = −1+ ln t and do not cover uλ with λ ̸= −1. Note that (10) is satisfied in this
case for ρ(t) = tα with α > 1.

If g is a linear operator of the form

(gu)(t) = −p(t)u(τ(t)) + q(t), t ∈ (a, b],

where p and q are locally integrable, p ≥ 0, and τ : (a, b] → (a, b] is a measurable function, condition
(10) reduces to the relations

b∫
a

p(t)
ϱ(t)

ϱ(τ(t))
dt <∞,

b∫
a

ϱ(t)|q(t)| dt <∞, (14)

which determine the corresponding class of equations for which the theorem can be applied. As an
example, consider the linear equation with advanced argument

u′(t) = −u(t
γ)

t
+ q(t), t ∈ (0, 1], (15)

where q is locally integrable and γ ∈ (0, 1). The function p(t) = 1/t satisfies (14) with ϱ(t) = tα,
t ∈ (0, 1], α > 1. Then, for arbitrary µ > 0, θ ∈ [0, 1], and q satisfying the estimate

|q(t)| ≤ µh(t), t ∈ (0, 1],

where h(t) = t−2 − t−γ−1, t ∈ (0, 1], the corresponding problem (15), (2), (3) has a solution u with
the terminal value u(1) = (1− 2θ)µ such that

−µ
t
+ 2(1− θ)µ ≤ u(t) ≤ µ

t
− 2θµ, − µ

t2
≤ u′(t) ≤ µ

t2
,

respectively, for all and almost all t ∈ (0, 1]. This follows from the theorem applied with ψi(t) =
(−µ)i+1t−1, i = 0, 1. Furthermore, if

−µh(t) ≤ σq(t) ≤ µ0
t
, t ∈ (0, 1],

for some σ ∈ {−1, 1}, 0 < µ0 ≤ µ, then for any θ ∈ [0, 1] there is a monotone solution with
u(1) = (12(σ + 1)− θ)µ+ (12(σ − 1) + θ)µ0 such that

µ ≤ σu(t) +
(
σθ +

1− σ

2

)
(µ− µ0) ≤

µ

t
, − µ

t2
≤ σu′(t) ≤ 0.

In particular, for q = −σµh, the problem in question admits the solution u(t) = σµt−1.
The conditions assumed do not exclude the possibility of existence of non-trivial solutions of

homogeneous problems. For example, by taking ψi(t) = (−1)i+1 exp(2(t−2 − 1)), i = 0, 1, we find
that the equation

u′(t) = − 4

t3
u
(√
t
)
+ q(t), t ∈ (0, 1],
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has a solution in the set C̃loc; ϱ((0, 1],R) for ϱ(t) = exp(−αt−2), α > 2, if

|q(t)| ≤ 4

e2t3
e

2
t2
(
1− e

2(t−1)

t2
)
, t ∈ (0, 1].

One can verify by direct substitution that u(t) = λ
t4

is a solution of the corresponding homogeneous
problem for any λ.

The theorem ensures the existence of solutions lying between ψ0 and ψ1 with terminal values
filling the corresponding interval. This does not exclude the possibility of existence of solutions
which escape from the regions in question. For example, consider the functional differential equation

u′(t) =
1

t2
(
1− exp(t)− u(exp(−t))

)
, t ∈ (0, 1]. (16)

Defining g according to the right-hand side of (16) and choosing the weight ϱ in the form ϱ(t) = tα,
α > 1, we find that equation (16) satisfies conditions (10).

It is easy to verify that problem (16), (2), (3) with this ϱ has a one-parametric family of solutions

u(t) = −1

t
− λ ln t. (17)

For ψ0(t) = −t−1 + 2 ln t, ψ1(t) = −t−1 − 2 ln t, the application of the theorem would result in the
existence of solutions u such that

2 ln t ≤ u(t) +
1

t
≤ −2 ln t, −2

t
≤ u′(t)− 1

t2
≤ 2

t
, u(1) = −1, (18)

and such solutions are indeed obtained from (17) for |λ| ≤ 2. However, if |λ| > 2, then solution
(17) has the same terminal value −1 but does not satisfy conditions (18) any more.

In the cases where ψ0 = c0 or ψ1 = c1, where c0 ≤ ψ1(b) and c1 ≥ ψ0(b), the solutions dealt with
in the theorem are obviously monotone, and their terminal values fill, respectively, the intervals
[c0, ψ1(b)], [ψ0(b), c1]. With non-constant bounding functions, the solution, generally speaking,
need not be monotone.

Under the conditions assumed, the set of solutions of the weighted problem in question possesses
the least and the greatest elements.
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1 Introduction
We investigate solutions of the initial value problem (IVP)(

p(t)ϕ(u′(t))
)′
+ p(t)f(ϕ(u(t))) = 0, t ∈ (0,∞), (1.1)

u(0) = u0, u′(0) = 0, u0 ∈ [L0, 0), (1.2)

where

ϕ ∈ C1(R), ϕ′(x) > 0 for x ∈ (R \ {0}), (1.3)
ϕ(R) = R, ϕ(0) = 0, (1.4)

L0 < 0 < L, f(ϕ(L0)) = f(0) = f(ϕ(L)) = 0, (1.5)
f ∈ Lip[ϕ(L0), ϕ(L)], xf(x) > 0 for x ∈

(
(ϕ(L0), ϕ(L)) \ {0}

)
, (1.6)

p ∈ C[0,∞) ∩ C1(0,∞), p′(t) > 0 for t ∈ (0,∞), p(0) = 0. (1.7)

A function u ∈ C1[0,∞) with ϕ(u′) ∈ C1(0,∞) which satisfies equation (1.1) for every t ∈ (0,∞)
is called a solution of equation (1.1). If moreover u satisfies the initial conditions (1.2), then u is
called a solution of IVP (1.1), (1.2).

Equation (1.1) has the constant solutions u(t) ≡ L, u(t) ≡ 0 and u(t) ≡ L0.
Consider a solution u of IVP (1.1), (1.2) with u0 ∈ [L0, 0) and denote

usup = sup
{
u(t) : t ∈ [0,∞)

}
.

• If usup < L, then u is called a damped solution of IVP (1.1), (1.2).

• If usup = L and u is nondecreasing (i.e. lim
t→∞

u(t) = L), then u is called a homoclinic solution
of IVP (1.1), (1.2).

• The homoclinic solution is called a regular homoclinic solution, if u(t) < L for t ∈ [0,∞) and
a singular homoclinic solution, if there exists t0 > 0 such that u(t) = L for t ∈ [t0,∞).

• If usup > L, then u is called an escape solution of IVP (1.1), (1.2).

In particular, we find additional conditions for p, ϕ and f which guarantee for some u0 ∈ [L0, 0)
the existence of a nondecreasing solution of IVP (1.1), (1.2) converging to L for t → ∞. Note that if
we extend the function p in equation (1.1) from the half-line onto R as an even function and assume
that ϕ is odd, then any solution u of IVP (1.1), (1.2) with lim

t→∞
u(t) = L fulfils lim

t→−∞
u(t) = L, hence

u is a homoclinic solution. This is a motivation for our above definition. Due to condition (1.7) the
function 1/p(t) may not be integrable on [0, 1] and consequently equation (1.1) has a time singularity
at t = 0. Problems of this type arise in hydrodynamics [4] or in the nonlinear field theory [3], where
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homoclinic solutions play an important role in the study of behaviour of corresponding differential
models.

Our first attempts in this subject have been made for the equation without ϕ-Laplacian

((t)u′(t))′ + q(t)f(u(t)) = 0, t ∈ (0,∞),

with p ≡ q in [6–8] and for p ̸≡ q in [1, 9].

2 Existence and asymptotic properties of solutions of IVP
Here we present an overview of results from [2] and [10] which we need to get a homoclinic solution
of IVP (1.1), (1.2). Since values of any homoclinic solution belong to [L0, L], we can assume without
loss of generality

f(x) = 0 for x ≤ ϕ(L0), x ≥ ϕ(L). (2.1)

Theorem 2.1 (Existence of solutions). Assume (1.3)–(2.1). Then, for each starting value u0 ∈
[L0, 0), there exists a solution of IVP (1.1), (1.2).

Theorem 2.2 (Damped solutions). Let (1.3)–(2.1) hold and let

∃B ∈ (L0, 0) : F (B) = F (L), where F (x) =

x∫
0

f(ϕ(s)) ds, x ∈ R, (2.2)

and
lim
t→∞

p′(t)

p(t)
= 0. (2.3)

Then every solution of IVP (1.1), (1.2) with the starting value u0 ∈ [B, 0) is damped.
Assume in addition that

lim
x→0

|x|(ϕ−1)′(x) < ∞, (2.4)

and that u is a damped solution of IVP (1.1), (1.2) with the starting value u0 ∈ (L0, 0). Then u is
a unique solution of this IVP.

Theorem 2.3 (Escape solutions). Let (1.3)–(2.3) hold. Then there exist infinitely many escape
solutions of IVP (1.1), (1.2) with starting values in [L0, B).

Assume in addition that (2.4) hold and that u is an escape solutions of IVP (1.1), (1.2) with the
starting value u0 ∈ (L0, B). Then u is a unique solution of this IVP.

The next theorem describes asymptotic behaviour of damped, homoclinic and escape solutions
starting at u0 ∈ (L0, 0).

Theorem 2.4. Let (1.3)–(2.3) hold and let u be a solution of IVP (1.1), (1.2) with the starting
value u0 ∈ (L0, 0). Then

u(t) > L0 and ∃ c̃ > 0 such that |u′(t)| ≤ c̃ for t ∈ (0,∞). (2.5)

The constant c̃ depends on L0, L1, ϕ and f and does not depend on p and u.

1. Assume that usup < L, i.e. u is a damped solution.

• Let θ > 0 be the first zero of u. Then there exists θ < a < b such that

u(a) ∈ (0, L), u′(t) > 0 on (0, a), u′(a) = 0, u′(t) < 0 on (a, b). (2.6)
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• Let u < 0 on [0,∞). Then

u′(t) > 0 for t ∈ (0,∞), lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (2.7)

2. Assume that usup > L, i.e. u is an escape solution. Then

u′(t) > 0 for t ∈ (0,∞). (2.8)

3. Assume that usup = L. Then there are two possibilities.

• u(t) < L for t ∈ [0,∞) which yields

u′(t) > 0 for t ∈ (0,∞), lim
t→∞

u(t) = L, lim
t→∞

u′(t) = 0, (2.9)

and u is a regular homoclinic solution.
• There exists t0 > 0 such that u(t0) = L, u′(t0) = 0 which implies

u′(t) > 0 for t ∈ (0, t0), (2.10)

and there exists a singular homoclinic solution v, where v = u on [0, t0] and v = L on
[t0,∞).

Consider a solution u ̸≡ L0 of IVP (1.1), (1.2) with u0 = L0. Since L0 < 0, there exists ε > 0
such that u(t) < 0 for t ∈ [0, ε], and by (2.1), f(ϕ(u(t))) ≤ 0 for t ∈ [0, ε]. Integrating (1.1) over
[0, t] we get

p(t)ϕ(u′(t)) = −
t∫

0

p(s)f(ϕ(u(s))) ds ≥ 0, t ∈ [0, ε].

Hence u′(t) ≥ 0 and u(t) is nondecreasing on [0, ε]. Consequently, since u ̸≡ L0, there exists a
maximal a0 ≥ 0 such that

u(t) = L0 on [0, a0] and u is increasing in a right neighbouhood of a0. (2.11)

Therefore all assertions of Theorem 2.4 are valid also for u0 = L0 if we replace 0 by a0.

3 Existence of homoclinic solutions
IVP (1.1), (1.2) can be transformed on the equivalent integral equation

u(t) = u0 +

t∫
0

ϕ−1

(
− 1

p(s)

s∫
0

p(τ)f(ϕ(u(τ))) dτ

)
ds, t ∈ [0,∞). (3.1)

Assumption (1.3) implies that ϕ is locally Lipschitz continuous on R, but if ϕ′(0) = 0, then

lim
x→0

(ϕ−1)′(x) = ∞,

and so ϕ−1 does not fulfil the Lipschitz condition on intervals containing 0. If values of u are
between L0 and L, we see that

lim
s→0+

1

p(s)

s∫
0

p(τ)f(ϕ(u(τ))) dτ = 0.
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Therefore ϕ−1 in (3.1) is considered on an interval containing zero. Hence, in order to prove the
uniqueness for IVP (1.1), (1.2) if ϕ′(0) = 0, we need to use some new condition for ϕ−1 instead of
the Lipschitz one. For such condition see (2.4). Then we get the main result published in [5] and
contained in the next theorem.

Theorem 3.1 (Homoclinic solutions). Let (1.3)–(1.7) and (2.2)–(2.4) hold. Further assume that

there exists a right neighbourhood of ϕ(L0), where f is decreasing. (3.2)

Then there exists u∗0 ∈ [L0, B) such that a solution uh of IVP (1.1), (1.2) with u0 = u∗0 is homoclinic.

A typical model example of (1.1) is an equation with the α-Laplacian ϕ(x) = |x|α sgnx, x ∈ R,
where α ≥ 1. Then ϕ′(x) = α|x|α−1 and conditions (1.3) and (1.4) are fulfilled. If α > 1, then
ϕ′(0) = 0, ϕ′ is nonincreasing on (−∞, 0) and nondecreasing on (0,∞). Further,

ϕ−1(x) = |x|
1
α sgnx, (ϕ−1)′(x) =

1

α
|x|

1
α
−1, lim

x→0
(ϕ−1)′(x) = ∞,

which yields that ϕ−1 is not Lipschitz continuous at 0. Since

lim
x→0

x(ϕ−1)′(x) =
1

α
lim
x→0

x|x|
1
α
−1 = 0,

we see that the α-Laplacian ϕ(x) = |x|α sgnx fulfils (2.4). If we take p(t) = tβ, t ∈ [0,∞), where
β > 0, then p fulfils (1.7). As an example of f satisfying conditions (1.5) and (1.6) we can choose

f(x) = x(x− ϕ(L0))(ϕ(L)− x), x ∈ R.
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1 Introduction
The problem of existence of solutions with a countable number of zeros on a given domain to
Emden–Fowler type equations is investigated. Consider the equation

y(n) + p(t, y, y′, . . . , y(n−1))|y|k sgn y = 0, 0 < m 6 p(t, ξ1, . . . , ξn) 6 M < +∞, t ∈ R, (1.1)

where n ∈ N, n > 2, k ∈ R, k > 1, the function p(t, ξ1, . . . , ξn) is continuous, and Lipschitz
continuous in ξ1, . . . , ξn.

We prove that equation (1.1) has solutions with a countable set of zeros on every finite interval
[a, b). The existence of solutions with a given finite number of zeros was considered in the previous
papers, and results from them will be used to prove the main result. Namely, [3] is devoted to the
case of the third- and the fourth-order Emden–Fowler type equations with constant p, [4, 6] deal
with the third-order equation with a variable coefficient, and [5, 8] expand the previous results to
the higher-order case. They based on the result obtained in [1,2]. Some results of the papers [3–6,8]
can be summarized as

Theorem 1.1. For any integer S ≥ 2 and any finite interval [a, b] ⊂ R equation (1.1) has a solution
y(t) defined on the interval, y(t) has exactly S zeros on the interval and y(a) = 0, y(b) = 0.

Now, this theorem is expanded to the new case.

2 The main result
Theorem 2.1 ([7]). For any finite interval [a, b) ⊂ R equation (1.1) has a solution y(t) defined on
the interval, y(t) a countable set of zeros on the interval and y(a) = 0.

3 Sketch of the proof
The idea of the proof is similar to that of the proof of the main result from [8]. Suppose that y(t)
is a maximally extended solution to (1.1) with initial data y(a) = 0, y′(a) = y1 > 0, . . . , y(n−1)(a) =
yn−1 > 0. In [1] it is proved that y(t) has the countable number of zeroes. By tN we denote a
position of the N -th zero of y(t) after the point a. In [8] it was proved that tN is a continuous
function on (y1, . . . , yn−1). Lower and upper estimates of the continuous function tN (y1, . . . , yn−1)
show that the N -th zero of the solution can be located at any point on the axis after a, hence
solution with exactly N zeros can be defined on any [a, b], if we choose appropriate initial data.
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Proof of Theorem 2.1 has the same idea with some minor modifications. We know (see, for
example, [1, Ch. 7]) that tN tends to some finite limit t∗ as N → +∞, but the solution itself is
not defined at the point t∗. It appears that t∗(y1, . . . , yn−1) is also a continuous function of the
variables (y1, . . . , yn−1) – like tN (y1, . . . , yn−1). In addition, we obtain upper and lower estimates
of t∗ with the help of [1, p. 193, Lemmas 7.1, 7.2, 7.3] and Theorem 1.1.

We prove the continuity of t∗(y1, . . . , yn−1) using the continuity of every tN (y1, . . . , yn−1) and
lemmas [1, p. 193, Lemmas 7.1, 7.2, 7.3], since they give some estimates on the distance between tN
and tN+1 in comparison with the distance between tN and tN−1. The proposition of discontinuity
of t∗(y1, . . . , yn−1) contradicts with those estimates.

4 Future plans
Papers [4, 5] demonstrate that Theorem 1.1 still holds true when k ∈ (0, 1), so in future I hope to
expand Theorem 2.1 on this case as well.
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We study the non-linear integral boundary value problem

dx(t)

dt
= f

(
t, x(t),

dx(t)

dt

)
, t ∈ [a, b], (1)

g

(
x(a), x(b),

b∫
a

h(s, x(s)) ds

)
= d. (2)

We suppose that f : [a, b]×D×D1 → Rn is continuous function defined on bounded sets D ⊂ Rn,
D1 ⊂ Rn (domain D := Dρ will be concretized later, see (8), D1 is given) and d ∈ Rn is a given
vector. Moreover, f, g : D×D×D2 → Rn and h : [a, b]×D → Rn are Lipschitzian in the following
form ∣∣f(t, u, v)− f(t, ũ, ṽ)

∣∣ ≤ K1|u− ũ|+K2|v − ṽ|, (3)∣∣g(u,w, p)− g(ũ, w̃, p̃)
∣∣ ≤ K3|u− ũ|+K4|w − w̃|+K5|p− p̃|, (4)∣∣h(t, u)− h(t, ũ)

∣∣ ≤ K6|u− ũ| (5)

for any t ∈ [a, b] fixed, all {u, ũ} ⊂ D, {v, ṽ} ⊂ D1, {w, w̃} ⊂ D, {p, p̃} ⊂ D2, where D2 :={ b∫
a
h(t, x(t)) dt : t ∈ [a, b], x ∈ D

}
and K1 −K6 are non-negative square matrices of dimension n.

The inequalities between vectors are understood componentwise. A similar convention is adopted
for the operations “absolute value”, “max”, “min”. The symbol In stands for the unit matrix of
dimension n, r(K) denotes a spectral radius of a square matrix K.

By the solution of the problem (1), (2) we understand a continuously differentiable function
with property (2) satisfying (1) on [a, b].

In the sequel, we will use an approach that was suggested in [1]. We fix certain bounded
sets Da ⊂ Rn and Db ⊂ Rn and focus on the solutions x of the given problem with property
x(a) ∈ Da and x(b) ∈ Db. Instead of the non-local boundary value problem (1), (2), we consider
the parameterized family of two-point “model-type” problems with simple separated conditions

dx(t)

dt
= f

(
t, x(t),

dx(t)

dt

)
, t ∈ [a, b], (6)

x(a) = z, x(b) = η, (7)

where z = (z1, z2, . . . , zn), η = (η1, η2, . . . , ηn) are considered as parameters.
If z ∈ Rn and ρ is a vector with non-negative components, B(z, ρ) := {ξ ∈ Rn : |ξ − z| ≤ ρ}

stands for the componentwise ρ neighbourhood of z. For given two bounded connected sets Da ⊂



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 161

Rn and Db ⊂ Rn, introduce the set Da,b := (1 − θ)z + θη, z ∈ Da, η ∈ Db, θ ∈ [0, 1] and its
componentwise ρ-neighbourhood by putting

D = Dρ := B(Da,b, ρ) :=
∪

ξ∈Da,b

B(ξ, ρ). (8)

We suppose that
r(K2) < 1, r(Q) < 1, (9)

where
Q :=

3(b− a)

10
K, K = K1 +K2[In −K2]

−1K1. (10)

On the base of function f : [a, b]×D ×D1 → Rn we introduce the vector

δ[a,b],D,D1(f) :=
1

2

[
max

(t,x)∈[a,b]×D×D1
f(t, x, y)− min

(t,x)∈[a,b]×D×D1
f(t, x, y)

]
(11)

and suppose that the ρ−neighbourhood in (8) such that

ρ ≥ b− a

2
δ[a,b],D,D1(f). (12)

Investigation of solutions of parameterized problem (6) and (7) is connected with the properties
of the following special sequence of functions well posed on the interval t ∈ [a, b]

x0(t, z, η) := z +
t− a

b− a
[η − z] =

[
1− t− a

b− a

]
z +

t− a

b− a
η, t ∈ [a, b], (13)

xm+1(t, z, η) = z +

t∫
a

f
(
s, xm(s, z, η),

dxm(s, z, η)

ds

)
ds

− t− a

b− a

b∫
a

f
(
s, xm(s, z, η),

dxm(s, z, η)

ds

)
ds+

t− a

b− a
[η − z], t ∈ [a, b], m = 0, 1, 2, . . . , (14)

Theorem 1. Let assumptions (3)–(5) and (9) hold. Then, for all fixed (z, η) ∈ Da ×Db:

1. The functions of the sequence (14) are continuously differentiable functions on the interval
t ∈ [a, b], have values in the domain D = Dρ and satisfy the two-point separated boundary
conditions (7).

2. The sequence of functions (14) in t ∈ [a, b] converges uniformly as m → ∞ to the limit
function

x∞(t, z, η) = lim
m→∞

xm(t, z, η), (15)

satisfying the two-point separated boundary conditions (7).

3. The limit function x∞(t, z, η) is a unique continuously differentiable solution of the integral
equation

x(t) = z +

t∫
a

f
(
s, x(s),

dx(s)

ds

)
ds− t− a

b− a

b∫
a

f
(
s, x(s),

dx(s)

ds

)
ds+

t− a

b− a
[η − z], (16)
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i.e. it is the solution of the Cauchy problem for the modified system of integro-differential
equations:

dx

dt
= f

(
t, x,

dx(t)

dt

)
+

1

b− a
∆(z, η), x(a) = z, (17)

where ∆(z, η) : Da ×Db → Rn is a mapping given by formula

∆(z, η) := [η − z]−
b∫

a

f
(
s, x∞(s, z, η),

dx∞(s, z, η)

ds

)
ds. (18)

4. The following error estimate holds:∣∣x∞(t, z, η)− xm(t, z, η)
∣∣ 6 10

9
α1(t, a, b− a)Qm(1n −Q)−1δ[a,b],D,D1(f), (19)

for any t ∈ [a, b] and m ≥ 0, where δ[a,b],D,D1(f) is given in (11) and

α1(t, a, b− a) = 2(t− a)
(
1− t− a

b− a

)
, α1(t, a, b− a) ≤ b− a

2
. (20)

Theorem 2. Under the assumption of Theorem 1, the limit function x∞(t, z, η) : [a, b]×Da×Db →
Rn defined by (15) is a continuously differentiable solution of the original BVP (1), (2) if and only
if the pair of vectors (z, η) satisfies the system of 2n determining algebraic equations

∆(z, η) = η − z −
b∫

a

f
(
s, x∞(s, z, η),

dx∞(s, z, η)

ds

)
ds = 0,

g

(
x∞(a, z, η), x∞(b, z, η),

b∫
a

h(s, x∞(s, z, η)) ds

)
− d = 0.

(21)

Note that similarly as in [2] the solvability of the determining system (21) on the base of (3)–(5)
and (9) can be established by studying its m-th approximate versions:

∆m(z, η) = η − z −
b∫

a

f(s, xm(s, z, η),
dxm(s, z, η)

ds

)
ds = 0,

g

(
xm(a, z, η), xm(b, z, η),

b∫
a

h(s, xm(s, z, η)) ds

)
− d = 0,

(22)

where m is fixed.
Let us apply the approach described above to the system of differential equations

dx1(t)

dt
=

1

2
x22(t)− t

dx2(t)

dt
x1(t) +

1

32
t3 − 1

32
t2 +

9

40
t,

dx2(t)

dt
=

1

2

dx1(t)

dt
x1(t)− t2x2(t) +

15

64
t3 +

1

8
t+

1

4
,

t ∈ [a, b] = [0, 1], (23)

considered with non-linear two-point boundary conditions

x1(0)x2(1) +

[ 1∫
0

x1(s) ds

]2
= − 311

14400
,

x1(1)x2(0)−
1∫

0

x2(s) ds = −1

8
.

(24)
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Introduce the vector of parameters z = col(z1, z2), η = col(η1, η2). Let us consider the following
choice of the subsets Da, Db and D1:

Da = Db =
{
(x1, x2) : −0.1 ≤ x1 ≤ 0.2, −0.2 ≤ x2 ≤ 0.3

}
, (25)

D1 =

{(dx1
dt

,
dx2
dt

) : −0.1 ≤ dx1
dt

≤ 0.3, −0.1 ≤ dx2
dt

≤ 0.3

}
.

In this case Da,b = Da = Db. For ρ = col(ρ1, ρ2) involved in (12), we choose the vector ρ =
col(0.4; 0.4). Then, in view of (25) the set (8) takes the form

D = Dρ =
{
(x1, x2) : −0.5 ≤ x1 ≤ 0.6, −0.6 ≤ x2 ≤ 0.7

}
. (26)

A direct computations show that the conditions (3), (9), (10) hold with

K1 =

[
0.3 0.3
0.15 1

]
, K2 =

[
0 0.2
0.1 0

]
, K =

[
0.3367346939 0.5102040816
0.1836734694 1.051020408

]
and, therefore,

Q =

[
0.1010204082 0.1530612245
0.05510204082 0.3153061224

]
, r(Q) = 0.349278 < 1.

Furthermore, in view of (11)

δ[a,b],D,D1(f) :=
1

2

[
max

(t,x)∈[a,b]×D×D1
f(t, x, y)− min

(t,x)∈[a,b]×D×D1
f(t, x, y)

]
=

[
0.31
0.7325

]
,

ρ =

[
0.4
0.4

]
≥ b− a

2
δ[a,b],D,D1

(f) =

[
0.155
0.36625

]
.

We thus see that all the conditions of Theorem 1 are fulfilled, and the sequence of functions
(14) for this example is uniformly convergent.

Applying Maple 14, we carried out the calculations.
It is easy to check that

x∗1(t) =
t2

8
− 1

10
, x∗2(t) =

t

4
(27)

is a continuously differentiable solution of the problem (1), (2). For a different number of approxi-
mations m, we obtain from (22) the following numerical values for the introduced parameters which
are presented in Table 1:

Table 1.

m z1 z2 η1 η2
0 −0.089643967 −0.0002812586 0.03176891 0.25026338
1 −0.0994489263 0.00051937347 0.0255001973 0.2504687527
4 −0.0999998827 7.744981 · 10−8 0.02499999973 0.3535533902
6 −0.1000000004 −2.263731 · 10−10 0.0249999996 0.2499999996

Exact −0.1 0 0.025 0.25

On the Figure 1 one can see the graphs of the exact solution (solid line) and its zero (♢) and
sixth approximation (×) for the first and second coordinates.

The error of the sixth approximation (m = 6) for the first and second components:

max
t∈[0,1]

|x∗1(t)− x61(t)| ≤ 1 · 10−9, max
t∈[0,1]

|x∗2(t)− x62(t)| ≤ 5 · 10−9.
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a) first component b) second component

Figure 1.
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Consider the differential equation

y′′′ = α0p(t)y| ln |y||σ, (1)

where α0 ∈ {−1; 1}, p : [a, ω) → (0,+∞) is a continuous function, σ ∈ R, ∞ < a < ω ≤ +∞. It
belongs to the equations class of the form

y′′′ = α0p(t)L(y), (2)

where α0 ∈ {−1; 1},p : [a, ω) → (0,+∞) is a continuous function, ∞ < a < ω ≤ +∞, function L
continuous and positive in a one-sided neighborhood ∆Y0 points Y0 (Y0 equals either 0 or ±∞).

For equations of the form (2) in the works of A. Stekhun and V. Evtukhov [4, 9] there was
investigated the question of the existence and asymptotic behavior when t → ω of the endangered
and unlimited solutions. The method of studying the equation of the form (2) assumed the presence
of significant linearity of the function L(y). In the equation (1) the function L(y) = y | ln |y||σ is in
some sense close to linear and requires improvements in research methods.

For second order equations of the form (1) in the works of V. Evtukhov and M. Jaber [1,3] there
was investigated the question of the existence and asymptotic behavior, when t ↑ ω all, so-called
Pω(λ0)-solution.

Solution y of the equation (1), specified on the interval [ty, w) ⊂ [a, ω) is said to be Pω(λ0)-
solution, if it satisfies the following conditions:

lim
t↑ω

y(k)(t) =

{
or 0,

or ±∞,
(k = 0, 1, 2), lim

t↑ω

[y′′(t)]2

y′′′(t)y′(t)
= λ0 (3)

Earlier in the articles [6–8] were obtained the results in the case, when λ0 ∈ R \ {0,−1, 12}. The
goal of the work to establish existence conditions for the equation (1) of Pω(±∞)-solutions and also
asymptotic representations, when t ↑ ω such solutions and their derivative to the second order.

We introduce the necessary notation for further, assuming

q(t) = p(t)π3
ω(t) | lnπ2

ω(t)|σ, Q(t) =

t∫
a

p(τ)π2
ω(τ) | lnπ2

ω(t)|σ dτ,

where

πω(t) =

{
t, if w = +∞,

t− ω, if w < +∞.
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Theorem 1. For the existence of Pω(±∞)-solutions of (1), it is necessary and sufficient the
conditions

lim
t↑ω

q(t) = 0, lim
t↑ω

Q(t) = ∞ (4)

to be satisfied. Moreover, for each such solution the following asymptotic representations, when t ↑ ω

ln |y(t)| = lnπ2
ω(t) +

α0

2
Q(t)[1 + o(1)],

ln |y′(t)| = ln |πω(t)|+
α0

2
Q(t)[1 + o(1)], ln |y′′(t)| = α0

2
Q(t)[1 + o(1)]

(5)

take place.

Indeed, if y : [ty, ω[→ R is a Pω(±∞)-solution of the equation (1), then the conditions (3) are
met and the following limit relations are true:

lim
t↑ω

y′′′(t)πω(t)

y′′(t)
= 0, lim

t↑ω

y′′(t)πω(t)

y′(t)
= 1, (6)

lim
t↑ω

y′′(t)π2
ω(t)

y(t)
= 2, lim

t↑ω

y′(t)πω(t)

y(t)
= 2. (7)

Without loss of generality, we can assume that y′′(t), y′(t), ln |y(t)| are non-zero when t ∈ [ty, ω[ .
Therefore, considering the limiting relations (7) and formulas

y(t) ∼ 1

2
π2
ω(t) y

′′(t), ln |y(t)| ∼ lnπ2
ω(t) when t ↑ ω,

from equation (1) we get

y′′′(t) = α0p(t)
π2
ω(t)

2
| lnπ2

ω(t)|σy′′(t) [1 + o(1)]. (8)

Hence, in view of the first of limiting relations (6), it follows that

p(t)π3
ω(t) | lnπ2

ω(t)|σ −→ 0 when t ↑ ω,

that is, the first of the conditions (4) of the theorem is satisfied. Dividing now (8) by y′′(t) and
integrating obtained relation on the interval from ty to t, come to a conclusion considering the first

from conditions (4) that
ω∫
ty

p(t)π2
ω(t)| lnπ2

ω(t)|σ dt = ∞ and when t ↑ w the asymptotic relation

ln |y′′(t)| = α0

2

t∫
a

p(τ)π2
ω(τ) | lnπ2

ω(τ)|σ dτ [1 + o(1)]

take place, that is, the second of the theorem conditions (4) is met and the third of the asymptotic
relations (5).

The validity of the first and second asymptotic representations (5) directly follows from the
third, considering that y(t) ∼ 1

2 π
2
ω(t) y

′′(t) and y′(t) ∼ πω(t) y
′′(t) when t ↑ ω.

Assuming that conditions (4) are met, we reduce equation (1) using transformations

ln |y(t)| = lnπ2
ω(τ)[1 + v1(τ)],

y′(t)

y(t)
=

2[1 + v2(τ)]

πω(t)
,

(y′(t)
y(t)

)′
=

−2 [1 + v3(τ)]

π2
ω(t)

, τ = β ln |πw(t)|, β =

{
1, when w = +∞,

−1, when w < +∞,

(9)
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to a system of differential equations
v′1 =

1

τ
[v2 − v1],

v′2 = β[v2 − v3],

v′3 = β
[
f(τ) + σf(τ)v1 + 6v2 − 4v3 + V (τ, v1, v2, v3)

]
,

(10)

in which

f(τ) = f(τ(t)) = α0q(t), V (τ, v1, v2, v3) = 12v22 + 4v32 − 6v2v3 + f(τ)
[
|1 + v1|σ − 1− σv1

]
.

For the system (10) all the conditions of the Theorem 2.6 from the work [2] are satisfied.
According to that theorem the system (10) has at least one solution (v1, v2, v3) : [τ1,+∞) →
R3(τ1 ≥ τ0), converges to zero when τ → +∞, to which, due to replacements (9), matches the
solution y(t) of the differential equation (1), allowing the asymptotic representations (5) when t ↑ ω.
Theorem 2. Let the function p : [a, ω) → (0,+∞) be continuously differentiable and along with
the conditions (4) the following conditions

ω∫
a

|q′(t)| dt < +∞,

ω∫
a

q2(t)

|πω(t)|
dt < +∞,

ω∫
a

q(t)|Q(t)|
πω(t) ln |πω(t)|

dt < +∞

hold. Then for any c ̸= 0 equation (1) has Pω(±∞)-solution. Furthermore, for every such solution
the following asymptotic representations when t → w

y(t) = π2
ω(t) e

α0Q(t)[c+ o(1)],

y′(t) = πω(t) e
α0Q(t)[2c+ o(1)], y′′(t) = eα0Q(t)[2c+ o(1)]

take place.
Let present a corollary of these theorems, when σ = 0, i.e. for the following linear differential

equation
y′′′ = α0p(t)y, (11)

where α0 ∈ {−1; 1}, σ ∈ R, p : [a,w) → (0,+∞) – continuous function; a < w ≤ +∞.
Corollary 1. For the existence of Pω(±∞)-solutions of (11), it is necessary and sufficient the
conditions

lim
t↑ω

p(t)π3
ω(t) = 0, lim

t↑ω

t∫
a

p(τ)π2
ω(τ) dτ = ∞ (12)

to be fulfilled. Furthermore, for any such solution the following asymptotic representations, when
t ↑ ω

ln |y(t)| = lnπ2
ω(t) +

α0

2

t∫
a

p(τ)π2
ω(τ) dτ [1 + o(1)],

ln |y′(t)| = ln |πω(t)|+
α0

2

t∫
a

p(τ)π2
ω(τ) dτ [1 + o(1)],

ln |y′′(t)| = α0

2

t∫
a

p(τ)π2
ω(τ) dτ [1 + o(1)]

take place.
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Corollary 2. Let the function p : [a, ω) → (0,+∞) be continuously-differentiable and along with
the conditions (12) the following conditions

ω∫
a

∣∣(p(t)π3
ω(t))

′∣∣ dt < +∞,

ω∫
a

p2(t)|π5
ω(t)| dt < +∞,

ω∫
a

p(t)π2
ω(t)

ln |πω(t)|

t∫
a

p(τ)π2
ω(τ) dτ dt < +∞

hold. Then for any c ̸= 0 equation (11) has Pω(±∞)-solution. Furthermore, for any such solution
the following asymptotic representations, when t → w:

y(t) = π2
ω(t) exp

(
α0

t∫
a

p(τ)π2
ω(τ) dτ

)
[c+ o(1)],

y′(t) = πω(t) exp

(
α0

t∫
a

p(τ)π2
ω(τ) dτ

)
[2c+ o(1)],

y′′(t) = exp

(
α0

t∫
a

p(τ)π2
ω(τ) dτ

)
[2c+ o(1)]

take place.

The obtained asymptotes are consistent with the already known results for linear differential
equations (see [5, Chapter 1]).
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Let O ⊂ Rn be an open set and U ⊂ Rr be a convex compact set. Let hi2 > hi1 > 0, i = 1, s and
θk > · · · > θ1 > 0 be given numbers and n-dimensional function f(t, x, x1, . . . , xs, u, u1, . . . , uk),
(t, x, x1, . . . , xs, u, u1, . . . , uk) ∈ I × O1+s × U1+k satisfies the following conditions: for almost all
fixed t ∈ I = [a, b] the function f(t, · ) : I×O1+s×U1+k → Rn is continuous and continuously diffe-
rentiable in (x, x1, . . . , xs, u, u1, . . . , uk) ∈ O1+s×U1+k; for each fixed (x, x1, . . . , xs, u, u1, . . . , uk) ∈
O1+s×U1+k, the function f(t, x, x1, . . . , xs, u, u1, . . . , uk) and the matrices fx(t, · ), fxi(t, · ), i = 1, s
and fu(t, · ), fui(t, · ), i = 1, k are measurable on I; for any compact set K ⊂ O there exists a
function mK(t) ∈ L1(I, [0,∞)) such that∣∣f(t, x, x1, . . . , xs, u, u1, . . . , uk)∣∣

+ |fx(t, x, · )|+
s∑

i=1

|fxi(t, x, · )|+ |fu(t, x, · )|+
k∑

i=1

|fui(t, x, · )| ≤ mK(t)

for all (x, x1, . . . , xs, u, u1, . . . , uk) ∈ K1+s × U1+k and for almost all t ∈ I.
Furthermore, let Φ be the set of continuous functions φ(t) ∈ N , t ∈ I1 = [τ̂ , b], where τ̂ =

a − max{h12, . . . , hs2}, N ⊂ O is a convex compact set; Ω is the set of measurable functions
u(t) ∈ U , t ∈ I2 = [a− θk, b].

To each element v = (t0, t1, τ1, . . . , τs, φ, u) ∈ A = I × I × [h11, h12]× · · · × [hs1, hs2]×Φ×Ω on
the interval [t0, t1] we assign the delay controlled functional differential equation

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θk)

)
(1)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0]. (2)

The condition (2) is called continuous because always x(t0) = φ(t0).

Definition 1. Let ν = (t0, t1, τ1, . . . , τs, φ, u) ∈ A. A function x(t) = x(t; ν) ∈ O, t ∈ [τ̂ , t1],
t1 ∈ (t0, b] is called a solution of equation (1) with the continuous initial condition (2), or the
solution corresponding to ν and defined on the interval [τ̂ , t1] if it satisfies condition (2) and is
absolutely continuous on the interval [t0, t1] and satisfies equation (1) almost everywhere on [t0, t1].

Let the scalar-valued functions qi(t0, t1, τ1, . . . , τs, x0, x1), i = 0, l be continuously differentiable
on I2 × [h11, h12]× · · · × [hs1, hs2]×O2.
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Definition 2. An element ν = (t0, t1, τ1, . . . , τs, φ, u) ∈ A is said to be admissible if the correspon-
ding solution x(t) = x(t; ν) satisfies the boundary conditions

qi
(
t0, t1, τ1, . . . , τs, φ(t0), x(t1)

)
= 0, i = 1, l. (3)

Denote by A0 the set of admissible elements.

Definition 3. An element ν0 = (t00, t10, τ10, . . . , τs0, φ0, u0) ∈ A0 is said to be optimal if for an
arbitrary element ν ∈ A0 the inequality

q0
(
t00, t10, τ10, . . . , τs0, φ0(t00), x0(t10)

)
≤ q0

(
t0, t1, τ1, . . . , τs, φ(t0), x(t1)

)
(4)

holds. Here x0(t) = x(t; ν0) and x(t) = x(t; ν).

The problem (1)–(4) is called the optimal control problem with the continuous initial condition.

Theorem 1. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the following conditions hold:

1) the function φ0(t) is absolutely continuous and φ̇0(t) is bounded;

2) the function
f0(w) = f

(
w, u0(t), u0(t− θ1), . . . , u0(t− θk)

)
,

where w = (t, x, x1, . . . , xs) ∈ I ×O1+s is bounded on I ×O1+s;

3) there exists the finite limits

lim
t→t00−

φ̇0(t) = φ̇−
0 , lim

w→w0

f0(w) = f−0 , w ∈ (a, t00]×O1+s,

where
w0 =

(
t00, φ0(t00), φ0(t00 − τ10), . . . , φ0(t00 − τs0)

)
;

4) there exists the finite limit

lim
w→w1

f0(w) = f−1 , w ∈ (t00, t10]×O1+s,

w1 =
(
t10, x0(t10), x0(t10 − τ10), . . . , x0(t10 − τs0)

)
.

Then there exist a vector π = (π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ(t) =
(ψ1(t), . . . , ψn(t)) of the equation

ψ̇(t) = −ψ(t)f0x[t]−
s∑

i=1

ψ(t+ τi0)f0xi [t+ τi0], t ∈ [t00, t10], ψ(t) = 0, t > t10, (5)

where
f0x[t] = f0x

(
t, x0(t), x0(t− τ10), . . . , x0(t− τs0)

)
,

such that the following conditions hold;

5) the conditions for the moments t00 and t10:

πQ0t0 + (πQ0x0 + ψ(t00))φ̇
−
0 ≥ ψ(t00)f

−, πQ0t1 ≥ −ψ(t10)f−1 ,

where
Q0t0 =

∂

∂t0
Q
(
t00, t10, τ10, . . . , τs0, φ0(t00), x0(t10)

)
, Q = (q0, . . . , ql)T ;
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6) the conditions for the delays τi0, i = 1, s,

πQ0τi =

t10∫
t00

ψ(t)f0xi [t] ẋ0(t− τi0) dt, i = 1, s;

7) the maximum principle for the initial function φ0(t),

[Q0x0 + ψ(t00)]φ0(t00) +

s∑
i=1

t00∫
t00−τi0

ψ(t+ τi0)f0xi [t+ τi0]φ0(t) dt

= max
φ(t)∈Φ

{
[Q0x0 + ψ(t00)]φ(t00) +

s∑
i=1

t00∫
t00−τi0

ψ(t+ τi0)f0xi [t+ τi0]φ(t) dt

}
;

8) the linearized integral maximum principle for the control function u0(t),

t10∫
t00

ψ(t)
[
f0u[t]u0(t) +

k∑
i=1

f0ui [t]u0(t− θi)
]
dt

= max
u(t)∈Ω

t10∫
t00

ψ(t)
[
f0u[t]u(t) +

k∑
i=1

f0ui [t]u(t− θi)
]
dt;

9) the condition for the function ψ(t)

ψ(t10) = πQ0x1 .

Theorem 2. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the conditions 1), 2) of
Theorem 1 hold. Moreover, there exists the finite limits

lim
t→t00+

φ̇0(t) = φ̇+
0 , lim

w→w0

f0(w) = f+0 , w ∈ [t00, b)×O1+s,

lim
w→w1

f0(w) = f+1 , w ∈ [t10, b)×O1+s.

Then there exist a vector π = (π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ = (ψ1(t), . . . , ψn(t))
of the equation (5) such that the conditions 6)–9) hold. Moreover,

πQ0t0 + (πQ0x0 + ψ(t00))φ̇
+
0 ≤ ψ(t00)f

+
0 , πQ0t1 ≤ −ψ(t10)f+1 ,

Theorem 3. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the following conditions hold:
the function φ0(t) is continuously differentiable; the function f(t, x, x1, . . . , xs, u, u1, . . . , uk) is con-
tinuous; the function f(t, x, x1, . . . , xs, u0(t), u0(t−θ1), . . . , u0(t−θk)) is continuous at points t00, t10.
Then there exist a vector π = (π0, . . . , πl) ̸= 0, with π0 ≤ 0, and a solution ψ = (ψ1(t), . . . , ψn(t))
of the equation (5) such that the conditions 6)–9) hold. Moreover,

πQ0t0 + (πQ0x0 + ψ(t00))φ0(t00) = ψ(t00)f0[t00], πQ0t1 = −ψ(t10)f0[t10],

where
f0[t] = f

(
t, x0(t), x0(t− τ10), . . . , x0(t− τs0), u0(t), u0(t− θ1), . . . , u0(t− θk)

)
.

Theorem 3 is a corollary to Theorems 1 and 2. On the basis of variation formulas [2, 3] Theo-
rems 1, 2 are proved by the scheme given in [1, 4].
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Let
G(ε0) =

{
t, ε : 0 < ε < ε0, −Lε−1 ≤ t ≤ Lε−1, 0 < L < +∞

}
.

Definition 1. We say that a function p(t, ε) belongs to the class S0(m; ε0) (m ∈ N ∪ {0}) if
1) p : G(ε0) → C;

2) p(t, ε) ∈ Cm(G(ε0)) with respect to t;

3)

dkp(t, ε)

dtk
= εkp∗k(t, ε) (0 ≤ k ≤ m),

∥p∥S0(m;ε0)
def
=

m∑
k=0

sup
G(ε0)

|p∗k(t, ε)| < +∞.

Under the slowly varying function we mean the function of the class S0(m; ε0).
Definition 2. We say that a function f(t, ε, θ(t, ε)) belongs to the class F0(m; ε0; θ) (m ∈ N∪{0})
if this function can be represented as:

f(t, ε, θ(t, ε)) =
∞∑

n=−∞
fn(t, ε) exp(in θ(t, ε)),

and
1) fn(t, ε) ∈ S0(m; ε0);

2)

∥f∥F0(m;ε0;θ)
def
=

∞∑
n=−∞

∥fn∥S0(m;ε0) < +∞;

3) θ(t, ε) =
t∫
0

φ(τ, ε) dτ , φ(t, ε) ∈ R+, φ(t, ε) ∈ S0(m; ε0), inf
G(ε0)

φ(t, ε) = φ0 > 0.

Definition 3. We say that a vector-function a(t, ε) = colon (a1(t, ε), . . . , aN (t, ε)) belongs to
the class S1(m; ε0) if aj(t, ε) ∈ S0(m; ε0) (j = 1, N). We say that a matrix-function A(t, ε) =
(ajk(t, ε))j,k=1,N belongs to the class S2(m; ε0) if ajk(t, ε) ∈ S0(m; ε0) (j, k = 1, N).

We define the norms:

∥a(t, ε)∥S1(m;ε0) = max
1≤j≤N

∥aj(t, ε)∥S0(m;ε0),

∥A(t, ε)∥S2(m;ε0) = max
1≤j≤N

N∑
k=1

∥ajk(t, ε)∥S0(m;ε0).
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Definition 4. We say that a vector-function b(t, ε, θ) = colon (b1(t, ε, θ), . . . , bN (t, ε, θ)) belongs
to the class F1(m; ε0; θ) if bj(t, ε, θ) ∈ F0(m; ε0; θ) (j = 1, N). We say that a matrix-function
B(t, ε, θ) = (bjk(t, ε, θ))j,k=1,N belongs to the class F2(m; ε0; θ) if bjk(t, ε, θ) ∈ F0(m; ε0; θ) (j, k =

1, N).
We define the norms:

∥b(t, ε, θ)∥F1(m;ε0;θ) = max
1≤j≤N

∥bj(t, ε, θ)∥F0(m;ε0;θ),

∥B(t, ε, θ)∥F2(m;ε0;θ) = max
1≤j≤N

N∑
k=1

∥bjk(t, ε, θ)∥F0(m;ε0;θ).

Thus, the matrix B(t, ε, θ) has a kind

B(t, ε, θ) =

∞∑
n=−∞

Bn(t, ε) exp(in θ(t, ε)),

where Bn(t, ε) ∈ S2(m; ε0), and

∥B(t, ε, θ)∥F2(m;ε0;θ) ≤
∞∑

n=−∞
∥Bn(t, ε)∥S2(m;ε0).

It is easy to obtain that if A,B ∈ F2(m; ε0; θ), then AB ∈ F2(m; ε; θ), and

∥AB∥F2(m;ε0;θ) ≤ 2m∥A∥F2(m;ε0;θ) · ∥B∥F2(m;ε0;θ).

For A(t, ε, θ) ∈ F2(m; ε0; θ) we denote

Γn[A] =
1

2π

2π∫
0

A(t, ε, θ) exp(−in θ) dθ (n ∈ Z).

We consider the next system of differential equations
dx

dt
=

(
Λ(t, ε) + εP (t, ε, θ)

)
x, (1)

where ε ∈ (0, ε0), Λ(t, ε) = diag (λ1(t, ε), . . . , λN (t, ε)) ∈ S2(m; ε0), P (t, ε, θ) ∈ F2(m; ε0; θ).
We study the problem about the structure of fundamental matrix of the system (1).
Consider the linear homogeneous system

dx

dt
= εA(t, ε)x, (2)

where ε ∈ (0, ε0), A(t, ε) = (ajk(t, ε))j,k=1,N ∈ S2(m; ε0). Then there exists a matrizant X(t, ε) of
the system (2).

Lemma 1. If X(t, ε) is the matrizant of the system (2), then X(t, ε), X−1(t, ε) belongs to the class
S2(m; ε0).

Lemma 2. Let we have the matrix equation
dX

dt
= εA(t, ε, θ), (3)

where ε ∈ (0, ε0), A(t, ε, θ) ∈ F2(m; ε0; θ). Then there exists a solution X(t, ε, θ) of the equation
(3) which belongs to the class F2(m; ε0; θ), and there exists K ∈ (0,+∞) which does not depend on
A(t, ε, θ) such that

∥X(t, ε, θ)∥F2(m;ε0;θ) ≤ K∥A(t, ε, θ)∥F2(m;ε0;θ).
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Theorem 1. Let the system (1) be such that

inf
G(ε0)

∣∣Re (λj(t, ε)− λk(t, ε)
∣∣ ≥ γ > 0 (j ̸= k),

and m ≥ 1. Then there exists ε∗ ∈ (0, ε0) such that for all ε ∈ (0, ε∗) there exists a fundamental
matrix X(1)(t, ε, θ) of the system (1) which has a kind

X(1)(t, ε, θ) = R(1)(t, ε, θ) exp

( t∫
0

Λ(1)(τ, ε) dτ

)
,

where R(1)(t, ε, θ) ∈ F2(m− 1; ε∗; θ), Λ(1)(t, ε) – the diagonal matrix, belonging to the class S(m−
1; ε∗).

Theorem 2. Let the system (1) be such that

Λ(t, ε) = iφ(t, ε)J,

where φ(t, ε) is function in the Definition 2, J = diag (n1, . . . , nN ), nj ∈ Z (j = 1, N), and m ≥ 1.
Then there exists ε∗∗ ∈ (0, ε0) such that for all ε ∈ (0, ε∗∗) there exists a fundamental matrix
X(2)(t, ε, θ) of the system (1) which has a kind:

X(2)(t, ε, θ(t, ε)) = exp(iθ(t, ε)J)R(2)(t, ε, θ(t, ε)),

where R(2)(t, ε, θ(t, ε)) ∈ F2(m− 1; ε∗∗; θ).

Proof. We make a substitution in the system (1)

x = exp(iθ(t, ε)J)y, (4)

where y is a new unknown N -dimensional vector. We obtain

dy

dt
= εQ(t, ε, θ)y, (5)

where Q(t, ε, θ) = exp(−iθ(t, ε)J)P (t, ε, θ) exp(iθ(t, ε)J) belongs to the class F2(m; ε0; θ).
Now in the system (5) we make the substitution

y = (E + εΦ(t, ε, θ))z, (6)

where the matrix Φ is defined from the equation

φ(t, ε)
∂Φ

∂θ
= Q(t, ε, θ)− U(t, ε),

in which U(t, ε) = Γ0[Q(t, ε, θ)]. Then

Φ(t, ε, θ) =

∞∑
n=−∞
(n ̸=0)

Γn[Q(t, ε, θ)]

inφ(t, ε)
exp(in θ) ∈ F2(m; ε0; θ).

As a result of the substitution (6) we obtain

dz

dt
= ε

(
U(t, ε) + εV (t, ε, θ)

)
z, (7)
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where the matrix V is defined from the equation

(E + εΦ(t, ε, θ))V = Q(t, ε, θ)Φ(t, ε, θ)− Φ(t, ε, θ)U(t, ε)− 1

ε

∂Φ(t, ε, θ)

∂t
. (8)

The matrix 1
ε

∂Φ
∂t belongs to the class F2(m − 1; ε0; θ), then there exists ε2 ∈ (0, ε0) such that

for all ε ∈ (0, ε2) the equation (8) is solved with respect to V , and V (t, ε, θ) belongs to the class
F2(m− 1; ε2; θ0).

Together with the system (7) we consider the truncated system

dz(0)

dt
= εU(t, ε)z(0). (9)

Continuity of the matrix U(t, ε) with respect to t for all ε ∈ (0, ε0) guarantees the existence of the
matrizant Z(0)(t, ε) of the system (9), and by virtue the Lemma 1 Z(0)(t, ε), (Z(0)(t, ε))−1 belong
to the class S2(m− 1; ε0).

We make in the system (7) the substitution

z = Z(0)(t, ε)ξ, (10)

where ξ – the new unknown vector. We obtain

dξ

dt
= ε2W (t, ε, θ)ξ, (11)

where W = (Z(0)(t, ε))−1V (t, ε, θ)Z(0)(t, ε)) ∈ F2(m− 1; ε2; θ).
Now we show that there exists a substitution

ξ = (E + εΨ(t, ε, θ))η, (12)

where Ψ ∈ F2(m− 1; ε3; θ) (ε3 ∈ (0, ε2)), which leads the system (11) to the system

dη

dt
= Oη, (13)

where O – the null (N ×N)-matrix. Really, we define the matrix Ψ from the equation

dΨ

dt
= εW (t, ε, θ) + ε2W (t, ε, θ)Ψ. (14)

Consider the truncated equation
dΨ(0)

dt
= εW (t, ε, θ).

By virtue of Lemma 2 this equation has a solution Ψ(0)(t, ε, θ) ∈ F2(m− 1; ε2; θ).
We construct the process of successive approximations, used as initial approximation Ψ(0)(t, ε, θ),

and the subsequent approximations defining as solutions from the class F2(m − 1; ε2; θ) of the
matrix-equations

dΨ(k+1)

dt
= εW (t, ε, θ) + ε2W (t, ε, θ)Ψ(k), k = 0, 1, 2, . . . . (15)

Each of these solutions exists by virtue of Lemma 2. Then we have

d(Ψ(k+1) −Ψ(k))

dt
= ε2W (t, ε, θ)(Ψ(k) −Ψ(k−1)), k = 1, 2, . . . .
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By virtue of Lemma 2 and unequality (2) we obtain

∥Ψ(k+1) −Ψ(k)∥F2(m−1;ε2;θ) ≤ ε2m−1K∥Ψ(k) −Ψ(k−1)∥F2(m−1;ε2;θ), k = 1, 2, . . .

(K is defined in the Lemma 2), therefore the convergence of the process (15) is guaranteed by the
unequality 0 < ε < ε3, where ε32

m−1K < 1. As a result of the process (15) we obtain the solution
Ψ(t, ε, θ), belonging to the class F2(m− 1; ε3; θ), of the equation (14).

The matrizant of the system (13) is E. Thus, by virtue of (4), (6), (10), (12) we obtain that
the fundamental matrix of the system (1) has a kind:

X(2)(t, ε, θ) = exp(iθ(t, ε)J)(E + εΦ(t, ε, θ))Z(0)(t, ε)(E + εΨ(t, ε, θ)),

and the Theorem 2 is proved.

Remark. In the sense of the condition of Theorem 2 we say that we have a resonance case.
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Most of the technologically important materials are crystals, where atoms are arranged in
a periodic lattice of a defined symmetry (cubic, hexagonal, orthorhombic, etc.). It is known that
a plastic deformation of body-centred cubic metals is governed by the thermally activated motion
of screw dislocations. Dislocations are line defects in crystals, that are caused by the finite rate
of solidification because the atoms do not have sufficient time to take perfect lattice positions.
Each dislocation is characterized by the so-called Burgers vector b⃗ and the tangential vector u⃗.
We distinguish two basic types of dislocation segments: edge segment (⃗b ⊥ u⃗) and screw segment
(⃗b ∥ u⃗), see Figure 1.

Figure 1. Edge and screw dislocations in a simple cubic lattice

If none of these conditions is satisfied, we speak about a mixed segment.
In this thesis, we consider the so-called 1/2⟨111⟩ screw dislocation in a body-centred cubic

lattice. In that case, the tangential vector u⃗ of the dislocation line has the direction of a body
diagonal of the cubes. We choose a slip plane as shown in Figure 2 and introduce an appropriate
coordinate system. The motion of screw dislocations in a slip plane is thermally activated – they
move due to the applied load and this motion is aided by thermal fluctuations. The dislocation
first moves by the applied shear stress τ as a straight line from y = 0 to y = y0, where the value of
y0 is given by the relation Γ′(y0) = τb (see Figure 3).

Here Γ denotes the so-called Peierls barrier representing lattice friction that acts against moving
the dislocation. From the straight initiated shape, the dislocation vibrates due to the finite thermal
energy and reaches its activated shape (see Figure 3). This activated shape of the dislocation
determines the the activation enthalpy for the motion of the dislocation under the applied stress τ .

In the paper [1], the following relation is derived for the enthalpy corresponding to the shape
of the dislocation y = y(x):

Hτ (y) =

+∞∫
−∞

[
Γ(y(x))

√
1 + [y′(x)]2 − Γ(y0)− τb(y(x)− y0)

]
dx.

†The problem was suggested by Roman Gröger from the Institute of Physics of Materials of the Czech Academy
of Sciences (e-mail: groger@ipm.cz).
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dislocation line

slip plane

Figure 2. Coordinate system

activated
shape of

the dislocation

Peierls barrier

initiated
shape of

the dislocation

~τ

H∗
τ

Figure 3. Peierls barrier

The first term under the integral sign corresponds to the energy of a curved dislocation, the second
term deals with the energy of the straight dislocation, and the third term represents the work done
by the stress τ on changing the shape from y0 to y. We are looking for the shape of the dislocation
y = y(x) with fixed ends y(±∞) = y0, that corresponds to the minimum of the enthalpy Hτ . Such
a shape of the dislocation is called activated shape and, as was mentioned above, it determines the
value H∗

τ of the activation enthalpy for the motion of the dislocation under the given shear stress τ .
Applying the Euler-Lagrange equation to the described variational problem leads to the boundary
value problem

Γ(y)y′′√
1 + [y′]2

= Γ′(y)− τb
√
1 + [y′]2 , (1)

lim
x→−∞

y(x) = y0, lim
x→−∞

y(x) = y0. (2)

Hence, the activated shape of the dislocation can be mathematically described as a non-constant
solution to the boundary value problem (1), (2). Recall that, in equation (1), τ is the share stress,
b stands for the magnitude of the Burgers vector, and Γ denotes the Peierls barrier (see Figure 3).



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 181

Motivated by the shape of the Peierls barrier Γ discussed in [1], we introduce the assumption

Γ ∈ C 2(R; ]0,+∞[ ) is an a-periodic function,
there exists 0 < y0 < yc < a such that

Γ′(y0) = τb, Γ′(yc) < τb,

Γ(y) > Γ(y0) + τb(y − y0) for y ∈ [0, yc[ \{y0},
Γ(y) < Γ(y0) + τb(y − y0) for y ∈ ]yc, a],


(A1)

which allows one to prove the following theorem.

Theorem 1. Let a, b, τ > 0 and the function Γ satisfy assumption (A1). Then problem (1), (2) has
a unique (up to a translation) non-constant solution.

Figure 4. Solutions to problem (1), (2) – activated shape of the dislocation

Remark 2. It follows from the proof of Theorem 1 that each solution to problem (1), (2) is
a solution to the Cauchy problem

Γ(y)y′′√
1 + [y′]2

= Γ′(y)− τb
√
1 + [y′]2 ; y(0) = α1, y′(0) = α2

for some α1 ∈ ]y0, yc], k ∈ {1, 2}, and α2 = (−1)k
√
[ Γ(α1)
Γ(y0)+τb(α1−y0)

]2 − 1 .

From the mathematical point of view, it is interesting task to investigate a shape of each
solution to equation (1). Assume that, in addition to (A1), the Peierls barrier Γ satisfies the
following condition

there exists a unique ys ∈ ]y0, y0 + a[ such that Γ′(ys) = τb. (A2)

Then we can derive qualitative properties of all solutions to equation (1) and describe the phase
portrait of (1) in detail, see Figures 5 and 6 on below.

References
[1] J. E. Dora and S. Rajnak, Nucleation of king pairs and the Peierls’ mechanism of plastic

deformation. Trans. AIME 230 (1964), 1052–1064.
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Figure 5. Phase portrait of equation (1)

Figure 6. Graphs of various solutions to equation (1), colours of solutions correspond
to colours of orbits in Fig. 5
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Let t0 < t1 be fixed numbers and let x0 ∈ Rn be a fixed vector. By Φ and Ω we denote,
respectively, the sets of measurable initial functions ϕ(t) = (ϕ1(t), . . . , ϕn(t))T , t ∈ [t0 − τ, t0],
ϕi(t) ∈ [−1, 1], i = 1, n and control functions u(t) = (u1(t), . . . , ur(t))T , t ∈ [t0, t1], u

i(t) ∈ [−1, 1],
i = 1, r.

To each element w = (ϕ(t), g(t), u(t)) ∈ W = Φ2 × Ω we assign the linear neutral differential
equation

ẋ(t) = Ax(t) +Bx(t− τ) + Cẋ(t− τ) +Du(t), t ∈ [t0, t1] (1)

with the initial condition

x(t) = ϕ(t), ẋ(t) = g(t), t ∈ [t0 − τ, t0), x(t0) = x0, (2)

where A, B, C, D are given constant matrices with appropriate dimensions.

Definition 1. Let w = (ϕ(t), g(t), u(t)) ∈ W . A function x(t) = x(t;w) ∈ Rn, t ∈ [t0 − τ, t1] is
called a solution of differential equation (1) with the initial condition (2) if x(t) satisfies the initial
condition (2), is absolutely continuous on the interval [t0, t1] and satisfies equation (1) almost
everywhere.

The inverse problem: Let y ∈ Y = {y ∈ Rn : ∃w ∈ W, x(t1;w) = y} be a given vector. Find
element w ∈ W such that the following condition holds x(t1;w) = y. The vector y, as rule, by
distinct error is beforehand given.Thus instead of the vector y we have ŷ (so called an observed
vector) which is an approximation to the y and, in general, ŷ 6∈ Y .Therefore it is natural to change
posed inverse problem by the following approximate problem.

The approximate inverse problem: Find an element w ∈W such that the deviation

1

2
|x(t1;w)− ŷ |2 =

1

2

n∑
i=1

[
xi(t1;w)− ŷ i

]2



184 International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia

takes the minimal value.
It is clear that the approximate inverse problem is equivalent to the following optimization

problem:

ẋ(t) = Ax(t) +Bx(t− τ) + Cẋ(t− τ) +Du(t), t ∈ [t0, t1], (3)
x(t) = φ(t), ẋ(t) = g(t), t ∈ [t0 − τ, t0), x(t0) = x0, (4)

J(w) =
1

2
|x(t1;w)− ŷ |2 −→ min, w ∈W. (5)

The problem (3)–(5) is called the optimal control problem corresponding to the inverse problem.

Theorem 1 ([4]). There exists an optimal element w0 = (φ0(t), g0(t), u0(t)) for the problem (3)–(5),
i.e. J(w0) = infw∈W J(w).

Regularization of the optimal control problem (3)–(5). Now we consider the regularized optimal
control problem

ẋ(t) = Ax+Bx(t− τ) + Cẋ(t− τ) +Du(t), (6)
x(t) = φ(t), ẋ(t) = g(t), t ∈ [t0 − τ, t0), x(t0) = x0, (7)

J(w; δ) =
1

2
|x(t1;w)− ŷ |2 + δ1

t1∫
t0

α(t)|φ(t− τ)|2 dt

+δ2

t1∫
t0

α(t)|g(t− τ)|2 dt+ δ3

t1∫
t0

|u(t)|2 dt −→ min, w ∈W, (8)

where δ = (δ1, δ2, δ3), δi > 0, i = 1, 2, 3 and α(t) is the characteristic function of the interval
[t0, t0 + τ ].

Theorem 2. For every δ the problem (6)–(8) has the unique optimal element wδ =
(φδ(t), gδ(t), uδ(t)) and

lim
δ→0

J(wδ; δ) = J(w0).

It is natural that for sufficiently small δ the element wδ can be considered as an approximate
optimal element of the problem (3)–(5) and consequently as an approximate solution of the ap-
proximate inverse problem.

Theorem 3. For the optimality of an element wδ it suffices to fulfill the conditions:

ψ(t+ τ)Bφδ(t)− δ1|φδ(t)|2 = max
φ∈[−1,1]n

[
ψ(t+ τ)Bφ− δ1|φ|2

]
, t ∈ [t0 − τ, t0], (9)

ψ(t+ τ)Cgδ(t)− δ2|gδ(t)|2 = max
g∈[−1,1]n

[
ψ(t+ τ)Cg − δ2|g|2

]
, t ∈ [t0 − τ, t0], (10)

ψ(t)Duδ(t)− δ3|uδ(t)|2 = max
u∈[−1,1]r

[
ψ(t)Du− δ3|u|2

]
, t ∈ [t0, t1]. (11)

Here ψ(t), in general, is discontinuous at points t1 − kτ , k = 1, 2, . . . and (ψ(t), χ(t)) is a solution
of the system {

χ̇(t) = −ψ(t)A− ψ(t+ τ)B,

ψ(t) = χ(t) + Cψ(t+ τ)
(12)

with the initial condition

ψ(t1) = χ(t1) = ŷ − x(t1;wδ), ψ(t) = 0, t > t1. (13)



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 185

Let

ψ(t+ τ)B := (ϱ1(t), . . . , ϱn(t)), ψ(t+ τ)C := (σ1(t), . . . , σn(t)),

ψ(t)D := (γ1(t), . . . , γr(t)).

Using these notations, from (9)–(11), respectively, it follow

ϱi(t)φi
δ(t)− δ1(φ

i
δ(t))

2 = max
φi∈[−1,1]

[
ϱi(t)φi − δ1(φ

i)2
]
, i = 1, n,

σi(t)giδ(t)− δ2(g
i
δ(t))

2 = max
gi∈[−1,1]

[
σi(t)gi − δ2(g

i)2
]
, i = 1, n,

γi(t)uiδ(t)− δ3(u
i
δ(t))

2 = max
ui∈[−1,1]

[
γi(t)ui − δ3(u

i)2
]
, i = 1, r.

From the last relations we get

φi
δ(t) =



−1 if ϱi(t)

2δ1
≤ −1,

ϱi(t)

2δ1
if ϱi(t)

2δ1
∈ [−1, 1],

1 if ϱi(t)

2δ1
≥ 1,

giδ(t) =



−1 if σi(t)

2δ2
≤ −1,

σi(t)

2δ3
if σi(t)

2δ2
∈ [−1, 1],

1 if σi(t)

2δ2
≥ 1,

uiδ(t) =



−1 if γi(t)

2δ3
≤ −1,

γi(t)

2δ2
if γi(t)

2δ3
∈ [−1, 1],

1 if γi(t)

2δ3
≥ 1.

Iterative process for the approximate solution of the regularization problem (6)–(8). Let φ1(t) ∈
Φ, g1(t) ∈ Φ and u1(t) ∈ Ω be starting approximation of the initial functions and the control
function. We construct the sequences {xk(t)}, {ψk(t)}, {φk(t)}, {gk(t)}, {uk(t)} by the following
iteration process:

1) for given φk(t), gk(t) ∈ Φ and uk(t) ∈ Ω find xk(t) : the solution of the differential equation

ẋ(t) = Ax(t) +Bx(t− τ) + Cẋ(t− τ) +Duk(t), t ∈ [t0, t1]

with the initial condition

x(t) = φk(t), ẋ(t) = gk(t), t ∈ [t− τ, t0), x(t0) = x0;

2) if a stopping criterion is satisfied stop, stopping criterion can be for example the value of
J(wk; δ) is less than before given number ε, where wk = (φk(t), gk(t), uk(t));

3) find (ψk(t), χk
(t)) : the solution of the differential equation (12) with the initial condition

ψ(t1) = χ(t1) = ŷ − x(t1;wk)ψ(t) = 0, t > t1;
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4) put k := k + 1 and find the next iterates φk+1(t), gk+1(t) and uk+1(t)

φi
k+1(t) =



−1 if ϱik(t)

2δ1
≤ −1,

ϱik(t)

2δ1
if ϱik(t)

2δ1
∈ [−1, 1],

1 if ϱik(t)

2δ1
≥ 1,

gik+1(t) =



−1 if σik(t)

2δ2
≤ −1,

σik(t)

2δ2
if σik(t)

2δ2
∈ [−1, 1],

1 if σik(t)

2δ2
≥ 1,

uik+1(t) =



−1 if γik(t)

2δ3
≤ −1,

γik(t)

2δ3
if γik(t)

2δ3
∈ [−1, 1],

1 if γik(t)

2δ3
≥ 1.

Here

ψk(t+ τ)B := (ϱ1k(t), . . . , ϱ
n
k(t)), ψk(t+ τ)C := (σ1k(t), . . . , σ

n
k (t)),

ψk(t)D := (γ1k(t), . . . , γ
r
k(t));

5) go to 1).

Theorem 4. The following relations are valid:

lim
k→∞

χ
k
(t) = χ

δ
(t), lim

k→∞
xk(t) = xδ(t) uniformly for t ∈ [t0, t1],

lim
k→∞

sup
t∈[t0,t1]

ψk(t) = ψδ(t), lim
k→∞

φk(t) = φδ(t), lim
k→∞

gk(t) = gδ(t)

weekly in the space L1([t0− τ, t0],Rn), lim
k→∞

uk(t) = uδ(t) weekly in the space L1([t0, t1],Rr). More-
over, wδ = (φδ(t), gδ(t), uδ(t)) is the optimal element, xδ(t) = x(t;wδ), (ψδ(t), χδ

(t)) is the solution
of the equation (12) with the initial condition (13).

Theorems 2–4 are proved on the basis of results obtained in [1–3].

References
[1] T. A. Tadumadze, Some Problems in the Qualitative Theory of Optimal Control. (Russian)

Tbilis. Gos. Univ., Tbilisi, 1983.
[2] T. Tadumadze, The maximum principle and existence theorem in the optimal problems with

delay and non-fixed initial function. Dokl. Semin. Inst. Prikl. Mat. im. I. N. Vekua No. 22
(1993), 102–107 (1994).

[3] T. Tadumadze, An inverse problem for some classes of linear functional differential equations.
Appl. Comput. Math. 8 (2009), no. 2, 239–250.

[4] T. Tadumadze and A. Nachaoui, On the existence of an optimal element in quasi-linear neutral
optimal problems. Semin. I. Vekua Inst. Appl. Math. Rep. 40 (2014), 50–67.



International Workshop QUALITDE – 2018, December 1 – 3, 2018, Tbilisi, Georgia 187

On Topological Classifications of Some Classes
of Complex Differential Systems

V. Yu. Tyshchenko
Department of Mathematical Analysis, Differential Equations and Algebra,

Yanka Kupala State University of Grodno, Grodno, Belarus
E-mail: valentinet@mail.ru

1 Covering foliations
The foliations theory began with works of H. Poincaré. It have began an independent scientific
field and actually is consider as an efficient tool in the topological investigations. Here we consider
foliations of a special type, referred to as covering foliations [5]. We will consider the problem
of topological classification of covering foliations determinated by the complex linear differential
systems and homogeneous projective matrix Riccati equations.
Definition 1.1. Let A and B be path connected smooth varieties of dimensions dimA = n and
dimB = m. Smooth foliation F of dimension m on the variety A×B, locally transversal to A×{b}
for all b ∈ B, we will name a covering foliation, if the projection p : A× B → B on the second
factor defines for each layer of it foliation covering of the variety B.
Definition 1.2. Let Fc be a layer of the covering foliation F, containing the point c ∈ A × B.
The phase group Ph(F, b0), b0 ∈ B, of the covering foliation F we will name the group of
the diffeomorphisms Diff(A, π1(B, b0)) of the actions on the phase layer A by fundamental group
π1(B, b0) with noted point b0, defined under formulae Φγ(a) = q ◦ r ◦ s for all a ∈ A, for all
γ ∈ π1(B, b0), where r is a lifting of one of ways s(τ) ⊂ B for all τ ∈ [0, 1], corresponding to
the element γ of the group π1(B, b0), on the layer F(a,s(0)) of the covering foliation F in the point
(a, s(0)), and q : A×B → A is a projection to the first factor.

It is easy to see that owing to path connectivity and smoothness of the variety B, then phase
groups Ph(F, b1) and Ph(F, b2) are smoothly conjugated for any two points b1 and b2 of the base B.
Therefore further we will speak simply about of the phase group Ph(F) of the covering foliation
F, not connecting it with any point of the base B.
Definition 1.3. We will say that the covering foliation F1 on the variety A1×B1 is topologically
equivalent to the covering foliation F2 on the variety A2 ×B2 if there exists the homeomorphism
h : A1 ×B1 → A2 ×B2 such that q2 ◦ h(A1 ×B1) = A2, h(F1

c1) = F2
h(c1)

for all c1 ∈ A1 ×B1, where
q2 is a projection to the first factor.
Definition 1.4. Let F(λ) is a smooth family of covering foliations, F(λ0) = F, λ = (λ1, . . . , λl). We
will say that the covering foliations F is structurally stable if for all enough small δ any covering
foliation F(λ) is topologically equivalent to it, where norm ∥λ− λ0∥ < δ.
Theorem 1.5. For topological equivalence of the covering foliations F1 and F2 it is necessary and
sufficient existence of the isomorphism µ of the fundamental groups π1(B1) and π1(B2), generated
by the homeomorphism gµ : B1 → B2 of the bases, and existence of the homeomorphism f : A1 → A2

of phase layers such that f ◦Φγ1
1 = Φ

µ(γ1)
2 ◦f for all γ1 ∈ π1(B1), where Φ

γξ
ξ ∈ Ph(Fξ), γξ ∈ π1(Bξ),

ξ = 1, 2.
Concepts of smooth and real holomorphic equivalence of covering foliations are similarly intro-

duced. Also corresponding analogues of Theorem 1.5 are similarly proved.
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2 Complex nonautonomous linear differential systems
Consider the complex nonautonomous linear differential systems

dw =
m∑
j=1

Aj(z1, . . . , zm)w dzj (2.1)

and
dw =

m∑
j=1

Bj(z1, . . . , zm)w dzj , (2.2)

ordinary at m = 1 and completely solvable at m > 1, where w = (w1, . . . , wn), square matrices
Aj(z1, . . . , zm) = ∥aikj(z1, . . . , zm)∥ and Bj(z1, . . . , zm) = ∥bikj(z1, . . . , zm)∥ of the order n consist
from holomorphic functions aikj : A → C and bikj : B → C, i = 1, . . . , n, k = 1, . . . , n, j = 1, . . . ,m,
path connected holomorphic varieties A and B are holomorphically equivalent each other. The
general solutions of systems (2.1) and (2.2) define covering foliations L1 and L2, accordingly, on
the varieties Cn×A and Cn×B. The phase group Ph(L1) of the covering foliation L1 is generated
by the forming nondegenerate linear transformations Prw for all w ∈ Cn, Pr ∈ GL(n,C), r ∈ I,
and the phase group Ph(L2) of the covering foliation L2 is generated by the forming nondegenerate
linear transformations Qrw for all w ∈ Cn, Qr ∈ GL(n,C), for all r ∈ I, where I is some set of
indexes. Also the phase group Ph(L1) (the phase group Ph(L2)) define the monodromy group of
system (2.1) (system (2.2)). In the case n = 1, topological equivalence of the scalar equations (2.1)
and (2.2) is studied in article [3]. Notice that it is a case integrated in quadratures. We will assume
further n > 1.

Definition 2.1. A set {λ1, . . . , λn} of nonzero complex numbers we will name simple if λk \ λl ̸∈
s±1
lk , slk ∈ N, l ̸= k, k = 1, . . . , n, l = 1, . . . , n, and a square matrix of the size n > 1 we will name

simple if it has simple structure and simple collection of eigenvalues.

Theorem 2.2. Let the matrices Pr = S diag{p1r, . . . , pnr}S−1, Qr = T diag{q1r, . . . , qnr}T−1,
and the matrixes lnPr and lnQr be simple for all r ∈ I. Then for the topological equivalence of
systems (2.1) and (2.2) it is necessary and sufficient existence of such permutations µ : I → I,
ϱ : (1, . . . , n) → (1, . . . , n) and complex numbers αk with Reαk > −1, k = 1, . . . , n, that either
qϱ(k)µ(r) = pkr|pkr|αk for all r ∈ I, or qϱ(k)µ(r) = pkr|pkr|αk for all r ∈ I, k = 1, . . . , n.

Theorem 2.3. From a topological equivalence of systems (2.1) and (2.2) with the non-Abelian
monodromy groups of general situation follows their real holomorphic equivalence.

Theorem 2.4. Systems (2.1) and (2.2) are smooth (real holomorphic) equivalent if and only if its
monodromy groups are R-linearly conjugated for some permutation µ : I → I.

Theorem 2.5. System (2.1) is structurally stable if and only if it monodromy group have one
independent generator and the conditions of Theorem 2.2 are fulfilled for the matrix P1.

3 Complex nonautonomous homogeneous projective matrix
Riccati equations

Consider the complex nonautonomous homogeneous projective matrix Riccati equations [5]

dv =
m∑
j=1

Aj(z1, . . . , zm)v dzj (3.1)
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and

dv =

m∑
j=1

Bj(z1, . . . , zm)v dzj . (3.2)

ordinary at m = 1 and completely solvable at m > 1, where v = (v1, . . . , vn+1) are homo-
geneous coordinates, square matrices Aj(z1, . . . , zm) = ∥aikj(z1, . . . , zm)∥ and Bj(z1, . . . , zm) =
∥bikj(z1, . . . , zm)∥ of the order n + 1 consist from holomorphic functions aikj : A → C and
bikj : B → C, i = 1, . . . , n + 1, k = 1, . . . , n + 1, j = 1, . . . ,m, path connected holomorphic
varieties A and B are holomorphically equivalent each other. The general solutions of systems
(3.1) and (3.2) define covering foliations PL1 and PL2, accordingly, on the varieties CPn ×A and
CPn × B. The phase group Ph(PL1) of the covering foliation PL1 is generated by the forming
nondegenerate linear-fractional transformations Prv for all v ∈ CPn, Pr ∈ GL(n+1,C), r ∈ I, and
the phase group Ph(PL2) of the covering foliation PL2 is generated by the forming nondegenerate
linear-fractional transformations Qrv for all v ∈ CPn, Qr ∈ GL(n+ 1,C), for all r ∈ I, where I is
some set of indexes. Also the phase group Ph(L1) (the phase group Ph(L2)) define the holonomy
group of system (3.1) (system (3.2)).

Theorem 3.1. Let at n = 1 the matrices Pr = S diag{p1r, p2r}S−1 for all r ∈ I,
Qr = T diag{q1r, q2r}T−1 for all r ∈ I. Then for the topological equivalence of systems (3.1)
and (3.2) it is necessary and sufficient existence of such permutation µ : I → I and complex
number α with Reα ̸= −1 that either

q1r
q2r

=
p1r
p2r

∣∣∣p1r
p2r

∣∣∣α for all r ∈ I,

or
q1r
q2r

=
p1r
p2r

∣∣∣p1r
p2r

∣∣∣α for all r ∈ I.

Theorem 3.2. Let the matrices Pr=S diag{p1r, . . . , pn+1,r}S−1, Qr=T diag{q1r, . . . , qn+1,r}T−1,
sets of numbers

{
ln p1r

pn+1,r
, . . . , ln pnr

pn+1,r

}
and

{
ln q1r

qn+1,r
, . . . , ln qnr

qn+1,r

}
are simple, for all r ∈ I.

Then for the topological equivalence of systems (3.1) and (3.2) it is necessary and sufficient existence
of such permutations µ : I → I, ϱ : (1, . . . , n + 1) → (1, . . . , n + 1) and complex number α with
Reα > −1, that either

qϱ(k)µ(r)

qϱ(n+1)µ(r)
=

pkr
pn+1,r

∣∣∣ pkr
pn+1,r

∣∣∣α for all r ∈ I, k = 1, . . . , n,

or

qϱ(k)µ(r)

qϱ(n+1)µ(r)
=

pkr
pn+1,r

∣∣∣ pkr
pn+1,r

∣∣∣α for all r ∈ I, k = 1, . . . , n.

Theorem 3.3. From a topological equivalence of systems (3.1) and (3.2) with the non-Abelian
holonomy groups of general situation follows their real holomorphic equivalence.

Theorem 3.4. Systems (3.1) and (3.2) are smooth (real holomorphic) equivalent if and only if its
holonomy groups are conjugated either by linear-fractional transformation or by antiholomorphic
linear-fractional transformation for some permutation µ : I → I.

Theorem 3.5. System (3.1) is structurally stable if and only if n = 1, it holonomy group have one
independent generator and |p11p−1

21 | ̸= 1.
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4 Complex autonomous linear differential systems
At first we will consider complex completely solvable [2] (at m > 1) nondegenerate [4] linear discrete
dynamic systems (L1) and (L2), defined by linear maps Ajw for all w ∈ Cn, j = 1, . . . ,m, and
Bjw for all w ∈ Cn, j = 1, . . . ,m, accordingly, where n > 1, 1 < m < n − 1, Aj ∈ GL(n,C) and
Bj ∈ GL(n,C), j = 1, . . . ,m, origin O of space Cn is a unique fixed point of each of these systems.

Definition 4.1. Systems (L1) and (L2) we will name topologically equivalent if there exists
the homeomorphism h : Cn → Cn, translating the layers of the foliation, organised by basis of
nondegenerate absolute invariants [4] of system (L1), into the layers of the foliation, organised by
basis of nondegenerate absolute invariants of system (L2).

In article [6] the criterion of topological equivalence of systems (L1) and (L2) of general situation
has been obtained. Completely solvable linear discrete dynamic system (L1) is put in the flow

exp
( m∑

j=1

zj lnAj

)
w for all w ∈ Cn,

defined by the completely solvable autonomous linear differential system

dw =
m∑
j=1

lnAjw dzj . (4.1)

Therefore on the basis of results of article [6] it is possible to realize topological classification of the
autonomous linear differential system (4.1) of general situation.

Notice that topological classification of ordinary system (4.1) (i.e. at m = 1) of general situation
has been realize in articles [3] and [1].

5 Complex autonomous homogeneous projective matrix
Riccati equations

At first we will consider complex completely solvable (at m > 1) nondegenerate linear-fractional
discrete dynamic systems (PL1) and (PL2), defined by linear-fractional maps Ajv for all v ∈ CPn,
j = 1, . . . ,m, and Bjv for all v ∈ CPn, j = 1, . . . ,m, accordingly, where n > 1, 1 < m < n − 1,
Aj ∈ GL(n + 1,C) and Bj ∈ GL(n + 1,C), j = 1, . . . ,m, each of these systems has exactly n + 1
fixed points on CPn.

Definition 5.1. Systems (PL1) and (PL2) we will name topologically equivalent if there exists
the homeomorphism h : CPn → CPn, translating the layers of the foliation, organised by basis of
nondegenerate absolute invariants of system (PL1), into the layers of the foliation, organised by
basis of nondegenerate absolute invariants of system (PL2).

In article [6] the criterion of topological equivalence of systems (PL1) and (PL2) of general
situation has been obtained. Completely solvable linear discrete dynamic system (PL1) is put in
the flow

exp
( m∑

j=1

zj lnAj

)
v for all v ∈ CPn,

defined by the completely solvable autonomous homogeneous projective matrix Riccati equation

dv =
m∑
j=1

lnAjv dzj . (5.1)
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Therefore on the basis of results of article [6] it is possible to realize topological classification of the
autonomous linear differential system (5.1) of general situation.
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For any n ∈ N we consider the linear system of differential equations

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with a continuous coefficient n × n matrix uniformly bounded on the time half-line. Along with
system (1), consider the adjoint system

ẏ = −AT(t)y, y ∈ Rn, t ≥ 0. (2)

Obviously, the adjoint to system (2) is system (1); therefore, systems (1) and (2) are said to be
mutually adjoint. Everywhere below, we identify system (1) with its coefficient matrix.

The so-called Perron and Lyapunov regularity coefficients σP (A) and σL(A), respectively, de-
fined for each system (1) play an important role in the asymptotic theory of linear differential
systems [3,4]. They essentially specify the response of system (1) to linear exponentially decreasing
perturbations and nonlinear perturbations of a higher smallness order; in particular, the vanishing
of at least one (and hence both) of them is equivalent to the Lyapunov regularity of system (1).

Let λ1(A) ≤ · · · ≤ λn(A) be the Lyapunov exponents of system (1) arranged in nondescending
order, and let µ1(A) ≥ · · · ≥ µn(A) be the Lyapunov exponents of the adjoint system (2) arranged
in nonascending order. By Sp we denote the trace of a matrix. Then, by definition,

σP (A) = max
1≤i≤n

{
λi(A) + µi(A)

}
and σL(A) =

n∑
i=1

λi(A)− lim
t→+∞

1

t

t∫
0

SpA(τ) dτ.

It was shown in the monograph [2, § 1] that the regularity coefficients of any n-dimensional
system (1) satisfy the inequalities

0 ≤ σP (A) ≤ σL(A) ≤ nσP (A). (3)

In the paper [5], it has been shown that inequalities (3) describe all possible relations between
the regularity coefficients of differential systems. In other words, it was shown that for any positive
integer n and ordered pair of numbers (p; `) satisfying the inequalities 0 ≤ p ≤ ` ≤ np, there exists
a system A such that σP (A) = p and σL(A) = `.

Let M be a metric space. Along with the individual system (1) we consider a family of linear
differential systems

ẋ = A(t, ξ)x, x ∈ Rn, t ≥ 0, (4)

such that for every ξ ∈M the matrix-valued function A( · , ξ) : [0,+∞)→ Rn×n is continuous and
uniformly bounded on the time half-line, i.e. there exists aξ ∈ R such that sup

t∈[0,+∞)
‖A(t, ξ)‖ ≤ aξ.

Moreover, we suppose that the family of matrix-valued functions A( · , ξ), ξ ∈ M , is continuous in
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compact-open topology, in other words, if a sequence (ξk)k∈N, ξk ∈ M , converges to ξ0, then the
sequence of functions A( · , ξk) converges to A( · , ξ0) uniformly on every interval of [0,+∞). For a
symbol κ ∈ {P,L} by σAκ ( · ) : M → R we denote a function acting by the rule ξ 7→ σκ(A( · , ξ)).
In a natural way a problem of complete description of pair (σAP ( · ), σAL ( · )) arises. First we need
introduce some notation to formulate a solution of this problem.

Let f( · ) be a real-valued function defined on some set M . For a number r ∈ R and for the

function f( · ) the Lebesgue set [f ≥ r] is defined as the set [f ≥ r]
def
= {t ∈ M : f(t) ≥ r}. If

M is a topological space then Gδ stands for a system of subsets in M which can be represented
as countable intersections of open sets. We say [1, pp. 223–224] that a function f( · ) : M → R
belongs to the class ( ∗, Gδ), or f( · ) is a function of the class ( ∗, Gδ) if its Lebesgue set satisfies
the condition [f ≥ r] ∈ Gδ for any r ∈ R.

Theorem. For functions p( · ), `( · ) : M → R there exists a parametric system (4) such that
σAP ( · ) ≡ p( · ) and σAL ( · ) ≡ `( · ) if and only if p( · ), `( · ) are functions of the class ( ∗, Gδ) and for
every ξ ∈M the following inequalities

0 ≤ p(ξ) ≤ `(ξ) ≤ np(ξ)

hold.
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1 Statement of the problems
Let us present definitions needed in what follows. Let X be a compact metric space with the metric
d. Take a continuous mapping f : X → X. By f◦n we denote the n-th iteration of f , i.e.,

f◦n = f ◦ · · · ◦ f︸ ︷︷ ︸
n

, n = 0, 1, 2, . . . ;

f◦0 ≡ id by the definition. Along with the original metric d, we introduce a nondecreasing sequence
(dfn)n∈N of metrics on X defined by the equality

dfn(x, y) = max
0≤i≤n−1

d
(
f◦i(x), f◦i(y)

)
, n ∈ N, x, y ∈ X.

By Bf (x, ε, n) we denote the open ball with the center x and radius ε in the metric dfn, i.e.,

Bf (x, ε, n) =
{
y ∈ X : dfn(x, y) < ε

}
.

A set E ⊂ X is called an (f, ε, n)-cover if

X ⊂
∪
x∈E

Bf (x, ε, n).

For each (f, ε, n)-cover we find the number of its elements; let Sd(f, ε, n) be the least of these
numbers. The topological entropy of the dynamical system generated by a continuous mapping f
is defined as follows [1]:

htop(f) = lim
ε→0

lim
n→∞

1

n
lnSd(f, ε, n). (1.1)

Note that the topological entropy is independent of the choice of a metric generating the given
topology on X and hence is well defined by (1.1).

Given a metric space M and a jointly continuous map

f : M×X → X (1.2)

we define the function
µ 7−→ htop(fµ( · )). (1.3)
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It was proved in [3] that, in the case of X = [0; 1], the function (1.3) is lower semicontinuous.
In the general case (for arbitrary X), the function (1.3) is not necessarily lower semicontinuous.
For example, consider the family of maps fµ : X1 → X1, where

X1 =
{
z ∈ C : |z| 6 1

}
, fµ(z) =

0 if z = 0,

µ
z2

|z|
if z ̸= 0,

µ ∈ [0; 1].

Take a µ ∈ [0; 1) and an ε > 0. There exists a positive integer n(µ, ε) such that

d
(
f i
µ(z), f

i
µ(w)

)
6 d

(
f i
µ(z), 0) + d(0, f i

µ(w)
)
6 2µi < ε,

for any i > n(µ, ε) and any points z, w ∈ X; therefore, for any positive integer n > n(µ, ε) we have

d
fµ
n (z, w) = max

06i6n−1
d
(
f i
µ(z), f

i
µ(w)

)
6 max

{
d
fµ
n(µ,ε)(z, w), ε

}
.

Hence if n > n(µ, ε), then
Sd(fµ, ε, n) 6 Sd(fµ, ε, n(µ, ε)).

It follows that

0 6 htop(fµ) = lim
ε→0

lim
n→∞

1

n
lnSd(fµ, ε, n) 6 lim

ε→0
lim
n→∞

1

n
lnSd(fµ, ε, n(µ, ε)) = 0.

Thus, for µ ∈ [0; 1) we have htop(fµ) = 0.
For each positive integer k > 4, we set

εk =

√
2
(
1− cos

(2π
2k

))
.

Given a positive integer n > 4, consider the set

Z =
{
zm = exp

(2πmi

2k+n

)}
, m = 0, . . . , 2k+n − 1.

If the distance between two points zp and zq of Z satisfies the inequality d(zp, zq) > εk, then
df1n (zp, zq) > εk, and if the distance between zp and zq satisfies the inequality d(zp, zq) < εk, then
there exists an l 6 n− 1 such that

df1n (zp, zq) > d
(
f l
1(zp), f

l
1(zq)

)
> εk.

Thus, for any two points of Z we have df1n (zp, zq) > εk. This implies

Sd(f1, φ0, εk, n) > 2k+n,

whence
htop(f1) = lim

k→∞
lim
n→∞

1

n
lnSd(f1, εk, n) > ln 2.

Thus, the function µ 7→ htop(fµ) is discontinuous at µ = 1. Moreover, it is not lower semicontinuous
at µ = 1.

In the present paper we study the sets of upper semicontinuity and lower semicontinuity points
of the function (1.3).
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2 The typicality of the lower semicontinuity of topological entropy

Theorem 2.1. If M is a complete metric space, then for any map (1.2), the set of lower semicon-
tinuity points of the function (1.3) is everywhere dense Gδ-set in the space M.

Consider the Baire space B

B =
{
x = (x1, x2, . . . ) : xk ∈ {0, 1}, k ∈ N

}
of 0-1-sequences with the metric defined by the formula

d(x, y) =

{
0 if x = y,

2−min{k: xk ̸=yk} if x ̸= y.

Then the metric space B is compact.

Theorem 2.2. Let M = X = B, then for the map

f
(
(µ1, µ2, . . . ), (x1, x2, . . . )

)
= (x1+µ1 , x2+µ2 , . . . )

the set of lower semicontinuity points of the function (1.3) is not an Fσ-set in the space M.

Let C(B,B) be the space of continuous mappings of B into B with the metric

ϱ(f, g) = max
x∈B

d(f(x), g(x)).

Block [2] found that topological entropy is discontinuous at every point in space C(B,B).

Theorem 2.3. The set of zeros of the function

htop : C(B,B) → [0,+∞) (2.1)

coincides with the set of its lower semicontinuity points.

From Theorem 2.1 it follows that the set of zeros of the function (2.1) is an everywhere dense
Gδ-set in the space C(B,B).

3 Emptiness of the set of upper semicontinuity points
of topological entropy

Yomdin [5] and Newhouse [4] proved that the topological entropy of C∞-diffeomorphisms on a
compact Riemannian manifold is upper semicontinuous.

Theorem 3.1. For any map (1.2), the set of upper semicontinuity points of the function (1.3) is
an Fσδ-set in the space M.

Theorem 3.2. Let M = X = B, then there exists a map (1.2) such that the set of upper
semicontinuity points of the function (1.3) is empty.
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