On a Delay Parameter Optimization Problem: Existence, Sensitivity of a Functional Minimum, Necessary Optimality Conditions

Tamaz Tadumadze

Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia; I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

E-mail: tamaz.tadumadze@tsu.ge

Let $t_1 > t_0$ and $\theta_2 > \theta_1 > 0$ be given numbers with $t_0 + \theta_2 < t_1$; let $O \subset \mathbb{R}^n$ and $U \subset \mathbb{R}^r$ be open and compact sets. Let us consider the function $F(t, x, y, u) = (f^0, f), (t, x, y, u) \in I \times O^2 \times U$ satisfying the standard conditions: for almost all fixed $t \in I = [t_0, t_1]$ the function $F(t, \cdot) :$ $O^2 \times U \to \mathbb{R}^{1+n}$ is continuous in $(x, y, u) \in O^2 \times U$ and continuously differentiable in $(x, y) \in O^2$; for each fixed $(x, y, u) \in O^2 \times U$ the functions $F(t, x, y, u), F_x(t, \cdot)$ and $F_y(t, \cdot)$ are measurable on I; for any compact set $K \subset O$ there exists a function $m_K(t) \in L_1(I, \mathbb{R}_+), \mathbb{R}_+ = [0, \infty)$ such that

$$|F(t, x, y, u)| + |F_x(t, \cdot)| + |F_y(t, \cdot)| \le m_K(t)$$

for all $(x, y, u) \in K^2 \times U$ and for almost all $t \in I$.

Furthermore, by Ω we denote the set of measurable control functions $u : I \to U$; the initial function $\varphi_0(t) \in C(I_1, O)$, where $I_1 = [\hat{\tau}, t_1], \hat{\tau} = t_0 - \theta_2$; the initial vector $x_{00} \in O$, the function $q^0(\tau, x) \in C(I_2 \times O, \mathbb{R})$, where $I_2 = [\theta_1, \theta_2]$.

To each element $w = (\tau, u(t)) \in W = I_2 \times \Omega$ we set in correspondence the controlled delay functional differential equation

$$\dot{x}(t) = f(t, x(t), x(t-\tau), u(t))$$

$$\tag{1}$$

with the initial condition

$$x(t) = \varphi_0(t), \ t \in [\hat{\tau}, t_0), \ x(t_0) = x_{00}.$$
 (2)

Definition 1. Let $w = (\tau, u(t)) \in W$. A function $x(t) = x(t; w) \in O$, $t \in [\hat{\tau}, t_1]$, is called a solution of the equation (1) with the initial condition (2) or a solution corresponding to the element w and defined on the interval $[\hat{\tau}, t_1]$ if it satisfies the condition (2) and is absolutely continuous on the interval $[t_0, t_1]$ and satisfies the equation (1) almost everywhere on $[t_0, t_1]$.

By W_0 we denote the set of all $w \in W$ elements for which there exist solutions x(t; w) defined on the interval *I*. In the sequel it is assumed that $W_0 \neq \emptyset$.

Definition 2. An element $w_0 = (\tau_0, u_0(t)) \in W_0$ is said to be optimal or a solution of the problem (1)–(3) if for an arbitrary element $w \in W_0$ the inequality

$$J(w_0) = q^0(\tau_0, x_0(t_1)) + \int_{t_0}^{t_1} f^0(t, x_0(t), x_0(t - \tau_0), u_0(t)) dt$$

$$\leq J(w) = q^0(\tau, x(t_1)) + \int_{t_0}^{t_1} f^0(t, x(t), x(t - \tau), u(t)) dt$$
(3)

holds, where $x_0(t) = x(t; w_0), x(t) = x(t; w).$

The problem (1)–(3) is called the optimization problem of delay parameter.

Theorem 1. There exists an optimal element w_0 if the following conditions hold:

1.1 there exists a compact set $K_0 \subset O$ such that for an arbitrary $w \in W_0$

$$x(t;w) \in K_0, t \in I$$

1.2 the set

$$P_F(t,x,y) = \left\{ (p^0, p)^T \in \mathbb{R}^{1+n} : \exists u \in U, \ p^0 \ge f^0(t,x,y,u), \ p = f(t,x,y,u) \right\}$$

is convex for all fixed $(t, x, y) \in I \times K_0^2$.

Remark 1. Let U be the convex set. Let f(t, x, y, u) = A(t, x, y) + B(t, x, y)u and let the function $f^0(t, x, y, u)$ be convex in $u \in U$, then the condition 1.2 of the Theorem 1 holds.

Theorem 2. Let the conditions 1.1 and 1.2 of Theorem 1 hold. Then for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that for every $(x_{0\delta}, \varphi_{\delta}, q_{\delta}, G_{\delta})$, where $x_{0\delta} \in O$, $\varphi_{\delta} \in C(I_1, O)$, $q_{\delta}^0 \in C(I_2 \times O, \mathbb{R})$, $G_{\delta} = (g_{\delta}^0, g_{\delta})$ satisfying the condition

$$|x_{00} - x_{0\delta}| + \|\varphi_0 - \varphi_\delta\| + \|q^0 - q_\delta^0\| + \|G_\delta\|_{K_1} \le \delta,$$

there exists a solution $w_{\delta} = (\tau_{\delta}, u_{\delta}(t))$ of the perturbed optimal problem

$$\dot{x}(t) = f(t, x(t), x(t-\tau), u(t)) + g_{\delta}(t, x(t), x(t-\tau)),$$

$$x(t) = \varphi_{\delta}(t), \quad t \in [\hat{\tau}, t_0), \quad x(t_0) = x_{0\delta},$$

$$J(w; \delta) = q_{\delta}^0(\tau, x(t_1)) + \int_{t_0}^{t_1} \left[f^0(t, x(t), x(t-\tau), u(t)) + g_{\delta}^0(t, x(t), x(t-\tau)) \right] dt \longrightarrow \min$$

and $|J(w_0) - J(w_{\delta}; \delta)| < \varepsilon$. Here, the functions $G_{\delta}(t, x, y)$ satisfy the standard conditions on the set $I \times O^2$ and

$$\int_{I} \sup\left\{ |G_{\delta}(t,x,y)| + |G_{\delta x}(t,\cdot)| + |G_{\delta y}(t,\cdot)| : (x,y) \in K_1^2 \right\} dt \le const,$$

where $K_1 \subset O$ is a compact set containing a neighborhood of K_0 ;

$$G_{\delta x} = \frac{\partial}{\partial x} G_{\delta}, \quad \|\varphi_0 - \varphi_\delta\| = \sup\left\{|\varphi_0(t) - \varphi_\delta(t)| : t \in I_1\right\}, \\ \|q_0 - q_\delta\| = \sup\left\{|q_0(\tau, x) - q_\delta(\tau, x)| : (\tau, x) \in I_2 \times K_1\right\}, \\ \|G_\delta\|_{K_1} = \sup\left\{\left|\int_{s_1}^{s_2} G_\delta(t, x, y) \, dt\right| : (s_1, s_2, x, y) \in I^2 \times K_1^2\right\}.$$

Theorem 3. Let the conditions 1.1 and 1.2 of Theorem 1 hold. Then for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that for every $(x_{0\delta}, \varphi_{\delta}, q_{\delta}^0, G_{\delta})$, where $x_{0\delta} \in O$, $\varphi_{\delta} \in C(I_1, O)$, $q_{\delta}^0 \in C(I_2 \times O, \mathbb{R})$, $G_{\delta}(t, x, y, u) = (g_{\delta}^0, g_{\delta})$ satisfying the conditions

$$|x_{00} - x_{0\delta}| + \|\varphi_0 - \varphi_\delta\| + \|q^0 - q_\delta^0\| + \|G_\delta\|_1 \le \delta$$

and the set $P_{F+G_{\delta}}(t, x, y)$ is convex, there exists a solution $w_{\delta} = (\tau_{\delta}, u_{\delta}(t))$ of the perturbed optimal problem

$$\dot{x}(t) = f(t, x(t), x(t-\tau), u(t)) + g_{\delta}(t, x(t), x(t-\tau), u(t)),$$
$$x(t) = \varphi_{\delta}(t), \quad t \in [\hat{\tau}, t_0), \quad x(t_0) = x_{0\delta},$$
$$J(w; \delta) = q_{\delta}^0(\tau, x(t_1)) + \int_{t_0}^{t_1} \left[f^0(t, x(t), x(t-\tau), u(t)) + g_{\delta}^0(t, x(t), x(t-\tau), u(t)) \right] dt \longrightarrow \min$$

and $|J(w_0) - J(w_{\delta}; \delta)| < \varepsilon$. Here, the functions $G_{\delta}(t, x, y, u)$ satisfy the standard conditions on the set $I \times O^2 \times U$ and

$$\int_{I} \sup \left\{ |G_{\delta x}(t, x, y, u)| + |G_{\delta y}(t, \cdot)| : (x, y, u) \in K_{1}^{2} \times U \right\} dt \le const;$$
$$\|G_{\delta}\|_{1} = \int_{I} \sup \left\{ |G_{\delta}(t, x, y, u)| : (x, y, u) \in K_{1}^{2} \times U \right\} dt.$$

Theorem 4. Let $w_0 = (\tau_0, u_0(t)), \tau_0 \in (\theta_1, \theta_2)$, be an optimal element and the following conditions hold:

- 4.1 the initial function $\varphi_0(t)$ is absolutely continuous and $\dot{\varphi}_0(t)$ is bounded;
- 4.2 the function $F(t, x, y, u_0(t)), (t, x, y) \in I \times O^2$ is bounded;
- 4.3 there exist the finite limit

$$\lim_{(v_1,v_2)\to(v_{10},v_{20})} \left[F(v_1,u_0(t)) - F(v_2,u_0(t)) \right] = F_0 = (f_0^0,f_0)^T,$$

where $v_1, v_2 \in I \times O^2$,

$$v_{10} = (t_0 + \tau_0, x_0(t_0 + \tau_0), x_0), \quad v_{20} = (t_0 + \tau_0, x_0(t_0 + \tau_0), \varphi_0(t_0)).$$

Then the following conditions hold:

4.4 the condition for the optimal delay parameter τ_0

$$\begin{aligned} -\frac{\partial}{\partial\tau} q_0(\tau_0, x_0(t_1)) &= -f_0^0 + \psi(t_0 + \tau_0) f_0 \\ &+ \int_{t_0}^{t_0 + \tau_0} \left\{ -f_y^0[t + \tau_0] + \psi(t) f_y[t + \tau_0] \right\} \dot{\varphi}_0(t - \tau_0) \, dt \\ &+ \int_{t_0 + \tau_0}^{t_1} \left\{ -f_y^0[t + \tau_0] + \psi(t) f_y[t + \tau_0] \right\} \dot{x}_0(t - \tau_0) \, dt; \end{aligned}$$

4.5 the condition for the optimal control $u_0(t)$

$$-f^{0}(t, x_{0}(t), x_{0}(t-\tau_{0}), u_{0}(t)) + \psi(t)f(t, x_{0}(t), x_{0}(t-\tau_{0}), u_{0}(t))$$

=
$$\max_{u \in U} \left[-f^{0}(t, x_{0}(t), x_{0}(t-\tau_{0}), u) + \psi(t)f(t, x_{0}(t), x_{0}(t-\tau_{0}), u) \right]$$

Here $\psi(t)$ is the solution of the equation

$$\psi(t) = f_x^0[t] - \psi(t)f_x[t] + \chi(t+\tau_0) \left\{ f_y^0[t+\tau_0] - \psi(t+\tau_0)f_y[t+\tau_0] \right\}, \ t \in [t_0, t_1]$$

with the initial condition

$$\psi(t_1) = -q_x^0(\tau_0, x_0(t_1));$$

$$f_x^0[t] = f_x^0(t, x_0(t), x_0(t - \tau_0), u_0(t)).$$

Some comments. The theorems of existence and sensitivity of the functional minimum for optimal problems involving various functional differential equations with fixed delay are given in [1-3]. Theorems 1–3 and Theorem 4 are proved by the scheme given in [3] and [4], respectively.

References

- G. L. Kharatishvili and T. A. Tadumadze, Formulas for the variation of a solution and optimal control problems for differential equations with retarded arguments. (Russian) Sovrem. Mat. Prilozh. No. 25, Optimal. Upr. (2005), 3–166; translation in J. Math. Sci. (N.Y.) 140 (2007), no. 1, 1–175.
- [2] T. Tadumadze, Existence theorems for solutions of optimal problems with variable delays. Control Cybernet. 10 (1981), no. 3-4, 125–134 (1982).
- [3] T. A. Tadumadze, Some Problems in the Qualitative Theory of Optimal Control. (Russian) Tbilis. Gos. Univ., Tbilisi, 1983.
- [4] T. Tadumadze, Variation formulas of solutions for functional differential equations with several constant delays and their applications in optimal control problems. *Mem. Differ. Equ. Math. Phys.* **70** (2017), 7–97.