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We study the non-local problem

u′(t) = f(t, u(t)), t ∈ [a, b]; ϕ(u) = d, (1)

where ϕ : C([a, b],Rn) is a vector functional (possibly non-linear), f : [a, b] × Rn → Rn is a
continuous function defined on a bounded set and d is a given vector.

In [9], we have suggested an approach to this problem which involves a kind of reduction to a
parametrized family of problems with separated conditions

u′(t) = f(t, u(t)), t ∈ [a, b], (2)
u(a) = ξ, u(b) = η, (3)

where z := col (z1, . . . , zn), η := col (η1, . . . , ηn) are unknown parameters. The techniques of [9] are
based on properties of the iteration sequence {um( · , ξ, η) : m ≥ 0},

u0(t, ξ, η) :=
(
1− t− a

b− a

)
z +

t− a

b− a
η, (4)

um(t, ξ, η) := u0(t, ξ, η) +

t∫
a

f
(
s, um−1(s, ξ, η)

)
ds

− t− a

b− a

b∫
a

f
(
s, um−1(s, ξ, η)

)
ds, t ∈ [a, b], m = 1, 2, . . . . (5)

Formulas (4) and (5) are used to compute the corresponding functions explicitly for certain values
of m, which, under additional conditions, allows one to prove the solvability of the problem and
construct approximate solutions.

The efficiency of application of this approach depends on the complexity of the non-linear terms
appearing in (1). If the function f involves transcendental non-linearities with respect the second
variable, the explicit computation according to (5) in the general case cannot be carried out due to
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the impossibility to find the exact values of the corresponding integrals. Here, we show how this
difficulty can be overcome using the polynomial interpolation.

At first, we recall some results of the theory of approximations [1, 2, 4]. In a similar situation,
we have used these facts in [7].

Denote by Pq the set of all polynomials of degree not higher than q on [a, b]. For any continuous
y : [a, b] → R, there exists [2, 7] a unique polynomial yq ∈ Hq for which ∥y − yq∥ = inf

p∈Hq

∥y −

p∥ =: Eq(y), where ∥ · ∥ is the uniform norm in C([a, b]). Then yq is the polynomial of the best
uniform approximation of y in Hq and the number Eq(y) is called the error of the best uniform
approximation.

For given continuous function y : [a, b] → R and a natural number q, denote by Tqy the Lagrange
interpolation polynomial of degree q such that (Tqy)(ti) = y(ti), i = 1, 2, . . . , q + 1, where

ti =
b− a

2
cos

(2i− 1)π

2(q + 1)
+

a+ b

2
, i = 1, 2, . . . , q + 1, (6)

are the Chebyshev nodes translated from (−1, 1) to the interval (a, b).

Lemma 1 ([5, p. 18]). For any q ≥ 1 and a continuous y : [a, b] → R, the corresponding interpolation
polynomial constructed with the Chebyshev nodes admits the estimate

|y(t)− (Tqy)(t)| ≤
( 2

π
ln q + 1

)
Eq(y), t ∈ [a, b]. (7)

Definition 1. Let y : [a, b] → R be continuous. The function

δ 7−→ ω(y; δ) := sup
t,s∈[a,b]: |t−s|≤δ

|y(t)− y(s)|

is called its modulus of continuity.

Note that δ 7→ ω(y; δ) is a continuous non-decreasing function. The function y is uniformly
continuous if and only if lim

δ→0
ω(y; δ) = 0 [3, p. 131].

Lemma 2 (Jackson’s theorem; [4, p. 22]). If y ∈ C([a, b],R), q ≥ 1, then

Eq(y) ≤ 6ω
(
y;

b− a

2q

)
. (8)

Definition 2. A function y : [a, b] → R satisfies the Dini–Lipschitz condition [2, p. 50] if

lim
δ→0

ω(y; δ) ln δ = 0.

It follows from (8) that
lim
q→∞

Eq(y) ln q = 0 (9)

for any y satisfying the Dini–Lipschitz condition. In view of (7), equality (9) ensures the uniform
convergence of interpolation polynomials at Chebyshev nodes for this class of functions. In partic-
ular, every α-Hölder continuous function y : [a, b] → R with 0 < α ≤ 1 satisfies the Dini–Lipschitz
condition.

Here, we need to construct interpolation polynomials for functions obtained as a result of
application of the Nemytskii operator generated by the non-linearity from (1) and defined by the
formula

(Ny)(t) := f(t, y(t)), t ∈ [a, b], (10)
for any y from C([a, b],Rn).
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Lemma 3. Let the function f : [a, b]× Ω → Rn, Ω ⊂ Rn, satisfy the condition

|f(t, x)− f(s, y)| ≤ k|t− s|α +K|x− y| (11)

for {t, s} ⊂ [a, b], {x, y} ⊂ Ω, where α ∈ (0, 1], k ∈ Rn
+ and K is an n×n matrix with non-negative

entries. Then, for any Hölder-continuous function u : [a, b] → Ω, the corresponding function Nu
also has this property.

Here and below, the absolute value sign and inequalities between vectors are understood com-
ponentwise.

Rewrite (5) in the form

um(t, ξ, η) = u0(t, ξ, η) +
(
ΛNum−1( · , ξ, η)

)
(t), t ∈ [a, b], m = 1, 2, . . . , (12)

where N is the Nemytskii operator (10) and

(Λy)(t) :=

t∫
a

y(s) ds− t− a

b− a

b∫
a

y(s) ds, t ∈ [a, b], (13)

for any y from C([a, b],Rn).
Fix a natural number q and extend the notation Tqy for vector-functions by putting Tqy :=

col (Tqy1, TqTqy2, . . . , Tqyn) for any y = (yi)
n
i=1 from C([a, b],Rn), where Tqyi is the qth order

interpolation polynomial for yi constructed with the Chebyshev nodes (6).
Introduce now a modified iteration process keeping formula (4) for u0( · , ξ, η):

vq0( · , ξ, η) := u0( · , ξ, η) (14)

and replacing (12) by the formula

vqm(t, ξ, η) := u0(t, ξ, η) +
(
ΛTqNvqm−1( · , ξ, η)

)
(t), t ∈ [a, b], m ≥ 1. (15)

For any q, formula (15) defines a vector polynomial vqm( · , ξ, η) of degree q+1 (in particular, all
these functions are continuously differentiable), which, moreover, satisfies the two-point boundary
conditions (3). The coefficients of the interpolation polynomials depend on the parameters ξ and η.

Note that, under condition (11), in view of Lemma 3, the function Nvqm−1( · , ξ, η)) appearing
in (15) always satisfies the Dini–Lipschitz condition and, therefore, the corresponding interpolation
polynomials at Chebyshev nodes uniformly converge to it.

Similarly to (12), functions (15) can be used to study the auxiliary problems (2).
In order to proceed, we introduce some notation. The symbol In stands for the unit matrix of

dimension n, r(K) denotes a spectral radius of a square matrix K. If z ∈ Rn and ϱ ∈ Rn
+, the

componentwise ϱ-neighbourhood of z is defined as Oϱ(ξ) := {ξ ∈ Rn : |ξ − z| ≤ ϱ} and, similarly,
we put Oϱ(Ω) :=

∪
z∈Ω

Oϱ(z) for any bounded Ω ⊂ Rn.

Let δΩ(f) := max
(t,z)∈[a,b]×Ω

f(t, z) − min
(t,z)∈[a,b]×Ω

f(t, z), with the componentwise computation of

maxima and minima for vector functions. For Ω ⊂ Rn, put Pq,Ω := {u : u = (ui)
n
i=1, ui ∈

Pq, u([a, b]) ⊂ Ω}. For a given continuous function f : [a, b]× Ω → Rn, set

lq,Ω(f) :=
( 2

π
ln q + 1

)
sup

p∈Pq,Ω

Eq(Np), (16)

where N is given by (10) and Eq is the error of the best minimax approximation in Pq. In (16), we
use the notation Eq(u) = col (Eq(u1), . . . , Eq(un)) for u = (ui)

n
i=1, the least upper bound in (16) is

understood componentwise.
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Fix certain closed bounded sets Da, Db in Rn and assume that we are looking for solutions u
of problem (1) with u(a) ∈ Da and u(b) ∈ Db. Put

Ω :=
{
(1− θ)ξ + θη : ξ ∈ Da, η ∈ Db, θ ∈ [0, 1]

}
. (17)

Theorem 1. Let there exist a non-negative vector ϱ such that

ϱ ≥ b− a

4

(
δOϱ(Ω)(f) + 2lq,Oϱ(Ω)(f)

)
. (18)

Assume, in addition, that f in (1) satisfies condition (11) on the set [a, b]×Oϱ(Ω) with some k and
K and the maximal eigenvalue of K satisfies the inequality

r(K) <
10

3(b− a)
. (19)

Then, for all fixed (ξ, η) ∈ Da ×Db:

1) For any m ≥ 0, q ≥ 1, the function vqm( · , ξ, η) is a vector polynomial of degree q + 1 having
values in Oϱ(Ω) and satisfying the two-point conditions (3).

2) The limits

vq∞( · , ξ, η) := lim
m→∞

vqm( · , ξ, η), q ≥ 1; v∞( · , ξ, η) := lim
q→∞

vq∞( · , ξ, η) (20)

exist uniformly on [a, b]. Functions (20) satisfy conditions (3).

3) The estimate

∣∣v∞(t, ξ, η)− vqm(t, ξ, η)
∣∣ ≤ 5

9
α1(t)K

m
∗ (1n −K∗)

−1
(
δOϱ(Ω)(f) + 2lq,Oϱ(Ω)(f)

)
holds for any t ∈ [a, b], m ≥ 0, where K∗ := 3K(b− a)/10 and

α1(t) = 2(t− a)
(
1− t− a

b− a

)
, t ∈ [a, b].

As follows from [9], the assumptions of Theorem 1, in particular, ensure the uniform convergence
of sequence (4), (5) and its limit coincides with v∞( · , ξ, η). It is important to point out that, in
contrast to formula (12), every component of vqm( · , ξ, η), m ≥ 0, is a polynomial of degree q + 1.

Theorem 2. Let (ξ, η) ∈ Ω. Under the assumptions of Theorem 1, the following two conditions
are equivalent:

1) The function u := v∞( · , ξ, η) : [a, b] → Rn is a continuously differentiable solution of problem
(1) such that u(a) ∈ Da, u(b) ∈ Db, and u([a, b]) ⊂ Oϱ(Ω).

2) The pair (ξ, η) satisfies the system of 2n determining equations

η − ξ =

b∫
a

f
(
s, v∞(s, ξ, η)

)
ds, ϕ(v∞( · , ξ, η)) = d. (21)
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The determining system (21) can be investigated by using properties of its approximate version

η − ξ =

b∫
a

f
(
s, vqm(s, ξ, η)

)
ds, ϕ(vqm( · , ξ, η)) = d, (22)

where m and q are fixed. The solvability analysis based on properties of equations (22) can be
carried out by analogy to [6, 10].

Although (18) is more restrictive than the corresponding condition from [9]

ϱ ≥ b− a

4
δOϱ(Ω)(f), (23)

one can note that, by virtue of (16) and Lemmas 1–3, lim
q→∞

lq,Oϱ(Ω)(f) = 0. Furthermore, both
(18) and (23) can be relaxed (and, in fact, the resulting conditions eventually fulfilled) by using
interval divisions similarly to [8]. The same observation can be made on condition (19), which, in
particular, after one division in the ratio 1 : 2, is replaced by the condition

r(K) <
20

3(b− a)
.

As an example of application of the approach based on the polynomial approximations (14),
(15), consider the system of differential equations

u′1(t) = u1(t)u2(t),

u′2(t) = − ln(2u1(t)), t ∈
[
0,

π

4

]
,

(24)

with the non-linear two-point boundary conditions

u1(0)−
(
u2

(π
4

))2
=

3

8
, u1(0)u2

(π
4

)
=

√
2

8
. (25)

Choose the subsets Da and Db, where one looks for the values u(a) and u(b), e.g., as follows:

Da =
{
(u1, u2) : 0.45 ≤ u1 ≤ 0.75, 0.4 ≤ u2 ≤ 0.55

}
, Db = Da.

In this case, set (17) has the form Ω = Da = Db. Putting ϱ = col (0.2, 0.35), we get

Oϱ(Ω) =
{
(u1, u2) : 0.25 ≤ u1 ≤ 0.95, 0.05 ≤ u2 ≤ 0.9

}
.

A direct computation shows that the conditions of Theorem 1 are satisfied for q large enough. By
solving the polynomial approximate determining equations (22), we obtain the numerical values
of parameters ξ1, ξ2, η1, η2, which determine the polynomial approximate solution of the given
problem (24), (25). In particular, for q = 4 and m = 7, the approximate solution u47 = col (u471, u

4
72)

is a vector polynomial of degree 5,

u471(t) ≈ 0.00456 t5 − 0.02668 t4 − 0.02838 t3 + 0.06195 t2 + 0.24987 t+ 0.5,

u472(t) ≈ 0.49982− 0.0017 t5 + 0.02231 t4 − 0.00062 t3 − 0.24956 t2 + 0.49982.

A comparison with the exact solution

u1(t) =
1

2
exp

(1
2
sin t

)
, u2(t) =

1

2
cos t

shows a high degree of accuracy of the approximate polynomial solution.
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