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1 Introduction
Analytical results presented here are based on a common research with Jan Tomeček. We focus our
attention to problems where the evolution of systems is affected by rapid changes which is modelled
by means of differential equations with impulses. Let us stress that abrupt changes of solutions
of impulsive problems imply that such solutions do not preserve the basic properties which are
associated with non-impulsive problems.

We work with a finite number m ∈ N of impulses on the compact interval [0, T ] ⊂ R. Most
papers deal with fixed-time impulses where the moments of impulses

0 < t1 < t2 < · · · < tm < T

are fixed and known before. This is a special case of so called state-dependent impulses where the
impulse moments depend on a solution of a differential equations and different solutions can have
different moments of jumps. We present two ways of determining the impulse dependence on the
solution:

• Let τ1, . . . , τm be functionals defined on a suitable functional space X and having values in
(0, T ). Then the impulse moments t1, . . . , tm are given as

ti = τi(x) ∈ (0, T ), x ∈ X, i = 1, . . . ,m.

• Let γ1, . . . , γm be functions (barriers) defined on a suitable interval [a, b] ⊂ R and having
values in (0, T ). Then the impulse moments t1, . . . , tm are given as

ti = γi(x(ti)) ∈ (0, T ), x ∈ X, i = 1, . . . ,m.

In order to get the desired number of impulse points in this case it is necessary to impose
additional conditions (transversality conditions) on γ1, . . . , γm.

2 Periodic problems
A lot of papers studying impulsive periodic problems are population or epidemic models. Differen-
tial equations in these models have mostly a form of autonomous planar differential systems. How-
ever, there are a few existence results for non-autonomous periodic problems with state-dependent
impulses:

• The first attempts can be seen in the monographs [1] and [11] investigating periodic solutions
of quasilinear systems with state-dependent impulses.
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• One of the first results that are trackable via Scopus is obtained by Bajo and Liz [2], where
a scalar nonlinear first order differential equation is studied under the assumptions of the
existence and uniqueness of a solution of the corresponding initial value problem with state-
dependent impulses, and of the existence of lower and upper solutions of the periodic problem
with state-dependent impulses. Their method of proof is based on a fixed point theorem for
a Poincaré operator.

• A generalization to a system is done by Frigon and O’Regan [8] under the assumption that
there exists a solution tube to the problem. They applied a fixed point theorem to a multi-
valued Poincaré operator.

• Further interesting result is reached by Domoshnitsky, Drakhlin and Litsyn in [7]. They
transformed a linear system with delay and state-dependent impulses to a system with fixed-
time impulses and then they proved the existence of positive periodic solutions.

• Recently, Tomeček [12] proved the existence of a periodic solution to a nonlinear second order
differential equation with ϕ-Laplacian and state-dependent impulses via lower and upper
solutions method.

All the above problems have a “classical” formulation in which impulse conditions are given out of
a differential equation. Let us demonstrate it on the van der Pol equation

x′(t) = y(t), y′(t) = µ
(
x(t)− x3(t)

3

)′
− x(t) + f(t) for a.e. t ∈ [0, T ], (1)

with the state-dependent impulse conditions

△y(τi(x)) = Ji(x), i = 1, . . . ,m, (2)

where T , µ > 0, m ∈ N, τi, Ji, i = 1, . . . ,m, are functionals defined on the set of T -periodic
functions of bounded variation and f is T -periodic Lebesgue integrable on [0, T ]. Here x′ and y′

denote the classical derivatives of the functions x and y, respectively, △y(t) = y(t+)− y(t−).
Another possible formulation of the T -periodic problem with state-dependent impulses at the

points τi(x) ∈ (0, T ) can be written in the form of the distributional differential equation

D2z = µD
(
z − z3

3

)
− z + f +

1

T

m∑
i=1

Ji(z)δτi(z), (3)

where Dz denotes the distributional derivative of a T -periodic function z of bounded variation
and δτi(z), i = 1, . . . ,m, are the Dirac T -periodic distributions which involve impulses at the state-
dependent moments τi(z), i = 1, . . . ,m.

Results on the existence of periodic solutions to distributional equations of the type (3) have
been reached by Belley, Virgilio and Guen in [4–6].

3 Antiperiodic problems
The study of antiperiodic solutions is closely related to the study of periodic solutions and their
existence plays an important role in characterizing the behaviour of nonlinear differential equa-
tions. First order differential systems with antiperiodic conditions can describe neural networks
and second order differential equations can serve as physical models, for example: Rayleigh equation
(acoustics), Duffing, Liénard or van der Pol equations (oscillation theory).
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In the study of T -antiperiodic solutions we work with functional spaces defined below which
consist of real-valued 2T -periodic functions: NBV is the space of functions of bounded variation
normalized in the sense that x(t) = 1

2 (x(t+)+x(t−)), ÑBV represents the Banach space of functions
x ∈ NBV having zero mean value, which is equipped with the norm equal to the total variation
var(x), C∞ is the classical Fréchet space of functions having derivative of an arbitrary order, for
finite Σ ⊂ [0, 2T ) we denote by PACΣ the set of all functions x ∈ NBV such that x ∈ AC(J) for
each interval J ⊂ [0, 2T ] for which Σ ∩ J = ∅, ÃC = AC∩ÑBV; for finite Σ ⊂ [0, 2T ) we denote
P̃ACΣ = PACΣ ∩ÑBV.

The first result about the existence and uniqueness of antiperiodic solutions of the distributional
Liénard equation with state-dependent imupulses has been reached by Belley and Bondo in [3].

• In order to study T -antiperiodic solutions for the classical differential Liénard equation (1)
with state-dependent impulses (2) we assume that f in (1) is T -antiperiodic and that the
condition

τi(x) ̸= τj(x) for all i, j = 1, . . . ,m, i ̸= j, x ∈ ÃC

is fulfilled.

• For x ∈ ÃC we denote the set

Σx :=
{
τ1(x), . . . , τm(x), τ1(x) + T, . . . , τm(x) + T

}
,

and say that the couple (x, y) ∈ ÃC× P̃ACΣx is a solution of the impulsive problem (1), (2)
if it satisfies the differential equation (1) and the impulse conditions (2). Such solution (x, y)
is called antiperiodic if

x(0) = −x(T ), y(0) = −y(T ).

• Motivated by [3] we construct the following distributional van der Pol equation

D2z = µD
(
z − z3

3

)
− z + f +

1

2T

m∑
i=1

Ji(z)ετi(z). (4)

The Dirac T -periodic distribution δτ from (3) is replaced by the T -antiperiodic distribution
ετ := δτ − TT δτ in (4). Here TT means the translation operator.

• We say that a function z ∈ ÑBV is a solution of the distributional equation (4) if

⟨D2z, φ⟩ =
⟨
µD

(
z − z3

3

)
− z + f +

1

2T

m∑
i=1

Ji(z)ετi(z), φ
⟩

for every φ ∈ C∞. (5)

By means of the method of apriori estimates and the Schauder fixed point theorem we get a new
existence result for (4). Then, using an equivalence between classical and distributional problems
which we proved in [9], we get the first result about the existence of a T -antiperiodic solution of
equation (1) with state-dependent impulses (2):

Theorem 3.1. Assume T ∈ (0,
√
3) and

1. f is T -antiperiodic and Lebesgue integrable on [0, T ];

2. τ1, . . . , τm are continuous with values in (0, T );

3. if i ̸= j, then τi(x) ̸= τj(x) for each x ∈ ÃC;
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4. J1, . . . ,Jm are continuous and bounded.

Then there exists µ0 > 0 such that for each µ ∈ (0, µ0] the problem (1), (2) has a T -antiperiodic
solution.

Theorem 3.1 and its generalizations are published in [10] where the optimal value of µ0 is also
specified.
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