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On the half-line R+ = [0,+∞[ , we consider the second-order linear differential equation with
argument deviation

u′′(t) + p(t)u(σ(t)) = 0, (1)
where p : R+ → R+ is a locally Lebesgue integrable function and σ : R+ → R+ is a continuous
function such that

σ(t) ≥ t for t ≥ 0.

Oscillation theory for linear ordinary differential equations is a widely studied and well-developed
topic of the general theory of differential equations. We mention some results which are closely
related to those of this paper, in particular, works of E. Hille, E. Müller-Pfeiffer, and A. Wintner
(see, e.g., [1–3, 6]). We should note that oscillation properties for the linear differential equation
with deviating argument (1), but in the case when σ(t) is a delay, were studied in [4, 5]

Solutions to equation (1) can be defined in various ways. Since we are interested in properties
of solutions in a neighbourhood of +∞, we introduce the following commonly used definitions.

Definition 1. Let t0 ∈ R+. A continuous function u : [t0,+∞[→ R is said to be a solution to
equation (1) on the interval [t0,+∞[ if it is absolutely continuous together with its first derivative
on every compact interval contained in [t0,+∞[ and satisfies equality (1) almost everywhere in
[t0,+∞[ .

Definition 2. A solution to equation (1) is said to be oscillatory if it has a zero in any neighbour-
hood of infinity, and non-oscillatory otherwise.

Firstly, we remind that if
+∞∫
0

sp(s) ds < +∞, then (1) has a proper non-oscillatory solution

(see [4, Proposition 2.1]). Therefore, we assume throughout the paper that
+∞∫
0

sp(s) ds = +∞.

Let us put

F∗ = lim inf
t→+∞

t

+∞∫
t

p(s) ds, F ∗ = lim sup
t→+∞

t

+∞∫
t

p(s) ds. (2)

We prove our main results by using lemma on a priori estimate of non-oscillatory solutions.
If we have non-oscillatory solution, then we need to find a suitable a priori lower bound of the
quantity u(σ(t))/u(t). It is not difficult to verify that

1 ≤ u(σ(t))

u(t)
for large t.
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However, we succeeded in finding a more precise estimate in Lemma 1, which allow us to establish
more efficient results.

Lemma 1. Let u be a solution to equation (1) on the interval [tu,+∞[ satisfying the inequality

u(t) > 0 for t ≥ tu.

Then
F ∗ ≤ 1

and, moreover, for any ε ∈ [0, 1[ , there exists t0(ε) ≥ tu such that(σ(t)
t

)εF∗
≤ u(σ(t))

u(t)
for σ(t) ≥ t ≥ t0(ε),

where the numbers F∗ and F ∗ are given by relations (2).

One can see that from Lemma 1 we obtain the following proposition.

Proposition. Let
F ∗ > 1.

Then every proper solution to equation (1) is oscillatory.

Hence, it is natural to suppose that
F∗ ≤ 1. (3)

Now we formulate main results. The first one contains Wintner type oscillation criterion.

Theorem 1. Let condition (3) be fulfilled and let there exist λ ∈ [0, 1[ and ε ∈ [0, 1[ such that
+∞∫
0

sλ
(σ(s)

s

)εF∗
p(s) ds = +∞. (4)

Then every proper solution to equation (1) is oscillatory.

Next criterion generalizes a result of E. Müller-Pfeiffer proved for ordinary differential equations
in [3].

Theorem 2. Let conditions (3) hold and there exist ε ∈ [0, 1[ such that

lim sup
t→+∞

1

ln t

t∫
0

(σ(s)
s

)εF∗
p(s) ds >

1

4
.

Then every proper solution to equation (1) is oscillatory.

In view of Theorem 1, we can assume that
+∞∫
0

sλ
(σ(s)

s

)εF∗
p(s) ds < +∞ for all λ ∈ [0, 1[ , ε ∈ [0, 1[ .

It allows one to define, for any ε ∈ [0, 1[ , the function

Q(t; ε) := t

+∞∫
t

(σ(s)
s

)εF∗
p(s) ds for t > 0. (5)
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By using the lower and upper limits

Q∗(ε) = lim inf
t→+∞

Q(t; ε), Q∗(ε) = lim sup
t→+∞

Q(t; ε), (6)

we establish new Hille type oscillation criteria, which coincide with some well-known results in the
case of ordinary differential equations (see, [2]).

Theorem 3. Let conditions (3) hold and there exist ε ∈ [0, 1[ such that

Q∗(ε) > 1.

Then every proper solution to equation (1) is oscillatory.

Theorem 4. Let conditions (3) hold and there exist ε ∈ [0, 1[ such that

Q∗(ε) >
1

4
. (7)

Then every proper solution to equation (1) is oscillatory.

Finally, we show two examples, where we can apply oscillatory criteria from Theorems 1 and 3
succesfully.

Example 1. Let us consider the following equation

u′′(t) +
1

(t+ 1)2
u
(
(t+ 1)2

)
= 0 for t ≥ 0. (8)

One can see that

F∗ = lim inf
t→+∞

t

+∞∫
t

1

(s+ 1)2
ds = lim inf

t→+∞

t

t+ 1
= 1,

i.e. condition (3) is fulfilled.
On the other hand, if we put λ = ε = 1

2 , then we obtain

+∞∫
0

sλ
(σ(s)

s

)εF∗
p(s) ds =

+∞∫
0

1

s+ 1
ds = +∞.

Consequently, condition (4) is satisfied and according to Theorem 1 every proper solution to equa-
tion (8) is oscillatory.

Example 2. Let us consider the equation

u′′(t) +
2 + sin(ln t) + cos(ln t)

t2
u(4t) = 0 for t > 0. (9)

One can show that

F∗ = lim inf
t→+∞

t

+∞∫
t

2 + sin(ln s) + cos(ln s)

s2
ds = lim inf

t→+∞
(2 + cos(ln t)) = 1,

i.e. condition (3) is fulfilled.
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On the other hand, if we put ε = 1
2 , then from notation (5) and (6) we obtain

Q∗

(1
2

)
= lim inf

t→+∞
Q
(
t;
1

2

)
= lim inf

t→+∞
t

+∞∫
t

2
2 + sin(ln s) + cos(ln s)

s2
ds = lim inf

t→+∞
(4 + 2 cos(ln t)) = 2.

Consequently, condition (7) is satisfied and according to Theorem 3 every proper solution to equa-
tion (9) is oscillatory.
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