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Consider the linear differential system
z=A(t)x, x€R" t>0, (1)

with a piecewise continuous bounded coefficient matrix A such that [|A(t)|| < a < +oo for all ¢ > 0.
Together with system (1), consider the perturbed system

y=At)y+Q(t)y, yeR", t>0, (2)

with a piecewise continuous bounded perturbation matrix ). For the higher exponent of system
(2), we use the notation A\, (A + Q). By R™*™ we denote the set of all real n x n-matrices with the
spectral norm || - ||.

Let M be a class of perturbations. The number A(ON) := sup{\, (A + Q) : Q € M} is
an important asymptotic characteristics for system (1). Many authors investigated how to find
A(ON) for various M, see, e.g., the monographs [3, p. 157|, [7, p. 39], the review [5], and the
papers [1,2,4,6,8-16], where the following 9t are considered:

o vanishing at infinity perturbations [15]

Q(t) — 0, t — +oc;
 exponentially small perturbations [6]
Q)| < Ngexp(—oqt), og >0, t=0;
o o-perturbations [4] (with fixed o > 0)
Q)| < Ng exp(—ot), t=0;
o power perturbations [1] with arbitrary v > 0

QM) < Not™, t>1;

o some generalized classes of perturbations [1,9] similar to previous ones;

o classes defined by various integral conditions [2,8,10-13,16].
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Note that everywhere in the above formulas, Ng > 0 is some number depending on Q.
In [1] sharp upper estimates for higher exponent of system (2) with perturbations of the class
B[] defined by the condition

QM) < Nop(t), t =0, (3)

are obtained when § is some fixed positive piecewise continuous bounded function defined for all
t > 0 and monotone decreasing to 0 with the rate of decrease less than exponential.

Non-monotonic case is partially considered in [11], where § instead of monotonicity obeys the
following conditions:

m—1
(i) there exists 0<ep<1 such that for each £ €10, e[ the equality li_r>n m~1 Y Bi=0 is valid;
m=oo k=0
(ii) there exists p > 0 such that for any & € N the inequality 5 < p/3(t) holds for each t € [k—1, k]
with the possible exception of a finite number of points.
k+1
In these conditions we use the notation 8, = [ B(t) dt.

k
It should be stressed that in [1] as well as in [11] the algorithm for evaluation of A(91) is similar

to the algorithm for evaluation of sigma-exponent due to N. A. Izobov [4].

All the above listed perturbation classes are nondegenerate in the sense that their definitions
do not contain any restrictions on the sets M(t) := {Q(t) : Q € M}, t > 0. Indeed, for each
of them we have M(t) = R™™ for all ¢ > 0. In this report we consider perturbations satisfying
the condition (3) with non-negative 8. It can be easily seen that B[F](t) = 0 € R™*" for all ¢
such that §(t) = 0. Hence, we can assume that B[] is to be be considered as one of the simplest
examples of perturbation classes with degeneracies. In the future we plan to give a comprehencive
consideration of such classes and as a first step in this direction we provide here an estimation of
A(®B[p]) for the functions /5 subject to the natural condition

t
.1
mlgnOO n /ﬂ(s) ds = 0. (4)
0
We show that N. A. Izobov’s algorithm is also applicable in this case.
To obtain the required estimation we use the approach developed in [8,11-13]. Let X (¢,7) and
Y (t,7) be the Cauchy matrices for systems (1) and (2) respectively. Denote X := X (k + 1, k),

Vi =Y (k+1,k) for k € Ny := NU{0}. Take some non-negative piecewise continuous function
k+1

8 defined for all ¢ > 0 and satisfying condition (4). Put 8 := [ B(r)dr, k € Ny, b := sup 3(¢).
k >0

Obviously, b > 0 and S < b for all £ € Ny. Now choose arbitrary perturbation @ € B[] satisfying
the inequality ||Q(t)|| < Ngp(t) for all t > 0 with some Ng > 0.

Lemma 1. For each k € Ny the matriz Yy, can be represented in the form Y = Xp(E + Vi) where
Vi € R™™ s such that |Vi|| < M By < Mb and M := Nge?++Neb,

Note that unlike [8,11-13], there is an opportunity for some Vj, to be zero for any perturbations
Q € B[A]. Indeed, we have Vi, = 0 for each k & Ng :={k e Np: B #0}.

Denote (m) ={0,1,...,m—1} for m € N. Let d be any subset of (m). Further we assume that
for d # & the elements of d are arranged in the increasing order, so that d; < dy < -+ < djq =:
H(d), where |d| is the number of elements of the set d. Thus, d = {dy,ds,...,H(d)}.

Define the multipliers Vi, k& € Ny, corresponding to the given perturbation ) by Lemma 1.

m—1
Consider matrices S7' := [[ X;Wi(d), m € N, where Wy(d) = Vi, if k € d and Wy, (d) = Eif i & d.
k=0
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Hereinafter we suppose that || denotes the product of the factors arranged in descending order of
indices. Since Xp s -+ Xp11Xr = X(k+ s+ 1,k) for any k,s € Ny, multiplying all X} with no
intermediate multipliers V}, we get

Sq" = X(m, H(d)) V(g - - - X (d2, d1)Va, X (d1,0).

Unlike [8,11-13], here some V}, can be zero and, therefore, S7* is nonzero only when d C Ng =
{k € Ny : Vi # 0}. Nevertheless, the inequality

153" 1| < [1X (m, H@)IH[VE@ll - - - [|1 X (d2, ) [|Va, [ 1 X (d1, 0)]] =: Za(m)

remains valid. Since

m—1
Y(m,0) = [[ Xi(E+ V) Z sm
=0

we can estimate the value of ||[Y'(m, 0)|| by means of Zg(m).

Theorem 1. Let h;, i € Ny, be a sequence of non-negative numbers such that h; > 0 for i € Ng.
Then the Cauchy matriz' Y of system (2) satisfies the inequality

1Y (m, 0)]| < "t pax R(d)Zy(m), meN,
c(m

where R(d) = [ ki, K(m) = >, h', (m,V):=(m)NNY.
i€d ie(m,V)

The following Lemma is a necessary tool to remove condition (i) posed on f in [11].

Lemma 2. If a sequence of non-negative numbers uy, k € Ny, satisfies the condition

1 m—1
Jim — kZ_O ug =0, (5)

then for any € €10, 1] the sequence uj,, k € Ng satisfies condition (5) too.
As in [12], put

L3 (m) = |X (m, H(d))[lp(H(d)) - - - [| X (da, dv)|| ¢(da) | X (dr, 0) ],

where ¢ : Ny — [0, +00[, d C (m), m € N. The main result of our work is given by the following
statement.

Theorem 2. The inequality
A(B[B]) < im m~'ln max Fﬁ( ) (6)

m—»00 dC(m [j)

holds for any non-negative piecewise continuous function B defined for all t > 0 and satisfying
condition (4).

Attainability of the above estimation (6) is a separate problem to be solved by a special version
of Millionshchikov’s rotation method [14].
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