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On the interval [a, b], we consider the functional differential equation

u′(t) = ℓ(u)(t) + q(t) (1)

in a Banach space (X, ∥ · ∥X), where ℓ : C([a, b];X) → B([a, b];X) is a linear operator and q ∈
B([a, b];X). Here, C([a, b];X), resp. B([a, b];X), denotes the Banach space of continuous, resp.
Bochner integrable, abstract functions f : [a, b] → X endowed with the standard norm.

Definition 1. By a solution of equation (1) we understand an abstract function u : [a, b] → X
which is strongly absolutely continuous on [a, b], differentiable a.e. on [a, b], and satisfies equality
(1) a.e. on [a, b].

Remark 2. Recall notions of strong absolute continuity and differentiability of abstract functions:
A function u : [a, b] → X is said to be strongly absolutely continuous, if for each ε > 0 there

exists δ > 0 such that
∑
i
∥u(bi) − u(ai)∥X < ε whenever {[ai, bi]} is a finite system of mutually

non-overlapping subintervals of [a, b] that satisfies
∑
i
(bi − ai) < δ.

We say that a function u : [a, b] → X is differentiable at the point t ∈ [a, b], if there is χ ∈ X
such that

lim
δ→0

∥∥∥u(t+ δ)− u(t)

δ
− χ

∥∥∥
X
= 0.

We denote χ = u′(t) the derivative of u at t. If u is differentiable at every point t ∈ E ⊆ [a, b] with
measE = b−a (in the sense of Lebesgue measure), then u is called differentiable almost everywhere
(a.e.) on [a, b].

Remark 3. Differentiability a.e. on [a, b] has to be assumed in Definition 1, because it, generally
speaking, does not follow from the strong absolute continuity. Indeed, let X = L([0, 1];R) and

u(t)(x) =

{
1 if 0 ≤ x ≤ t ≤ 1,

0 if 0 ≤ t < x ≤ 1.

Then u is strongly absolutely continuous on [0, 1], but not differentiable a.e. on [0, 1] (see [5,
Example 7.3.9]).

In what follows, we assume that the Banach space X is equipped with the preordering ≤K

generated by a certain wedge K. It means that the elements x1, x2 ∈ X, by definition, satisfy
the relation x1 ≤K x2 if and only if x2 − x1 ∈ K (we also write x2 ≥K x1). Recall that, by
a wedge (see, e.g., [2]), a closed set K ⊆ X is understood such that α1x1 + α2x2 ∈ K for arbitrary
α1, α2 ∈ [0,+∞[ and x1, x2 ∈ K. It should be noted that the fulfilment of both the relations
x1 ≤K x2 and x1 ≥K x2, generally speaking, does not imply that x1 = x2.
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The preordering ≤K in X allows one to define a preordering in the space C([a, b];X) in the
following natural way. We say that for abstract functions f1, f2 ∈ C([a, b];X), the relation f1 6 f2
holds if f1(t) ≤K f2(t) for every t ∈ [a, b]. However, in order to formulate a main result of this
contribution (namely, Theorem 10), we need to introduce a certain strict type inequality in the
space C([a, b];X).

Definition 4. We say that an element f ∈ C([a, b];X) is positive and we write f I 0, if for any
abstract function g ∈ C([a, b];X) there exists a number ε > 0 such that εg 6 f , i.e.,

εg(t) ≤K f(t) for t ∈ [a, b].

Remark 5. It is easy to see that, in the case X = R and K = [0,+∞[ , the function f ∈ C([a, b];R)
satisfies f I 0 if and only if f(t) > 0 for t ∈ [a, b].

Moreover, we assume in Theorem 10 that the operator ℓ in (1) is B-positive in the sense of the
following definition.

Definition 6. We say that a linear operator ℓ : C([a, b];X) → B([a, b];X) is B-positive if the relation
t∫

a

ℓ(u)(s) ds ≥K 0 for t ∈ [a, b]

holds for every u ∈ C([a, b];X) satisfying

u(t) ≥K 0 for t ∈ [a, b]. (2)

Remark 7. It follows from [5, Proposition 5.1.2, Definition 3.2.1] (see also [4, Theorem 4.6]) that
for any g ∈ B([a, b];X), the implication

g(t) ≥K 0 for a.e. t ∈ [a, b] =⇒
b∫

a

g(s)ds ≥K 0

is true. Therefore, a linear operator ℓ : C([a, b];X) → B([a, b];X) is B-positive provided that it is
positive (increasing), i.e., the relation

ℓ(u)(t) ≥K 0 for a.e. t ∈ [a, b]

holds for every u ∈ C([a, b];X) satisfying (2).
The problem whether the positivity of ℓ is also necessary for its B-positivity is an open question

for us.

It is well known that theorems on differential inequalities (maximum principles in other ter-
minology) are powerful tool in the theory of both ordinary and partial differential equations. For
abstract differential equation (1), one of possible theorems on differential inequalities can be for-
mulated as follows.

Definition 8. We say that a theorem on differential inequalities holds for equation (1) if the
implication

u : [a, b] → X is strongly absolutely continuous,
u is differentiable a.e. on [a, b], b

u′(t) ≥K ℓ(u)(t) for a.e. t ∈ [a, b],

u(a) ≥K 0

 =⇒ u(t) ≥K 0 for t ∈ [a, b] (3)

is true.
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Remark 9. The theorem on differential inequalities formulated in the form implication (3) is
connected with the question on the existence, uniqueness, and “sign” of a solution to the Cauchy
problem for equation (1), i.e., to the problem

u′(t) = ℓ(u)(t) + q(t), u(a) = c, (4)

where ℓ, q are as in (1) and c ∈ X.
Assume that X = R, K = [0,+∞[ , and that the theorem on differential inequalities holds for

equation (1). Then the homogeneous problem

u′(t) = ℓ(u)(t), u(a) = 0 (40)

has only the trivial solution. Indeed, let u be a solution of problem (40). Then, by virtue of (3),
the inequality u(t) ≥ 0 holds for t ∈ [a, b]. However, the function −u is also a solution of problem
(40) and thus, we get u(t) ≤ 0 for t ∈ [a, b]. Consequently, we have u ≡ 0 because K ∩ (−K) = {0}
in the considered particular case. Therefore, assuming (in addition) continuity of ℓ, we derive from
the Fredholm alternative (see [1, Theorem 2.1]) that the Cauchy problem (4) is uniquely solvable
for any q ∈ B([a, b];X) = L([a, b];R) and c ∈ R and, moreover, implication (3) yields that the
corresponding Cauchy operator is positive.

In the case of general X, the situation is much more complicated and needs a further investiga-
tion.

Theorem 10. Let ℓ : C([a, b];X) → B([a, b];X) be a linear B-positive operator and there exist
a strongly absolutely continuous function γ : [a, b] → X, which is differentiable a.e. on [a, b] and
satisfies

γ I 0,

γ′(t) ≥K ℓ(γ)(t) for a.e. t ∈ [a, b].

Then the theorem on differential inequalities holds for equation (1).

Remark 11. If X = Rn, σ1, . . . , σn ∈ {−1, 1},

K =
{
(x1, . . . , xn) ∈ Rn : σkxk ≥ 0

}
,

and ℓ is positive (increasing) in the sense of Remark 7 then, in view of Remark 5, Theorem 10
coincides with one part of [6, Theorem 3.2]. The necessity of the existence of a function γ for the
validity of a theorem on differential inequalities in Theorem 10 is still an open question. It is worth
mentioning here that, in the case of general X, the necessity indicated cannot be proved so easily
as in [6, Theorem 3.2] because neither K ∩ (−K) = {0} nor the Fredholm alternative holds (some
additional assumptions are needed).

Remark 12. One can show (see [7]) that the hyperbolic partial differential equation

∂y2(t, x)

∂t ∂x
= T (y)(t, x) + f(t, x), (5)

where T : C([a, b]× [c, d];R) → L([a, b]× [c, d];R) is a linear bounded operator1 and f ∈ L([a, b]×
[c, d];R), can be regarded as a particular case of abstract equation (1) in the space X = C([c, d];R).
Therefore, from Theorem 10 we can derive a result concerning a theorem on differential inequalities
for equation (5), which is in a compliance with [3, Theorem 3.1].

1C([a, b] × [c, d];R), resp. L([a, b] × [c, d];R), denotes the Banach space of continuous, resp. Lebesgue integrable,
functions y : [a, b]× [c, d] → R endowed with the standard norm.
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