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Let (Q,F, (Ft)t>0,P) be a stochastic basis consisting of a probability space (2, F,P) and an
increasing, right-continuous family (a filtration) (F;):>0 of complete o-subalgebras of 7. By E we
denote the expectation on this probability space. The scalar stochastic processes B;, i = 2,...,m
are scalar, independent Brownian motions on (F3)t>o (see e.g. [6]).

The following inequality holds true for any Brownian motion B(s) and any scalar stochastic
process f(s), which is integrable with respect to B(s) on [0, ¢]:

¢ 2p\ 1/2p ! P\ 1/2p
(5 O/ roase)| ) <a(B( 0/ Fokas) )

Here ¢, is some number depending on p. Some estimates on this number can be found e.g. in [6].
We consider the following system of [t6 equations with delay:

dxi(t):[—az Z it zi(h )))]dt

+Z[ZG (t, 2;(h )))]dl’ﬁ‘l() (t>0), i=1,...,n (1)
=1 j=
with the initial conditions
x'l(t) - Spl(t) (t < 0)7 Z - 17 7n77 (10/)
J}Z(t) - bZa 1= 17 , 1L, (lb)

where
1) a; are Lebesgue measurable functions, which are defined on [0, 00) and satisfy 0 < a; < a; < A;

(t € [0,00)) p-everywhere for some positive numbers a;, 4; (i = 1,...,n);

2) Fij(-,u) are Lebesgue measurable functions defined on [0, 00), Fy;(t, - ) are continuous func-
tions, which are defined on R' and satisfy |Fj;(t,u)| < Fjjlu| (t € [0,00)) p-everywhere for
some positive numbers Fi; (4,5 =1,...,n);

3) Géj( -,u) are Lebesgue measurable functions defined on [0, 00), Géj (t, -) are continuous func-
tions, which are defined on R! and satisfy ]Géj(t,u)\ < éﬁj\ul (t € [0,00)) p-everywhere for

.. —l .o
some positive numbers G;; (I =1,...,m;i,j =1,...,n);
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4) hi, hij, héj are Borel measurable functions defined on [0, 00) and satisfy 0 < ¢ — h;(t) < 7,
0<t—hi(t) <7, 0<t— héj(t) < Tl-lj (t € [0,00)) p-everywhere for some positive numbers

l _ O .
Tiy Tijs Tyy for L=1,...,ms 4,5 =1,...,m;

5) ;i are Fo-measurable scalar stochastic processes defined on [0;,0), where o; = max{7;, 74, Tz-lj,
l=1,....m; j=1,...,n};

6) b; are Fo-measurable scalar random values (i =1,...,n).

We remark that the initial value problem (1), (1,), (1) has a unique solution if the functions
Fij(t,u), Géjt,u) are Lipschits with respect to u foralll =1,...,m,i,7=1,...,n (seee. g. [3]). In
what follows, we assume that this is the case and denote by z(¢,b, ¢) the solution of (1) satisfying
(15) and (1), so that x(s,b,p) = ¢ for s < 0 and z(0,b, ) = b.

Definition 1. For a given real number p (1 < p < o0) we say that system (1) is globally ex-
ponentially p-stable (w.r.t. the initial data) if there exist positive constants ¢, § such that the
inequality
Blo(t, w0, )" < (Elzol? + esssup Elp(s) " ) exp{~As}
s<0
holds true for all ¢ > 0 and all ¢, xg.

An n X n-matrix I' = (’Vij)?,jzl is called nonnegative if v;; > 0, ¢,57 = 1,...,n, and positive if
vij >0,4,5=1,...,n.

Definition 2. A matrix I' = (Vij)ijl is called an M-matrix if v;; <0 fori,j =1,...,n,1# j
and one of the following conditions is satisfied:

o I has a positive inverse matrix I'"';
e the principal minors of the matrix I' are positive.

Below we define the n x n-matrix I' in the following way

= A5 = Z Al
14%’7'@-2 + A; Fyum + CpAi\/?i Z G” + Fy Cp Z G”
Yii =1 — — =1 — Bl i=1,...,n,
a; 2(11'
= A L Al
Ain‘jTi + CpAi\/?i Z Gij + Fij Cp Z Gij
i=1 =1 .o . .
P - Cii=1,....n, .

Theorem. If the matriz I defined above is an M-matriz, then system (1) is globally exponentially
2p-stable.

Outline of the proof (see [5] for the details).

The main idea is to use the W-method (see [1,3,4] and the references therein) to regularize
system (1) to obtain a certain integral operator in a suitable space of stochastic processes. This
operator can be constructed with the help of an auxiliary linear equation, which is similar to the
equation (1):

da(t) = [(Qa)(¢) + g(1)] dZ(2), t >0,

The solutions of this equation has the Cauchy representation

a(t) = U(t)zo + (Wg)(t), t =0,
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where U(t) is the fundamental matrix of the associated homogeneous equation, and W is the
corresponding Cauchy operator.

Assuming for the sake of simplicity that system (1) is also linear, rewriting it in the operator
form

da(t) = [(V)(t) + f(t)] dZ(t), t >0

and substituting the above Cauchy representation formula into this equation result in

dz(t) = [(Qz)(t) + (V = Q)x)(t) + f(t)] dZ (), t =0,

or

2(t) = UB)2(0) + (W(V = Qa)(t) + (WF)(), ¢ 0.

Denoting W(V — Q) = ©, we obtain the operator equation ((I —©)x)(t) = U(t)z(0) + (W f)(t). If
now the operator I — O is invertible in a suitable space of stochastic processes, then system (1) is
globally asymptotically 2p-stable.

In most implementations of this scheme, one tries to prove that the norm of the operator © is
less than 1. Then I — © becomes invertible.

However, this approach may lead to too rough estimates. A more careful approach, based on
the theory of positive matrices, was suggested in [2], where straight invertibility in norm is replaced
by matrix inequalities. In particular, if the corresponding matrix is an M-matrix, then we still can
prove the global asymptotic 2p-stability of system (1).

This approach is utilized in the paper [5] as well as in this presentation in the case of stochastic
functional differential equations.

Let us now study system (1) in two dimensions.

Corollary 1. Let n =2 in system (1) and
= Nl = N
V2 (A%Tf + A1 Fim + CpAl\/ﬁZ G+ F11) + V@ ¢p Z Gy < V2ay,
i=1 I=1
i A
(\/§a1 — V2 (A3 + A Fnm + opdiy/m Y G+ Fi) = Vaie Y G11>
i=1 1=1
— Nl — N
X (\@az -2 (Ang + A Foom + CpAQ\/EZ Gyy + F22) —Vaze, Z ng)
i=1 1=1
S e
> <\/§ (A1F12T1 + CpA1\/ﬁZ G+ F12> +Vaie, Z G12>
i=1 =1
— N — -,
X (\/§<A2F217'2 + CpAQ\/EZ Gy + le) + Vaze, Z G21>-
i=1 I=1

Then system (1) is globally exponentially 2p-stable.

Proof. We exploit the main theorem. Under the assumptions of Corollary 1 the matrix I" becomes
2x 2 with nonnegative off-diagonal entries. Thus, it will become an M-matrix, if its principal minors
~v11 and y11y22 — Y1221 are positive. Straightforward calculations show that the first inequality of
Corollary 1 yields 11 > 0, while the second inequality of Corollary 1 yields y11y22 — Y1221 > 0.
The corollaries below can be proven in a similar way. O
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Corollary 2. Consider the system

n

dzi(t) = [ —ait)zi(t) + 3 Fyy(t)z;(hy; (t))] dt
j=1

+>] lagj(t)xj(hgj(t))} dBi(t) (t>0), i=1,...,n. 2)

=1 j=

with n = 2 assuming that

V2Fy + Vaie, Y Gy < V2ay,
=1
m m
(\/551 — \/ifn - \/an Zéln) (\/552 — \/§F22 - \/aich Zélm)
=1 =1
> (\@Fu +Vai ¢ Zéllg> <\@F21 +Vaz ¢, Zélm)
=1 =1

Then system (2) is globally asymptotically 2p-stable.

Corollary 3. Consider the system

J=1,i#j
+3 ] Y Ghweeh)] aB) ¢=0), i=1,...,n (3)
=1 j=1,i#j

with n = 2 assuming that
SO T\
(\/§F12 +Vaicy Z G12) (\@le +Vascy Z G21> < 2a1as.
=1 =1

Then system (3) is globally asymptotically 2p-stable.
Example 1. Consider the system
da (1) = [ — a1z (t — hn) + e Fia (@10t — hit)) + aro Fro(za(t — hn))} dt
+ [qun(:ﬁ(t —711)) + b12aGra(z2(t — 712))} dB(t) (t>0),
duo(t) = [ — apx1(t — ha) + ag1 For (w1 (t — ha1)) + aga Foa(2a(t — h22))} dt
)

+ [521G21($1(t —721)) + baaGaa(x2(t — T22) } dB(t) (t>0),

where ai, a2, h;j, 7ij, a;j, bij, 1,5 = 1,2 are positive numbers, F;;, G;;, i,j = 1,2 are continuous
scalar functions on (—o00,400) such that |Fj;(u)| < |ul, |Gij(uw)] < |uf, 4,7 = 1,2, and B is the
standard scalar Brownian motion.

Then from Corollary 1 we deduce that the conditions

V2 (a%h% + ararihy + cpa1/h1 bin + an) +/ay epbin < V2ay,
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(\@m -2 (a%h% +aiaithy + Cpa1\/ab11 + a11> — \/Ecpbn)
X (\/i as — V2 (a%h% + agagohg + cpag\/gbzg + a22> — \/@cpbgg>
> <\/§ (a1a12h1 + cpary/hy bz + ar2) + \/acpbw)
X (\/5 (agagiha + Cpa2\/h>2b21 + agn) + \/@Cpbm)

imply the global asymptotic 2p-stability of system (4).

Assume further that a;; = b;; =0, i = 1,2 in system (4). In this case, the conditions

alh% < 1,
(\/5611 - \/ia%h%> (\@aQ - \/iagh%) > (\@ (ara12hy + Cpal\/h>1612 + ai2) + \/671613512)
X (\/5 (a2a21h2 + cpazy/ha b + asi) + \/@Cpbm)

imply the global asymptotic 2p-stability of system (4).
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