On a Mixed Nonlinear Hyperbolic Problem

Otar Jokhadze, Sergo Kharibegashvili

A. Razmadze Mathematical Institute of I. Javakhishvili Tbiisi State University, Tbilisi, Georgia E-mail: ojokhadze@yahoo.com; kharibegashvili@yahoo.com

In the plane of independent variables x and t, in the domain $D_T : 0 < x < l, 0 < t < T$, consider a mixed problem of finding a solution u(x,t) for semilinear wave equation of the form

$$u_{tt} - u_{xx} + g(u) = f(x, t), \quad (x, t) \in D_T,$$
(1)

satisfying the following initial

$$u(x,0) = \varphi(x), \quad u_t(x,0) = \psi(x), \quad 0 \le x \le l,$$
 (2)

and boundary value conditions

 $u_x(0,t) = F[u_t(0,t)], \quad u(l,t) = 0, \ 0 \le t \le T,$ (3)

where f, φ, ψ, g and F are given, while u is unknown real functions.

Let the following conditions of smoothness

$$f \in C^1(\overline{D}_T), \ g, F \in C^1(\mathbb{R}), \ \varphi \in C^2([0,l]), \ \psi \in C^1([0,l])$$

$$\tag{4}$$

be fulfilled. We assume that at points (0,0) and (l,0) the following conditions of agreement

$$\varphi'(0) = F[\psi(0)], \quad \psi'(0) = F'[\psi(0)] \{\varphi''(0) - g[\varphi(0)] + f(0,0)\}, \varphi(l) = 0, \quad \psi(l) = 0, \quad g(0) - \varphi''(l) = f(l,0)$$
(5)

are also fulfilled. Let

$$\int_{0}^{s} g(s_1) \, ds_1 \ge -M_1 s^2 - M_2, \ sF(s) \ge -M_3 \ \forall s \in \mathbb{R},$$
(6)

where $M_i := const \ge 0, \ 1 \le i \le 3$. When conditions (4)–(6) are fulfilled, for the solution $u \in C^2(\overline{D}_T)$ of the problem (1)–(3) it is valid the following a priori estimate

$$\|u\|_{C(\overline{D}_T)} \le c_1 \|f\|_{C(\overline{D}_T)} + c_2 \|\varphi\|_{C^1([0,l])} + c_3 \|\psi\|_{C([0,l])} + c_4 \|g\|_{C([-\|\varphi\|_{C([0,l])}, \|\varphi\|_{C([0,l])})} + c_5$$
(7)

with positive constants $c_i = c_i(M_1, M_2, M_3, l, T), 1 \le i \le 5$, independent on functions u, f, φ and ψ .

The problem (1)–(3) can be reduced to the system of Volterra type nonlinear integral equations, which has a continuous solution due to a priori estimate (7), Leray–Schauder's theorem and additional condition $F'(s) \neq -1$, $s \in \mathbb{R}$. In view of the conditions of smoothness (4) and agreement (5) this solution is a classical solution of the original problem. It is proved that the solution is unique.

Remark. When the conditions (6) are violated, the problem (1)–(3) may turn out to be insolvable even locally, or locally solvable with a blow-up solution. For example, when g = 0, f = 0, $F(s) = \arctan s - s$, $s \in \mathbb{R}$, and $|\varphi'(t) + \psi(t)| > \frac{\pi}{2}$, $t \in [0, l]$, then the problem (1)–(3) is insolvable even locally. Besides, if $|\varphi'(t) + \psi(t)| < \frac{\pi}{2}$ for $0 \le t < t_0 \le l$ and $|\varphi'(t_0) + \psi(t_0)| = \frac{\pi}{2}$, then a solution of this problem exists in $[0, t_0)$, and

$$\lim_{t \to t_0 - 0} \|u\|_{C^1(\overline{D}_t)} = \infty.$$

Acknowledgement

The work was supported by the Shota Rustaveli National Science Foundation (Grant # FR/86/5-109/14).