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Section 1
We consider first order nonlinear cyclic differential systems of the form

x′ − p(t)φα(y) = 0, y′ + q(t)φβ(x) = 0, (A)

where α and β are positive constants, p and q are positive continuous functions on [0,∞) and φγ ,
γ > 0, denotes the function

φγ(u) = |u|γ sgnu, u ∈ R.

We are concerned exclusively with nonoscillatory solutions of (A), by which we mean those
solutions (x, y) whose components x and y are nonoscillatory in the usual sense.

Oscillation theory of systems of the form (A) was created by Mirzov, whose achievements of
great theoretical interest are summarized in the monograph [2]. There are some topics untouched
in [2], one of which is the systematic study of nonoscillatory solutions of (A). The present work,
motivated by this observation, aims to depict a clear picture of the overall structure of nonoscillatory
solutions of (A) by analyzing their asymptotic behavior at infinity as precisely as possible.

Let (x, y) be a nonoscillatory solution of (A) on [t0,∞). Since both x and y are eventually one-
signed, they are monotone for all large t so that the limits x(∞) = lim

t→∞
x(t) and y(∞) = lim

t→∞
y(t)

exist in the extended real numbers. Thus, x(t)y(t) ̸= 0 on [T,∞) for some T ≥ t0. We say that
(x, y) is a solution of the first kind (resp. of the second kind) if x(t)y(t) > 0 (resp. x(t)y(t) < 0) for
t ≥ T .

We use the notation

Ip =

∞∫
0

p(t) dt, Iq =

∞∫
0

q(t) dt,

and examine the existence of nonoscillatory solutions of (A) by distinguishing the following four
cases:

Ip = ∞∧ Iq = ∞, Ip = ∞∧ Iq < ∞, Ip < ∞∧ Iq = ∞, Ip < ∞∧ Iq < ∞.

(The case Ip = ∞∧ Iq = ∞) In this case, as is shown by Mirzov [2], all solutions of (A) are
oscillatory, so that (A) has no nonoscillatory solutions.
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(The case Ip = ∞ ∧ Iq < ∞) In this case it can be shown that all nonoscillatory solutions
(x, y) are of the first kind, and that |x| are eventually increasing and |y| are eventually decreasing.
Thus their asymptotic behavior as t → ∞ can be classified into the three types

I(i): |x(∞)| = ∞, 0 < |y(∞)| < ∞,

I(ii): |x(∞)| = ∞, |y(∞)| = 0,

I(iii): 0 < |x(∞)| < ∞, |y(∞)| = 0.

Nonoscillatory solutions of the types I(i) and I(iii) are termed, respectively, maximal solutions
and minimal solutions of the first kind of (A), and their existence can be characterized as the
following theorem shows.

Theorem 1.1. Let α and β be any given positive constants.

(i) System (A) has solutions of the type I(i) if and only if

∞∫
0

q(t)P (t)β dt < ∞, where P (t) =

t∫
0

p(s) ds.

(ii) System (A) has solutions of the type I(iii) if and only if
∞∫
0

p(t)ρ(t)α dt < ∞, where ρ(t) =

∞∫
t

q(s) ds.

Solutions of the type I(ii), which may be termed intermediate solutions of the first kind of (A),
are so difficult to analyze that we have so far been able to handle only the system (A) whose
nonlinearity is referred to as sub-half-linear.

Theorem 1.2. Let αβ < 1. System (A) possesses a solution of the type I(ii) if and only if
∞∫
0

p(t)ρ(t)α dt < ∞ and
∞∫
0

q(t)P (t)β dt = ∞.

(The case Ip < ∞∧ Iq = ∞) In this case it is shown that all nonoscillatory solutions (x, y) are
of the second kind, and that |x| are eventually decreasing and |y| are eventually increasing. Thus
their asymptotic behavior as t → ∞ can be classified into the three types

II(i): 0 < |x(∞)| < ∞, |y(∞)| = ∞,

II(ii): |x(∞)| = 0, |y(∞)| = ∞,

II(iii): |x(∞)| = 0, 0 < |y(∞)| < ∞.

Solutions of the types II(i) and II(iii) are called, respectively, maximal solutions and minimal
solutions of the second kind of (A), while those of the type II(ii) are called intermediate solutions
of the second kind of (A). As for the solutions of this kind we have the following results which are
in parallel with Theorems 1.1 and 1.2 regarding the solutions of the first kind.

Theorem 1.3. Let α and β be any given positive constants.
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(i) System (A) has solutions of the type II(i) if and only if

∞∫
0

p(t)Q(t)α dt < ∞, where Q(t) =

t∫
0

q(s) ds.

(ii) System (A) has solutions of the type II(iii) if and only if

∞∫
0

q(t)π(t)β dt < ∞, where π(t) =

∞∫
t

p(s) ds.

Theorem 1.4. Let αβ < 1. System (A) possesses a solution of the type II(ii) if and only if

∞∫
0

q(t)π(t)β dt < ∞ and
∞∫
0

p(t)Q(t)α dt = ∞.

(The case Ip < ∞∧ Iq < ∞) In this case it is shown without difficulty that all nonoscillatory
solutions (x, y) of (A) are bounded and that both x and y have finite limits as t → ∞. As a matter
of fact, for any given constants c and d, zero or nonzero, there exists a nonoscillatory solution (x, y)
of (A) such that x(∞) = c and y(∞) = d. Thus, (A) possesses solutions of both the first and
second kinds.

Section 2
We now turn our attention to scalar second order nonlinear differential equations of the form

(p(t)φα(x
′))′ + q(t)φβ(x) = 0, (E)

where α and β are positive constants, and p and q are positive continuous functions on [0,∞).
Equation (E) is often called a generalized Emden–Fowler equation and has been the object of
intensive investigation in its own right (see e.g., [1, 3]).

We are interested in the structure of the totality of nonoscillatory solutions of equation (E). Let
x be a nonoscillatory solution of (E). We put Dx = p(t)φα(x

′) and call it the quasi-derivative of x.
Worthy of note is the fact that by the substitution y = Dx equation (E) is split into the differential
system

x′ − p(t)−
1
αφ 1

α
(y) = 0, y′ + q(t)φβ(x) = 0, (B)

which can be regarded as a special case of system (A).
We say that a nonoscillatory solution x of (E) is of the first kind or of the second kind if

x(t)Dx(t) > 0 or x(t)Dx(t) < 0 for all large t, respectively.
If p− 1

α and q satisfy
∞∫
0

p(t)−
1
α dt = ∞ and

∞∫
0

q(t) dt < ∞, (2.1)

then all nonoscillatory solutions x of (E) are of the first kind, and there are three possibilities for
their asymptotic behavior at infinity

I(i): |x(∞)| = ∞, 0 < |Dx(∞)| < ∞,
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I(ii): |x(∞)| = ∞, |Dx(∞)| = 0,

I(iii): 0 < |x(∞)| < ∞, |Dx(∞)| = 0.

If p− 1
α and q satisfy

∞∫
0

p(t)−
1
α dt < ∞ and

∞∫
0

q(t)dt = ∞, (2.2)

then all nonoscillatory solutions x of (E) are of the second kind, and there are three patterns of
their asymptotic behavior at infinity
II(i): 0 < |x(∞)| < ∞, |Dx(∞)| = ∞,

II(ii): |x(∞)| = 0, |Dx(∞)| = ∞,

II(iii): |x(∞)| = 0, 0 < |Dx(∞)| < ∞.
In order to characterize the existence of solutions of these six types of (E) it suffices to specialize

the results of Section 1 to system (B). For example, Theorems 1.2 and 1.4 applied to (B) which has
to be sub-half-linear give rise to the following results on solutions of the types I(ii) and II(ii) which
may well be termed intermediate solutions of equation (E) with α and β satisfying α > β.
Theorem 2.5. Let α > β and suppose that (2.1) holds. Then, equation (E) possesses a solution
of the type I(ii) if and only if

∞∫
0

p(t)−
1
α

( ∞∫
t

q(s) ds

)α

dt < ∞ and
∞∫
0

q(t)

( t∫
0

p(s)−
1
α ds

)β

dt = ∞.

Theorem 2.6. Let α > β and suppose that (2.2) holds. Then, equation (E) possesses a solution
of the type type II(ii) if and only if

∞∫
0

q(t)

( ∞∫
t

p(s)−
1
α ds

)β

< ∞ and
∞∫
0

p(t)−
1
α

( t∫
0

q(s) ds

)α

dt = ∞.

Finally, in the case where
∞∫
0

p(t)−
1
α dt < ∞ and

∞∫
0

q(t) dt < ∞, (2.3)

all nonoscillatory solutions x of (E) are bounded together with Dx on their intervals of existence,
and for any given constants c and d, zero or non-zero, (E) has a nonoscillatory solution x such that
x(∞) = c and Dx(∞) = d.
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