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On the Numerical Solvability of the Cauchy Problem for
Systems of Linear Ordinary Differential Equations

Malkhaz Ashordia

A. Razmadze Mathematical Institute of 1. Javakhishvili Tbiisi State University, Tbilisi, Georgia;
Sokhumi State University, Tbilisi, Georgia
E-mail: ashord@rmi. ge

There is investigated the numerical solvability question of the Cauchy problem for the system
of ordinary differential equations

X = Pty +a(0), 1)

z(to) = co, (2)

where P and ¢ are, respectively, real matrix- and vector-functions with the Lebesque integrable
components defined on a closed interval [a, b], ty € [a,b], cp € R™ is a real vector.

Let the absolutely continuous vector function z° : [a,b] — R™ be the unique solution of the
problem (1), (2).

Along with the problem (1), (2) we consider the difference scheme

1
Ay(k—1) = — (Gun(k) y(k) + Grm(k) y(k — 1) + g (K)) (k=1,...,m), (Lm)
Y(km) = Vm (2m)
(m = 2,3,...), where Gj,, (j = 1,2) and ¢, are, respectively, discrete real matrix- and vector-
functions acting from the set {1,...,m} into R"*" k,, € {0,...,m} and v, € R" for every
me {2,3,...}.

In the work, the necessary and sufficient and effective sufficient conditions are given for the
convergence of the difference scheme (1,,), (2,,) (m = 2,3,...) to the solution x° of the Cauchy
problem (1), (2).

The following notations and definitions will be used.

N, Z and R are, respectively, the sets of all natural, integer and real numbers. R} = [0, +00].
[a,b] is a closed interval.

R™™ is the space of all real n x m-matrices X = (z;;);5"; with the norm

n
IX] = max > |al.
j=1,....m =1

R® = Rnxl.

Opnxm 18 the zero n x m-matrix. I, is an identity n X n matrix.
O,, is the zero n-vector.

det(X) is the determinant of the n x n-matrix X.

b

V(X) is the sum of total variations of the components z;; (i =1,...,m; j = 1,...,m) of the
a

matrix-function X : [a, b] — R™*™.
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BV ([a, b]; R™*™) is the set of all bounded variation matrix-functions X : [a,b] — R™*™ i.e.
b
such that \/(X) < +o0.

a
L([a,b]; R™ ™) is the set of all matrix-functions X : [a,b] — R™™ whose components are
Lebesgue integrable. B
If m € N, then N, = {1,...,m} and N,;, = {0,1,...,m}.
If J C Z, then E(J; R™ ™) is the space of all matrix-functions Y : J — R™*™ with the norm

Wi,= max{HY(k)H ke J}.
A is the first order difference operator, i.e.
AY(i—1)=Y (i)=Y (i—1) for Y € E(N,,;R™™), i€ N,,.

Set

T—m,b[, (k=1,...,m—1),

[’ i = [b_ 2

T T T
IlOm: [a,a_‘_?m[? Ilk:m: |:Tkm_7ma7-km+?m

I20m:[aaa+7—7m}a Ilkm:]Tkm_TﬂaTkm+Tﬂ}a Ilmm::|b_7—7m7b:|7 (kzla---am_l)a
2 2 2 2
where
b—a
Tem = @+ kT, (K=0,...,m), T, =
m

We introduce the operators p,, : BV ([a, b]; R")— E(N,n, R™) and Gim - E(N,, R")— BV([a, b]; R")
(j = 1,2) defined by i
Pm(x)(k) = 2(Tgy,) for k€ Ny,

and

4im(y)(t) = y(k) for t € Ljpym, k€ Ny (1 =1,2)
for every m € {2,3,...}.

Definition. We say that a sequence (G1im, Gom, gm; km) (m=2,3,...) belongs to the set CS(P, g, to)
if for every ¢y € R™ and the sequence 7,, € R" (m = 2,3,...), satisfying the condition

mlﬂfoo Ym = Co,
the difference problem (1,,), (2mm) has a unique solution y, € E(Ny,;R") for any sufficiently large

m and the condition

([ =P ()5, =0

holds.

We assume that P € L([a,b];R™*"), ¢ € L([a,b;R"), Gjm € E(Npy;R™™) (5 = 1,2) and
gm € E(Nyp; R™) (m =2,3,...). In addition, we define G, (j = 1,2) and g,, at the point zero by

Gjm(0) = Onxn, 9m(0) =0, (j=1,2; m=2,3,...).

Theorem 1. Let

ml_l)I_Ii_loo Thkym — to. (3)

Then
((Gims Gams gmi k) 225, € CS(P, ¢, t0) (4)
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if and only if there exist matriz-functions P; € L([a,b]; R™*™) (j = 1,2) and a sequence of matriz-

functions H,, € E(Np,; R"*"™) (m =2,3,...) such that

P()+P2()= P(t) for t € [a,b],
mhrgoosup( ZHH m()]) < +oo (j=1,2)
lim max{HH —Iy||: k€ Np} =0,
k——+o0
Tkm
lim max{H m(D)Gjm(l) — / Pi(r)dr||: 0 <k; o,k € Nm} =0 (j=1,2)
k—+o00 it 2
and

lim max { H;l %Hmmgmm - 7mq<f> dr

k——+o0

o<k a,kzeﬁm}zo.

Corollary 1. Let the conditions (3), (5)—(7) hold and let

1
li Hp(l P;(
{5 32 - [

l=0+1

o<k a,keﬁm}:o
Tom

(i:_lvl; ]:172)

and

co < k; a,k‘eﬁm}:0 (1=-1,1),

k Tkm
1
1. - m . m -
kiTmmaX{Hm 2 Hm(i+i)gn() / alr)dr

l=0+1

Tom

where P; € L([a,b];R™™) (j =1,2), Hp, € E(N,,; R™™) (m =2,3,...). Let, moreover, either

k—+

1 m
i _sup (25 (G ()] + G (0] + g (R ) < +oc
k=1
or m
k:EI—Poosup (Z: | AHy (k — 1)H> < +00.

Then the inclusion (4) holds.
Theorem 2. Let the conditions (3), (5)—(7) hold and let

i Thin
kgrfwmax{";lg_l Gjm(l) —Té Pi(r)dr||: o <k; o,ke ]Vm} =0 (j=1,2), (10)
k Tkm
k:glfoo max{”m l:zg;rl gm(l) —T/ q(r)dr||: o <k; o,k € Nm} =0, (11)
T h Thm B
kgliloosup{HmZZU;LI;AH(i)Gjm(i) — / P(r)dr|: o <k; o,k € Nm} =0

Tom



6 International Workshop QUALITDE — 2017, December 24 — 26, 2017, Tbilisi, Georgia

and

k 1 Tkm
lim sup< |[|— Z ZAH(i)gm(i)—/q*(T) dr

{ m
koo ‘ ‘ l=0+1 i=1

o<k O',kENm}:O,

Tom

where Pj, Py; € L([a,b];R™™) (j = 1,2), ¢« € L([a,b];R"), Hy, € E(Ny; R™™) (m = 2,3,...).
Then
((Gim, Gom, gmi km)) %, € CS(P — Piyq — gu, to),

where Py (t) = Py (t) + Pia(t).

Corollary 2. Let the conditions (3), (5) hold and let there exist a natural p and matriz-functions
B; € E(N; R™™) (i =0,...,u— 1) such that

lim sup (;L Z(”Glmu(k)” + HGZmu(k)H)) < +OO7

k—+00 1
kETmmaX{‘|HmM 1( )_InH : k eNm} :Oa
k Tkm
lim max iZG ()= | Pi(r)dr|:0 <kiok€Npyp=0 (j=1,2)
k——+o0 ml_ - Jmip j . ) m ( — J=4

and

ro < k; J,keﬁm}zo,

Tkm
li m ;
el § o

Tom
where P; € L([a,b];R™™) (j =1,2),

Hmo(k‘) = In,
1 k
Hni(8) = (1 = Hos(l) = 2 S Hi )G (1) = Brsa(h) ) Hi (1),
=1

Gimi+1(k) = Hmi(k)Gjm(k),  gmit1(k) = Hmi(k)gm (k)
(c=1,2; i=1,....u—1; m=2,3,...).
Then the inclusion (4) holds.
If p =1, then Corollary 2 has the following form.

Corollary 3. Let the conditions (3), (5), (10), (11) and

1 m
im_sup (3 (1G] + [Gan )] ) < o0
k=1

k—+o0

hold, where Pj € L([a,b); R"*™) (j =1,2). Then the inclusion (4) holds.

Corollary 4. Let the conditions (3), (5), (7)—(9) hold and let there exist sequences of matriz-
functions Qjm € E(Np, R™™) (j =1,2; m =2,3,...) such that

m
det (I, + (—1YQjm(k)) #0 for k€N, (j=1,2, m=2,3,...)
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and

where

Then the inclusion (4) holds.

The question considered in the work is classical. There are a lot of papers where the problem
has been investigated (see, for example, [5,6] and the references therein). But we could not find
the necessary and sufficient conditions for the convergence of the difference schemes. Note that
there are obtained the necessary and sufficient conditions for stability of the difference schemes
circumscribed above, as well.

The proofs of the results are based on the following concept. We rewrite the problems (1), (2)
and (1), (2,) (m = 2,3,...) as the Cauchy problem for the systems of so called generalized
ordinary differential equations in the sense of Kurzweil ([5,7]). Therefore, the convergence of the
differential scheme is equivalent to the well-posedness question for the Cauchy problem for the last
systems. So, using the results of the papers [1-3] we established the present results.

The analogous results are valid for general linear boundary value problems, as well.
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On Exponential Stability of Invariant Tori of a
Class of Nonlinear Systems

Farhod Asrorov, Yuriy Perestyuk, Olena Kapustian

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
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One of the important issues in the qualitative theory of multifrequency oscillations is the ques-
tion of the stability of invariant sets of dynamical systems defined in the direct product of the
m-dimensional torus and the n-dimensional Euclidean space. The main results were obtained in
the works of A. M. Samoilenko [3]. In this paper, we have established new conditions for the
exponential stability of a trivial torus of nonlinear extensions of a dynamical system on a torus,
which are formulated in terms of the properties of the right-hand sides of the system not on the
whole torus, but only on the set of non-wandering points. The obtained results are applied to
the investigation of the stability of toroidal sets of one class of impulsive dynamical systems [4].
Relevant studies for linear extensions of dynamical systems on the torus were used in [1,5].

Consider the system of differential equations in the direct product m-dimensional torus 7, and
n-dimensional Euclidean space R"

dp dr
E - a(‘P)» dt - P(C)O,$)l‘, (1>

where = (©1,...,0m)" € T, = (x1,...,2,)T € R", the function P is continuous on 7,, x R"

and forallz € R” P(-,x),a(-) € C(Tm), C(Tm) — continuous space 2m-periodic for each component
©u, v =1,...,m, functions defined on Ty,.

Let the following conditions be fulfilled:
M >0 thatis V(p,z) € T, x R"  [|[P(p,z)]| < M, (2)
Vr >0 3L=L(r)>0 thatis Va', 2" ||2|| <r, [|2"]| <7,
Vo €Tm |[[Ple,a") = Plpa)| < Llla" - /],
FJA>0 VY, ¢" €T |a(¢") —a(@)]| < All¢”" = &'l (4)

The condition (4) guarantees that the system

do
_— = 5
2~ () )
generates a dynamic system on 7,,, which we will mark by ().

Definition ([2]). Point ¢ € Ty, is called the wandering point of a dynamic system (5) if there is a
neighborhood U(y) and moment of time 7' = T'(¢) > 0 such that

Ule)Ne(U(p) =2 Vt>T.

Denote by €2 the set of nonwandering points of the dynamic system (5). Since T, is a compact,
then Q is a non-empty, invariant, compact subset 7,,. In addition, the following lemma is true.

Lemma ([2]). For alle > 0 there exist T(e) > 0, N () > 0 such that for all ¢ & §2 the corresponding
trajectory o(p) is only a finite period of time which does not exceed T'(e), outside e-neighborhood
set Q, leaving this neighborhood set no more N(g) times.
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The main purpose of the work is to establish the exponential stability of the trivial torus z = 0,
@ € Ty of the system (1) in terms of the properties of the function ¢ — P(p,0) on the set of
non-lattice points €2 of a dynamical system (5), as well as apply the obtained results to the study
of the stability of toroidal sets of impulse dynamical systems generated by the problem (1).

Let’s denote ¢ € T, x € R™

Plp,2) = 5 (Pl,2) + PT(p,),
A, x) — biggest eigenvalue P(p, ).
Theorem 1. Let the condition be fulfilled
VoeQ Aep,0)<D0. (6)

Then the trivial torus of system (1) is exponentially stable, i.e. there are constants K > 0, v > 0,
§ > 0 such as for all ¢ € Ty, as 2° € R, ||2°)| < § fair inequality

VE>0 a(t g2l < Kll2®lle™™,

where x(t, @, x°) — solution to the Cauchy problem

& = Ploe),a)e, a(0) =2

Remark. From the proof of the theorem it follows that for arbitrary ¢ € T, the following inequal-
ities are performed

t
Vt>0 exp{/é(g&s(@),r) ds} < Ke M,
0

where

o, ) = i Mg, 2).

As an example, consider system (on 7; x R?)

= (5) "
dxrq
dt | (—cos(p+x1) sin(p+ 23) T 8
drs | ( sin(p —a3)  —cos(p + x1)> <x2> (8)
dt
Dynamic system on 77, generated (7), has a set of nonwandering points

Q={p=0}

Symmetric matrix P(0,0) = <_01 _01) has its own eigenvalues A\; = A2 = —1, so the condition

(6) is fulfilled and by Theorem 1 trivial torus of system (7), (8) is exponentially stable.
As an application in the phase space T, x R” the impulsive system of differential equations is
considered

dp dx
_— = —_— = P
o = ae), o (¢, z), 9)

AJ;‘QEF = I(¢p, .’L')LL‘, (1(])
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where are the functions a, P satisfie the conditions (2)—(5), I is continuous and limited to 7y, x R™
and for all x € R" I(-,x) € C(Tn).
Impulse set T' is given by equality

F:{SOETm| (I)(SD):O}a

where ® € C(7,,). Assume that V¢ € Ty, there exist {t;(¢)}2; C (0,+00) — roots of an equation
®(p(¢)) = 0, moreover,

30>0VeeTy Vi>1 tip(p) —ti(p) > 0. (11)

We will assume
a=max [|E + I(p,0)],
el

where E — unit matrix.

Theorem 2. Let the condition (11) be fulfilled and

1
Ve i Ina+ A(p,0) < 0.

Then the trivial torus of system (8),(9) is exponentially stable.
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to Weakly Superlinear Equations
with Potential of General Form
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1 Introduction

Consider the equation
v =p(x,y,y sy )y signy, n>4, k> (1.1)

New results are proved on asymptotic behavior of blow-up and Kneser (see [7, Definition 13.1])
solutions to this equation. The same results concerning equation (1.1) with the constant potential
p = po > 0 are proved in [6]. In this paper one can also find the history of these problems. To prove
the results, the equation is reduced to a dynamical system on an (n—1)-dimensional compact sphere
(see [6]). We study the behavior of the trajectories of this system corresponding to constant-sign
parts of solutions to (1.1). It is a modification of the method applied for the first time in [1] for the
description of the asymptotic behavior of blow-up solutions to equation (1.1) with n = 3,4. See
also [2]. Later an asymptotic classification of solutions to (1.1) with n = 3,4 was obtained by that
method (see [3,5] and the references here).

In particular, it was proved that for n = 3,4 all blow-up and Kneser solutions to equation (1.1)
have the power-law asymptotic behavior (see [2,3]), namely, for blow-up at some point z* solutions
y(z) it was obtained that

y(z) = C(a" —z)"*(1 + o(1)) (1.2)
with .
n _ 1 .
o= ck 1_})0]1})(3—1—05)_ (1.3)

It was also proved for equation (1.1) with (—1)"p = py > 0 for sufficiently large n (see [8]) and
for n = 12,13,14 (see [4]) that there exists k& > 1 such that equation (1.1) has a solution with
non-power-law behavior, namely,

y(x) = (27 — )" h(log(z" — z)),

where h is a positive periodic non-constant function on R. We will discuss this problem for n > 15.

2 Main Results

Theorem 2.1. Suppose p € C(R"*1) N Lipy, .y (R") and p — po > 0 as z — 2%, yo —
00, ..., Yn—1 —> 00. Then for any integer n > 4 there exists K > 1 such that for any real k € (1, K),

any solution to equation (1.1) tending to +oo as x — x* — 0 has power-law asymptotic behavior
(1.2), (1.3).
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Theorem 2.2. Suppose p € C(R™') N Lip,, ., (R") and (=1)"p — po > 0 as 2 — oo,
Yo — 0,...,Yn_1 — 0. Then for any integer n > 4 there exists K > 1 such that all Kneser solutions
to equation (1.1) with any real k € (1, K) tend to zero with power-law asymptotic behavior, namely,

y(z) = Clz[~*(1 + o(1)), = = oo,

with a and C' given by (1.3).

3 Sketch of the Proof

Proof. To prove Theorem 2.1, as in the proof of Theorem 3.1 (see [6]), we put

n 1
— =n—1. 3.1
k-1 T " (3.1)

Consider equation (1.1) with p = pg > 0. Without loss of generality we can assume that pg = 1.
To prove the theorem, an auxiliary dynamical system is investigated on the m-dimensional sphere.
To define it note that if a function y(z) is a solution to equation (1.1) with p = py > 0, the same
is true for the function

2(x) = Ay(A"z + B) (3.2)

with any constants A > 0 and B.
Any non-trivial solution y(z) of equation (1.1) with p = pg > 0 generates in R™ \ {0} the curve
given parametrically by

(y(@),y/ @),y (@), ...y (x)).

We can define an equivalence relation on R™ \ {0} such that all solutions obtained from y(z) by
(3.2) with A > 0 generate equivalent curves, i.e., curves passing through equivalent points (maybe
for different x). We assume the points (yo, y1, 42, - - -, Ym) and (20, 21, 22, . . ., 2, ) in R™\ {0} to be
equivalent if and only if there exists a constant A > 0 such that

zj = AHE=y e {0,1,...,m}.
The obtained quotient space is homeomorphic to the m-dimensional sphere
S"={yeR": yi+uyi+tuys+ o tuyn =1}
having exactly one representative of each equivalence class since the equation

)\Zny(Z) + )\2(n+2(k—1))y% 4t )\2(n+m(kz—1))y72n -1
has exactly one positive root A for any (yo,y1,v2,-..,ym) € R™\ {0}.

Equivalent curves in R™ \ {0} generate the same curves in the quotient space. The last ones
are trajectories of an appropriate dynamical system, which can be described, in different charts
covering the quotient space, by different formulae using different independent variables. A unique
common independent variable can be obtained from those ones by using a partition of unity.

Within the chart that covers the points corresponding to positive values of solutions and has
the coordinate functions

uj =yWy= 10 je{1,...,m},
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the dynamical system can be written as

du1
dt = Uz — (1 + 7)“%7
duj . .
E:U‘j+1_(1 +vj)uiug, jE€{2,...,m—1}, (3.3)
d
% =1—(1+ym)ujup,

with the independent variable
X

t= [ ey e
o
The described dynamical system has some equilibrium points corresponding to the solutions
to equation (1.1) with p = pg > 0 having the exact power-law behavior. One of them, which

corresponds to the n-positive solutions with exact power-law behavior, can be found in terms of its
u; coordinates noted by (ai,...,anm):

J
aj+1 = (1+7j)a1a] :ajl+1 H(1+7l)7 .7 € {L"'vm_l}a
=1 (3.4)

m

o = (T]a +75))_1/".

=1

Instead of system (3.3) it is more convenient for our current purposes to use another one obtained

by the substitution 7 = ait, u; = a;v;, j € {1,...,m}:
dU1 2
21 _
M (e - 0d),
dv; ) .
di’l? = (1 +’Y])(Uj+1 — vlvj), VS {2, Lo, — 1},
d
Em (1 4 ym) (1 — v1om).
dr

The above equilibrium point has in the new chart all coordinates equal to 1.

Up to the moment, we actually considered, for each v > 0, its own dynamical system defined
on its own quotient space homeomorphic to the m-dimensional sphere. In what follows, we need
one sphere with a y-parameterized dynamical system having an equilibrium point common for all
v in consideration. Thus, the points (yo,y1,-..,Ym) € R\ {0} obtained while treating solutions to
(1.1) with p = pp > 0 and different k& will generate the same point on S™ if their corresponding
coordinates have the same sign and the tuples

)
T+ym

y |t yY)
(!y|: a1 s ’aj
if considered as sets of projective coordinates, define the same point in the projective space RP™.
In particular, for points corresponding to n-positive solutions this means that they have the same
v; coordinates in the related charts. Hereafter, the domain consisting of all points with positive
v; coordinates is denoted by S”*. The only equilibrium point in S%*, which has all v; coordinates
equal to 1, is denoted by v*.
For further proof we need the following

)

_1
I+vs

am
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Lemma 3.1 (see [6]). There exist v2 > 0 and an open neighborhood U of the point v* such that
for any positive v < 7o, any trajectory of the global dynamical system passing through the closure
U tends to v*. If such a trajectory does not coincide with v*, then it passes transversally, at some
time, through the boundary OU .

Now let us consider a solution y(x) to equation (1.1), in suggestion that P — 1 as = — zx*,

Yo = 00, ..., Yn—1 — 00. This solution generates in S™ a curve described in the same chart by the
system

dvy

o (1+7)(v2 = vi),

dv; : :

E :(1+’Y])(Uj+1—vlvj), J S {25"'7m_1}5 (35)

dv

d;.n = (1 + Wm)(Q(T) - 'Ulvm)a

with the function ¢(7) obtained by the correspondent substitution in P, and it tends to 1 as 7 — oo.

Lemma 3.2. The set of all w-limit points of the trajectory described by (3.5) with q() tending to
1 as T — o0 is the union of some whole trajectories of system (3.5).

The proof of this lemma is almost the same as the proof of Lemma 5.6 in [3].

Since S™ is a compact set, any trajectory s(7) on it has at least one w-limit point. If this
w-limit point is unique, then it is the limit of the trajectory. So, if the trajectory does not tend to
v*, then it has at least one w-limit point w # v*. If the trajectory s(7) is generated by a solution
to equation (1.1) tending to 400 as x — z* — 0, then we can assume that w € ST". According to
Lemma 3.1, the trajectory s1(7) of (3.5), passing through the point w, then it passes transversally,
at some time, through the boundary OU for some v € (0,72). When the function ¢(7) is sufficiently
close to 1, then the trajectory s(7) also passes transversally through OU. In this case it can enter
U but cannot leave it. So, the points s1(7), outside of U, cannot be w-limit points of s(7). This
contradiction to Lemma 3.2 shows that s(7) — v* as 7 — oo. In particular,

z1\ 1+
fulz(—) — 1 as 7 — co.
20

It means that the corresponding solution y(z) to equation (1.1) satisfies the condition

/

Y
alyl-w

— 1 as z— 2" —0.
So,
Y ~ay't as x — a* —0,
y~ (@) 7@ —2)77,
and from (3.1) and (3.4) we obtain
yN(a(a—l—l)---(a—l—n—1))ﬁ(aj*—x)_a, x—x*—0. (3.6)

It means that Theorem 2.1 for pg = 1 is proved.
1
If y(x) is a solution to equation (1.1) with P tending to an arbitrary pp > 0, then ypo*-T is a

1
solution to equation (1.1) with a similar function P tending to 1. So, ypo*—T satisfies (3.6), and,

B (a(a+l)---(a+n—1)
Do
Theorem 2.1 is proved. O

)m(x* —z)"*(1+0(1)) as z — 2" —0.

By similar considerations we can prove Theorem 2.2.
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1 Introduction

For a given positive integer number n we denote by M"™ the vector space of linear differential
systems

i =A(t)r, z€R", teR" =0, +o0), (1.1)

with continuous and bounded on the semiaxis R matrix functions A: R™ — End R™ (we identify
systems (1.1) with their coefficient matrices) with usual operations of addition and multiplying by
real numbers. Let us introduce the two most commonly used in the theory of Lyapunov exponents
topologies in the vector space M": the uniform one given by the norm

[A]l = sup [A(t)], A e M,

teRt

and the compact-open one given by the metric

1
pc(A, B) = sup min{]A(t) — B(t)|, f}, A, BeM"
teR* t

where |A(t)| = sup |A(t)z|. The resulting topological spaces we denote by My, and M, respec-
|z|=1
tively.
The following definition of the Lyapunov exponents of system (1.1) is equivalent to the classical
one [5, p. 34] and is more convenient for our purposes.

Definition 1.1. The Lyapunov exponents of system (1.1) are defined [2] by

— 1
Ai(A) = inf sup lim - In|z(¢t)], i=1,n,
LEGi(S(A)) ger\{o} t+oo T

where S(A) is the vector space of solutions of system (1.1) and G;(V) is the set of i-dimensional
subspaces of a vector space V.
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In our notation the Lyapunov exponents are numbered in non-decreasing order, unlike [7].
Let M be a metric space. Consider a family

i=A(t,p)z, *r €R", teRT, (1.2)

of linear differential systems depending on a parameter u € M and satisfying the property: for any
fixed p system (1.2) belongs to the space M" (i.e. has a continuous and bounded on the semiaxis
coefficient matrix). For any fixed ¢ € {1,...,n} we put in correspondence with each y € M the
i-th Lyapunov exponent of system (1.2) and as a result obtain the function A?: M — R called the
i-th Lyapunov exponent of family (1.2). We identify families (1.2) with their coefficient matrices,
the same as we do for systems (1.1).

Further we will consider families (1.2) with two different types of continuous dependence on
a parameter p € M. Matrix function A of family (1.2) represents a mapping M — M"™ defined
by p +— A(-,u). Therefore for families (1.2) definition of continuity in parameter depends on a
topology in the space M™. Let A%(M) denote the class of families (1.2) for which the mapping
M — M™ is continuous when M" is endowed with the compact-open topology and let A7 (M)
denote the class of families (1.2) for which the mapping M — M™ is continuous when M™" is
endowed with the uniform topology. In other words, the class A (M) consists of families (1.2)
such that for any fixed p € M and any 7' > 0

ilgbtg[l&% |A(t, v) — A(t, p)|| =0
holds, i.e. convergence is uniform on each line segment. The class A}, (M) consists of families (1.2)
such that for any fixed u € M

T [[A(-,v) = A p)][ = 0
holds, i.e. convergence is uniform on the whole semiaxis.

A natural problem stated by V. M. Millionshchikov [6] is to describe the Lyapunov exponents
Af‘ of families (1.2) as functions on a metric space M. In a significant step towards its solution,
V. M. Millionshchikov proved [6,8] that for each i € {1,...,n} and any A € A% the function A
can be represented as the limit of a decreasing sequence of functions of the first Baire class. In
particular, this means that A;A belongs to the second Baire class. Simple examples show that for
families from A7 the Lyapunov exponents Af‘, i = 1,n, can be everywhere discontinuous even
starting from n = 1. M. I. Rakhimberdiev proved [10] that in the Millionshchikov theorem the
number of Baire class cannot be reduced. An exact characterization of Lyapunov exponents of
families from A% is given in paper [4]: a family A € A%(M) satisfying the equality A = f
exists if and only if the function f is upper-limit (the definition is given below) and has an upper
semicontinuous minorant. Moreover, in paper [4] the author proved that an n-tuple (f1, fa,..., fn)
of functions M — R" coincides with the n-tuple (A{',... AZ) of the Lyapunov exponents of some
family A € AR (M) if and only if each function f; satisfies conditions above and the inequalities
filp) <--- < fo(w) hold for all u € M.

It is easy to see that for any space M and family A € A} (M) (the only) Lyapunov exponent
of family (1.2) is continuous. O. Perron gave [9] (see also [3, 1.4]) an example of a mapping
A € A%([0,1]) such that the largest Lyapunov exponent of family (1.2) is not upper semicontinuous.
For any metric space M, positive integers n and i € {1,...,n} the full description of the i-th
Lyapunov exponent of family A € A}, (M) is given in paper [1]: a family A € A(M) satisfying
the equality A;A = f exists if and only if the function f is upper-limit and has continuous minorant
and majorant.

The main purpose of this report is to describe the set of n-tuples {(Af},...,AZ) : A € A%(M)}
of the Lyapunov exponents for any given metric space M and positive integer n.
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Definition 1.2. We call a function f: M — R upper-limit if there exists a sequence of continuous
functions fi: M — R, k € N, such that

f(u) = Tim fi(p), pe M.

Remark 1.1. The property of a function f: M — R being upper-limit is equivalent to each of the
next conditions:

(1) the function f can be represented as the pointwise limit of a decreasing sequence of functions
of the first Baire class;

(2) pre-image of every semi-interval [r, +00), r € R, under the mapping f is a Gs-set.

In the notation of the monograph [2, §37.1] functions satisfying this condition constitute class
(*,Gs). The equivalence of conditions (1) and (2) is established in [2, §37.1] and that of condition
(2) and Definition 1.2 is demonstrated in [4, Remark 3].

2 Main result

Theorem. Consider an arbitrary metric space M, an integer number n > 2 and a set of functions
fir M - R, i=T1n. A family A € A%(M) satisfying equalities AL = fi, i = 1,n, exists if and
only if (1) the inequalities f1(p) < --- < fo(p) hold for each u € M and (2) each function f;,
1= 1,n, is upper-limit and has continuous minorant and majorant. Moreover, if all functions f;,
i = 1,n, are bounded, then the coefficient matriz of family A can be chosen bounded.

Remark 2.1. In the case n = 1 family (1.2) satisfying the required conditions exists if and only if
the function f; is continuous.

Remark 2.2. It is easy to see that the conditions of the theorem above are stronger than those of
an analogous theorem of paper [4]: our theorem requires the existence of continuous minorant and
majorant for each of the given functions, while in [4] only the existence of an upper-semicontinuous
minorant is required.

References

[1] V. V. Bykov, Functions defined by the Lyapunov exponents of families of linear differential
systems continuously depending on the parameter uniformly on the half-axis. (Russian) Diff.
Uravn. 53 (2017), no. 12, 1579-1592.

[2] F. Hausdorff, Set Theory. Second edition. Translated from the German by John R. Aumann
et al Chelsea Publishing Co., New York, 1962.

[3] N. A. Izobov, Lyapunov Ezponents and Stability. Stability Oscillations and Optimization of
Systems 6. Cambridge Scientific Publishers, Cambridge, 2013.

[4] M. V. Karpuk, Lyapunov exponents of families of morphisms of metrized vector bundles as
functions on the base of the bundle. (Russian) Differ. Uravn. 50 (2014), no. 10, 1332-1338;
transltion in Differ. Equ. 50 (2014), no. 10, 1322-1328.

[5] A. M. Lyapunov, Collected Works. Vol. II. (Russian) Izdat. Akad. Nauk SSSR, Moscow, 1956.

[6] V. M. Millionshchikov, Baire classes of functions and Lyapunov exponents. I. (Russian) Dif-
ferentsial’'nye Uravneniya 16 (1980), no. 8, 1408-1416.



International Workshop QUALITDE — 2017, December 24 — 26, 2017, Tbilisi, Georgia 19

[7] V. M. Millionshchikov, Formulas for the Lyapunov exponents of linear systems of differential
equations. (Russian) Thiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 22 (1987), 150-179.

[8] V. M. Millionshchikov, Lyapunov exponents as functions of a parameter. (Russian) Mat. Sb.
(N.S.) 137(179) (1988), no. 3, 364-380; translation in Math. USSR-Sb. 65 (1990), no. 2,
369-384.

[9] O. Perron, Uber Stabilitit und asymptotisches Verhalten der Integrale von Differentialgle-
ichungssystemen. (German) Math. Z. 29 (1929), no. 1, 129-160.

[10] M. I. Rakhimberdiev, Baire class of the Lyapunov indices. (Russian) Mat. Zametki 31 (1982),
925-931; translation in Math. Notes 31 (1982), 467-470.



20 International Workshop QUALITDE — 2017, December 24 — 26, 2017, Tbilisi, Georgia

Asymptotic Representations for Oscillatory Solutions of
Higher Order Differential Equations

Miroslav Bartusek, Zuzana Dosla

Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
E-mail: bartusek@math.muni.cz; dosla@math.muni.cz

Mauro Marini

Department of Mathematics and Informatics “U. Dini”, University of Florence, Italy
E-mail: mauro.marini@unifi.it

We deal with an oscillation problem for the higher order nonlinear differential equation with a
middle term

2™ (@) + q®)z D (@) +r(t) f(z(t)) =0, n>3. (0.1)

Precisely, we study the existence of oscillatory solutions of (0.1) which are bounded and not van-
ishing at infinity under the following assumptions:

(i) q € C'0,00), q(t) > qo > 0 for large t, and
/yq'(t) dt < .
0

(ii) r € C[0, 00).
(iii) f € C(R) such that f(u)u > 0 for u # 0.

Note that the function r may change its sign.

By a solution of (0.1) we mean a continuously differentiable function x up to n order defined
on [T,,00), T, > 0, such that satisfies (0.1) on [T, o0) and sup{|z(¢)| : ¢t > T} > 0 for T > T,.
As usual, a solution z of (0.1) is said to be oscillatory if there exists a sequence {t,} tending to
infinity such that x(¢,) = 0.

The assumption (i) assures that the second order linear equation

h"(t) + q(t)h(t) =0 (0.2)

is oscillatory. Moreover, since ¢ is bounded and has bounded variation on [0, c0), all solutions of
(0.2) are bounded together with their derivatives.
In our approach equation (0.1) is studied as a perturbation of the linear differential equation

y " () +a(t)y" D (1) = 0. (0.3)

From this point of view, our results are mainly motivated by the previous ones obtained by I. Kig-
uradze [5] for the special case ¢(t) = 1, namely for the equation

2™ () + 2D () 4 r(t) f(2(t)) = 0. (0.4)
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It was shown in [5] that, if r is positive and sufficient large in some sense, then for n even
every solution of (0.4) is oscillatory and for n odd every proper solution of (0.4) is oscillatory, or is
vanishing at infinity together with its derivatives, or admits the asymptotic representation

z(t) = (1 +sin(t — ¢)) + (1),

where ¢, ¢ are suitable constants and € is a continuous function for ¢ > 0 which vanishes at infinity.
The existence of bounded oscillatory solutions for equations of type (0.1) has attracted the attention
of many authors, see, e.g., the monograph [6], the papers [1-3] and references therein. Observe
that if ¢ is a positive constant, then (0.3) has oscillatory, bounded and not vanishing at infinity
solutions. If ¢ is not constant and (i) is satisfied, then, as already claimed, these properties remain
to hold for the second order equation (0.2). Thus, it is natural to ask under which assumptions
these properties are valid also for (0.3) and the more general case (0.1). Here, we give a positive
answer to both these questions. In particular, our main results yield the existence of oscillatory
solutions of (0.1), which are bounded and not vanishing at infinity. These results complete recent
ones in [2| and extend similar ones in [5, Theorem 1.4], which are proved for equation (0.4). An
application that concerns the influence of the perturbing term r on the change of the oscillatory
character passing from (0.3) to the linear equation

2™ () + q() ™D () + r(t)z(t) =0, n >3, (0.5)

is given.

Below we use the following notation for the growth of unbounded solutions.

The symbol g1 = O(g2) as t — oo means, as usual, that there exists a constant M such that
g1 (B)] < M]ga(t)] for large t.

1 Oscillatory solutions in the linear case

Equations (0.2) and (0.3) are strictly related. When ¢(¢) = 1, a basis of the space of solutions of
(0.3) is given by
t/, j=0,1,...,n—3, sint, cost. (1.1)

In the general case, that is when ¢ is not constant, it is easy to see that a basis of the space of
solutions of (0.3) is given by

t, j=0,1,...,n—=3, Ty, I, (1.2)
where

r,= /(t —5)"Bu(s)ds, T,= /(t —5)"3u(s) ds (1.3)
0 0

and u, v are two independent solutions of (0.2).
The following existence result for oscillatory solutions of (0.2), which are bounded and not
vanishing at infinity, holds.

Theorem 1.1 ([3, Theorem 2|). Let n > 3, u be a nontrivial solution of (0.2) and

o

/s”_3|q’(s)| ds < 0. (1.4)

0
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Then (0.3) has an oscillatory solution ¢ such that

o(t) = u'(t)+e(t) forn odd,
“\u)+e(t)  forn even,

where € is a continuous function on [0,00) and tlim e(t) = 0. In particular,
—00

0 < limsup |¢(t)| < co.
t—r00

The following asymptotic expressions of the integrals in (1.3) is needed for proving Theorem 1.1.

Lemma 1.1 ([3, Lemma 5]). Let n > 3 and (1.4) hold. If u is a nontrivial (oscillatory) solution

of (0.2), then there exist constants ¢;, i =0,1...,n—2, ¢,—o # 0, and a function & such that
n—3 .
Z cit' + cp_ot/(t) + £(t), forn odd,
Tu(t) = =

n—3
Z cit' + cn_ou(t) + £(t), forn even,
i=0

where lim e(t) = 0.
t—00

2 Oscillatory solutions in the nonlinear case

Let
F(u) =max {|f(v)|: —u<v<u}.

The following criterion concerns the nonexistence of solutions of (0.1) vanishing at infinity.

Theorem 2.1 ([3, Theorem 1]). Let n >3, f € C*(R) and

o
/t"%(t)\ dt < oo, (2.1)
0
Then (0.1) does not have nontrivial solutions x (oscillatory or mnonoscillatory) satisfying
tlim z(t) = 0.
—00

The following existence theorems hold.

Theorem 2.2 (]2, Theorem 1]). Assume n > 3. Let for any positive constant X\ and for some
j=0,....n—3

/ =3 B () | (1) dt < oo,
0

Then for any solution y of (0.3) such that y(t) = O(t)) as t — oo, there exists a solution x of (0.1)
such that for large t ‘ ‘
2O @) = yD(t) +ei(t), i=0,...,n—1,

where €; are functions of bounded variation for large t and tlim gi(t)=0,i=0,...,n—1.
— 00

Using Theorem 2.2 and Lemma 1.1 we get the asymptotic representations for solutions of (0.1).
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Theorem 2.3 ([3, Theorem 4]). Let n > 3 and u, v be two linearly independent solutions of (0.2).
Assume (1.4) and for any positive constant \

oo
/t” ST |r(t)| dt < oo. (2.2)
0
Then for any vector (cg,c1,...,cn—1) € R™ there exists a solution x of (0.1) such that
n—3 '
Z cit' + cp_ot/(t) + cp_10'(t) + €(t)  for n odd,
)= {0 23

Z cit' 4+ cp_ou(t) + co1v(t) +e(t)  forn even,

where lim e(t) = 0. If, in addition, f € C*(R) and there exists M > 0 such that

—00
@) < MF(u) for large Ju], (2.4)
then the solution x given by (2.3) is unique.

Theorem 2.3 extends [5, Theorem 1.4] stated for (0.4) with r(¢) > 0.

The argument for proving Theorems 2.2 and 2.3 is based on the Ascoli theorem and an iterative
method, which can be also useful for a numerical estimation of solutions. Moreover, in [2] the cases
n =3 and n = 4 are studied in details.

As application, consider the Emden—Fowler type equation

2 (@) + q() ™D () 4 r(t)|z(t)] sgna(t) = 0, A > 0. (2.5)

Then (2.4) is satisfied for any A > 0 and (2.2) reads as

o0

/ tP=IOHD (4| dt < oo
0
Thus, according to Theorem 2.3, for a fixed vector (co,c1,...,cp—1) there exists a unique solution

of (2.5) which has the asymptotic representation (2.3).

Another consequence of our results is the following.

Denote by S, and S, the solution space of (0.3) and (0.5), respectively. We say that (0.3) and
(0.5) are asymptotically equivalent, if there exists a 1 — 1 map T : S, — S, such that for every
y € Sy there exists a unique « € S, such that T'(y) = = and

lim (z(t) — y(t)) = 0.

t—o0
Applying Theorems 2.1 and 2.2 we get the following.

Theorem 2.4 ( [3, Theorem 5]). Assume n > 3 and

o0

/t2”_6|r(t)| dt < oo.

0

Then linear equations (0.3) and (0.5) are asymptotically equivalent.
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The following example illustrates Theorem 2.3 and it is inspired from [4, page 113].

Example. Consider the equation
2O () + q()z® (t) + r(t)23(t) = 0. (2.6)

where

(1) 1+(t+1)73 i t+2<t+1)74 ¢ 1(t+1>75 24
= =) s = ~) cost— = —) cos
7 ) ST\ o "2 °

and r € C[0,00) and t¥r(t) € L'[0,00). A standard calculation shows that q(t) > 1/2 for large ¢
and ¢’ € L'[0,00). Thus, assumption (i) is satisfied. Moreover, also (1.4) and (2.2) are verified.

Since the function .
1
u(t) = (cost) [exp <8/ [ESIE Cossdsﬂ
0

is a solution of (0.2), see [4, page 113] with minor changes, in view of Theorem 2.3, for any vector
(co,...,c3), equation (2.6) has the solution x given by

z(t) = co + 1t + cot® + c3u’ (t) + (t)

where lim (¢) = 0.
—00
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Let D be a compact subset of R™ and AP(R x D,R™) be a function space f : Rx D — R™. Each
function f(t,xz) € AP(R x D,R"™) is continuous in the collection of variables and almost periodic
in the ¢ uniformly with respect to z € D. According to [5, p. 60] we denote frequency modulus
of function f as Mod(f), i.e. it is the smallest additive group of real numbers containing a set
of Fourier exponents (frequencies) of function f. Throughout the paper we consider only systems
written in the normal form. By the frequency modulus of a system of almost periodic equations
we mean modulus of frequencies of its right-hand side. J. Kurzweil, O. Vejvoda in [6] showed
that systems of ordinary almost periodic differential equations can have strongly irregular almost
periodic solutions, i.e. intersection of frequency modulus this solutions with modulus of frequencies
of system is trivially. Almost periodic solutions, frequency modulus of which contains only some
frequencies of the system, were studied by A. K. Demenchuk in the articles [2—4] etc. This solutions
are called partially irregular [4].

In this paper we investigate an existence problem for partially irregular almost periodic solutions
of linear almost periodic system in the critical resonant case, where are purely imaginary eigenvalues
with not simple elementary divisors of averaging of the coefficient matrix. The case of purely
imaginary eigenvalues with simple elementary divisors was investigated in [4] and [1].

Let us consider the linear system

% = A(t)z + @(t), Mod(A) NMod(g) = {0}, x € R", (1)

and assume that A(t) and () are almost periodical such that intersection of frequency modules
of the coefficient matrix A(t) and driving forcing force ¢(t) is trivially. Almost periodic solutions
z(t), Mod(z) = Mod(¢p) of system (1) are called irregular forced [4]. Let us explore a existence
problem of irregular with respect to Mod(A) almost periodic solutions z(t) of system (1), i.e. such
solutions that (Mod(x) 4+ Mod(y)) N Mod(A) = {0}, in critical resonant case.

—~ T —~
Denote A = Th_r)réo z OfA(t) dt, and A.(t) = A(t) — A. Let Q4, be a constant nonsingular n x n-

matrix such that the first n — d = s columns of matrix A,(t)Q4, are zero and the remaining
columns are linearly independent. Let us consider the change of variables x = Q4,y, where y =
col (y[sl,y[n_s]), ylsl = col (y1, ..., ys), Yn—s] = €Ol (Ys+1,---,Yn). By Blssl and By,—s ¢ we denote
respectively upper and lower blocks of n X s-matrix that obtained from the matrix B = QZiA\Q A,
deleting the last d columns (upper and lower indices indicate the dimensions of blocks). By v (t) =
incp(t), Y(t) = col (YII(1), Yin—g)(t)) we denote the transformed driving force.
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Lemma ([4]). System (1) has almost periodic irreqular solution z(t) with respect to Mod(A) if and
only if:

e column rank of the matriz A(t) — A(t) satisfies the inequality

rankeo As = d < n; (2)
o the system
dyls!
VT = Bllyil gl @

has almost periodic solution y*1(t) such that

(Mod(y®) + Mod()) N Mod(A) = {0};

e the following identity holds
B[n—s,s]y[s] (t) + Q/J[n—s] (t) =0, (4)
and z(t) = Q 4, col (y1¥1(1),0,...,0).
Let a £ (k=1,...,k; k' <n; i%2 = —1) be a eigenvalues of the matrix of coefficients Bls:sl
of the reduced system (3). As noted above, in the article [1] a case of purely imaginary eigenvalues
of matrix B!*% with simple elementary divisors was studied.

Suppose that there is a critical resonant case, when there is a pair of purely imaginary eigen-
values of matrix Bl*# with multiplicity of two with not simple elementary divisors such that

ar=ay=0, Ba=p € Mod(p), a;#0 (¢g=3,....K). (5)

Denote
G(t) = S5 (1) (g Sa(t) — Sa(t)),  S(t) = S (1),
where

Sa(t) = diag [eiﬁlt, ettt =it =it g 1],

S (t) is a derivative of matrix So(t), and matrix Sy transforms matrix B** to the Jordan normal
form, i.e.,

STIBESS) = T = diag [J1, Jo, Js, . .., I ] = diag [J1, Ja, J],
(g1 C(=ig 1
w=(0 ) == (0 a):

where J is a Jordan form, corresponding to the other eigenvalues of matrix B[**/. Denote j-th row
of matrix g(t) = S(t)yl*(t) as g(;)(t) and j-th row of matrix S(t) as S(;)(t).

Theorem. Let coefficient matriz A(t) and driving force p(t) of system (1) be almost periodic with
trivial intersection of their frequency modules, and there be a critical resonant case (5) of the reduced
system (3). Then:

o If system (1) has almost periodic irregular solution xz(t) with respect to Mod(A), then this
solution is irregular forced, i.e. Mod(z) C Mod(y).



International Workshop QUALITDE — 2017, December 24 — 26, 2017, Tbilisi, Georgia 27

e System (1) has an irregular forced almost periodic solution if and only if condition (2) and
the estimates

< oo (6)

< o0, wp’/(/s(g) Yl (o) do + Syl (r )>dT

sup ’ /S(Q) T)dr

hold and almost periodic solution yl*/(t) of reduced system (3) satisfy the identity (4).

The lemma and the theorem allow us to find partially irregular solutions of linear differential
systems. For example, consider the quasi-periodic differential system

dl’l_ 4 4

= Tt ratas,

d

—2 =aisinV5t+ (1+sinv5t)zs — (1+sinv5t)zy,

d

%:xlcos\/5t+m2c08\/5t—x4cosxf5t+x5+cost, (7)
d

%2—25814-1‘4—1-:65,

d

%:—$1COS\/5t—l‘QCOS\/5t—J}3+3§‘4COS\/5t+SiDt,

wherein intersection of modules of frequencies of coefficients and driving force is trivially. System
(7) has the solution

x=Qa,y=col (asint —bceost,acost + bsint,sint, (a + b)sint + (a — b) cost, 0), (8)

where a, b are arbitrary real constants. The frequency of solution (8) coincide with the frequency
of driving force and incommensurable with the frequency of the coefficients of system (7), therefore
this solution is irregular forced.
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The symmetric regularized-long-wave (SRLW) equation

Pu  Pu 1 0% (u)? T 0 )
o2 9r2 2 Ozdt  Dx20t M)
was first derived in [7]. Such equation arises in different physical applications, including ion sound
waves in plasma. The solvability and uniqueness of the solution of SRLW equation were studied in
works [4-6].
Equation (1) can be rewritten in the form of equivalent first order system:

ou Pu dp ou

ot a2t Tox  or @)
o
ot ox

In the domain = € [a,b], t € [0,T], let us define boundary and initial conditions for system (2)
as follows:

u(a,t) =u(b,t) =0, p(a,t)=p(b,t)=0, te€[0,T], (3)
u(a:,O) = u0($)7 p(l’, O) = p0($)7 T € [av b] (4)

The domain @ is divided into rectangular grid by the points (z;,t;) = (a+ih,j7),i=10,1,2,...,
n,j=0,1,...,J, where h = (b —a)/n and 7 = T'/J denote the spatial and temporal mesh sizes,
respectively. ‘ ‘

The value of mesh function U at the node (z;,¢;) is denoted by U7, that is U} = U(x;, ;).

We define the difference quotients (forward, backward, and central, respectively) in = and ¢
directions as follows:

} vl - U} } Ul —ul : 1, :
U)o = %, U)z = Tla U)g = 3 (U + (U)z),
: Uit g : Ul it : 1 : ,
J =t ‘7 T = I ‘7 o — — ] ] T ].
(Uz )t i T ) (Uz )t . T ) (Uz )t 2 ((Uz )t + (Uz ) )
We approximate the problem (2)-(4) by the difference scheme
, , 1. . 1 ,
(U)g = (U])_ o+ 5 (@] + @) + - (AD)] =0, (5)

. 1 . o
(®])s + 5 (U7 + U771y =0 (6)
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fori=1,2,...,n—1,j=1,2,...J — 1, and

1
U = (Ut + 5 5 (q’1 o). + 6 (AU)? =0, (7)
1
(@) + = (U1 +U7)s = (8)
fore=1,2,...,n—1, j =0, with
U? = ug(z;), @ =pola;), Uj=Ul=0d)=d=0. (9)
Here
AU =0 (U + U e + (UL U7+ UT7Y)e, G=1,2,...,0 1,
(AU)] == (U} + UD)e + (UP(U} + 7))
Let Hy be the set of functions defined on the mesh @ = {zg,z1,...,2z,} and equal to zero at

g, n. On Hg we define the following inner products and norms

(U7, Vi) ZhUJVJ U7, vi): ZhUJVJ

U717 := (U7, U7), HU]]I = (U7, U7, HUJHoo:— max U] .

0<i<n

Theorem. The finite difference scheme (5)—(9) is uniquely solvable and possesses the following
tnvariant

E7 = U717 + UL + 971 = [fuoll® + [luoz]l® + llool* := E®, j=1,2,.... (10)
Proof. Multiplying (5) by T(UijJrl + Uij_l) and summing over i, we obtain
1
A-B+-C+-D=o, (11)
2 6
where
o . 1 ‘ ‘
A= 7 (U3, 0T L U9 = £ (0T 0P,
t
. , . 1 . -
B:i=7(U’ U+ U771 = D) (1L = 102 11%),

Tzt

Ci=7((®H + @I, Uit + U771
(@R (T 0Y)) = 2r (@7 4 @9 @) = [0 e,
¢
D= (AUZ, U7t + U7t = 0.
Thus, from (11) we have
: 41 : - -1 - :
IO7FHE + U2+ 7P = 072 + o1 + 192, =12, (12)

Multiplying (7) by 7(U} + U?) and summing over i, we obtain

1
AO_BO+§CO+%D0:O7 (13)



30 International Workshop QUALITDE — 2017, December 24 — 26, 2017, Tbilisi, Georgia

where

Ao = T(UP, U +U°) = (UM~ [U°)%),

By i=1(Ugy, U + U°) = (U = U®)z, U + U%) = = U] + U]/,

Co :=7((®' + 0%),,U' + U%) = —7 (@' +0°, (U + U");)

=27(2" + @°, ®}) = 2(||@"|* - 2°|*),

Dg := (AU, U + U?) = 0.

Thus, from (13) we have
IUH1Z + 1UZ] + 12> = [U°I1* + 1UZ]1* + 12,
which together with (12) confirms the validity of (10).
Because the difference scheme is linear on each new level with respect to the unknown values,

its unique solvability follows from (10). O
Theorem. Difference scheme (5)—(9) is absolutely stable with respect to initial data.

Theorem. If the solution of problem (2)-(4) belongs to W3 Sobolev space, then the order of
convergence of the difference scheme equals O(7? + h?).

Remark 1. Note that scheme (5), (6) is studied by Wang, Zhang, Chen in [8]. But there, for
obtaining additional initial conditions on the first layer, they offer nonlinear two-layer scheme,
requiring additional iterations, and which essentially worsens the result. Our approach uses an
idea developed in [1-3], by which we obtain approximations (7), (8).

Remark 2. Note that equation (10) represents an perfect analogy of the well-known conservation
law for SRLW equation

b
E(t) = / <|u|2 + ‘%‘2 - |p|2) da = ||uoll7, + H%?H;

a

+llpollZ, = E(0).
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The following differential equation is considered in the work

y" = aop(t)eo(y)er1(y') exp (R(|In [yy'l])). (1)

Here ap € {—1,1}, p: [a;w[—]0;4+00] (—00 < a < w < +00), p; : Ay, —]0;400[ are continuous
functions, Y; € {0,+00} (i = 0,1), Ay, is a one-sided neighborhood of Y;, every function ¢;(z)
(i = 0,1) is a regularly varying function as z — Y; (2 € Ay;) of order o4, 09 + 01 # 1, 01 # 0,
the function R :]0;4o00[— ]0; 4o00[ is continuously differentiable and regularly varying on infinity
of the order p, 0 < p < 1, the derivative function of the function R is monotone.

Definition. A solution y of equation (1) is called P, (Yp, Y1, A\g)-solution if it is defined on [ty, w] C
[a,w] and ,
/
limy@(6) = v, (i=0,1), lim- L
thw ttw y(t)y" ()

A lot of works (see, for example, [2,3]) have been devoted to the establishing asymptotic
representations of P, (Yp, Y1, Ag)-solutions of equations of the form (1), in which R = 0. The
P,(Yp, Y1, \g)-solutions of equation (1) are regularly varying functions as ¢ T w of index /\8\31 if
Ao € R\ {0,1t}. The asymptotic properties and necessary and sufficient conditions of existence of
such solutions of equation (1) have been obtained in [1].

The cases Ao € {0,1} and Ao = oo are special. B, (Yp, Y1, 1)-solutions of equation (1) are rapidly
varying functions as ¢ 1 w. The cases A\g = 0 and A9 = oo are cases of the most difficulty because
in this cases such solutions or their derivatives are slowly varying functions as ¢t T w. Some results
about asymptotic properties and existence of P, (Yp, Y7, \g)-solutions of equation (1) in these special
cases are presented in the work.

We say that a slowly varying as z — Y (2 € Ay) function § : Ay —]0;+oo[ satisfies the
condition S if for any continuous differentiable function L : Ay, —]0; 4+o00[ such that

the following equality
O(zL(z)) =O(2)(1 +0(1)) istrueas z =Y (z € Ay).

Let us introduce the following notations.

t if w= 400, o
wt: @Z = @i 7i :0517
) {t_w foT T el — el (=0
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¢ a if /p( ) dT = 400
I(t) = ag /p(T) dr, A, = a,
Auw w if /p()d7'<—i—oo
In case 1tlTrUIJl ‘S;Tgwn(f)(li =Y, we put
t _ Lol
signyg\ | T-or
t) = I d
By,
L
nyo —o1
by if /‘ dr = 400,
)|>
B, = e
w if /‘ @1 81gny0> d7'<+oo,
|7 (8)]
1
(1—01)1(75)!(1—01) ()@1(W )7t
Ni(t) = 7 (8)]

()R (| In |y (8)]]) ’

and in case ltle |17, (7)| sign y§ = Yo, we put
w

t

Io(t) = ag / P(7) (7)) (| (7)] sign o) i,
Ay

b it [ p(Olm(B] €0 (1) signs8) di =+
b

AQ = 3
o it [ pOm (Ol Oo(nOls8) di < -+,
\ b

Na(t) = aop(t)|m, (1) 7" 00 (|m (1) sign y)
3 1
Here by, by € [a;w| are chosen in such a way that T;gwn(i")o‘ € Ay, ast € [b;w] and |7, (7)| signy) € Ay,
as t € [ba;w].
The first two theorems are devoted to the existence P, (Yp, Y1, 0)-solutions of equation (1). Such
solutions are slowly varying functions as ¢t T w, that makes difficulties in their investigations.

Theorem 1. Let in equation (1) the function v1 satisfy the condition S and the following condition

take place
(R GIDAG
ttw T () In |7y, (€)' (t)

Then for the existence of P,(Yy,Y1,0)-solutions of equation (1) the following conditions are neces-
sary and sufficient

=0. (2)

: e : Ul(t) : ‘w(t)l,(t)
lim yQ|.J (t)| T-e0—o1 =Yy, lim =Y, lm——= =01 —1,
o Yol J (2)] 0 o y?|J(t)| 1 X [(1) 1
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10 =o)J

—_ >0 telb,w|.
y?(l—al) 1—0g—0y a5 (b,

For such solutions the following asymptotic representations take place as t T w
y(t) o 1-— g — 01
1~ _
|exp(R(| In]y(t)y' (1) |D))po(y(t))| = 1=
y'(t) (1—01)J'(t)

o) ~ T—og—onaq L+ oWl

Theorem 2. Let condition (2) of Theorem 1 be not satisfied, p be a twice continuously differentiable
function, function p1 satisfy the condition S and the following condition take place

oy TN ()
to R/ ([ In [m, ()[]) N1.()

1= oy [T J(B)[1+ o(1)],

=0.

For the existence of such P, (Yo, Y1,0)-solutions of equation (1), that finite or infinite limit

lim %(Z{)/(t) exists, the following conditions are necessary and sufficient

tTw

) o=l . —Qp - mu(t)I'(t)  o1—1
1 0( R(|In |7y (¢ Hw):Y lim ——t = vy, 1 =
tlTIol;lyO exp (R(|In |y, (8)]])) =0 0; ;{2 T (t) ! tlTrg I(t) ap

ayiTw(t) <0, ag(l —o1)(l — a0 — o)y R (|In|mu(®)]]) > 0 as t € [a,w].

For such solutions the following asymptotic representations take place as t T w
y(t)

1

|20 (y(t)) exp(R(|In [y (t)y' ()] 1) | =

y'(t) 'R (| In | (4)]])

00~ (0 —oo— o —oni@ L 7oLk

The next two theorems are devoted to the existence of B, (Yp, Y1, £00)-solutions of equation
(1). The first derivatives of such solutions are slowly varying functions as t 1 w, the fact creates
difficulties in the investigation of such solutions.

= (1 =00 —o1)N1(t)[1 + o(1)],

Theorem 3. For the existence of P,,(Yy, Y1, £00)-solutions of equation (1) the following conditions
are necessary

+oo, if w= o0,
Yo = { / Tw()yoy) > 0 as t € [a,w].

0, if w< 400,
If the function @q satisfies the condition S and

o R (DD 1o (1)
tw 7w () I5(t)

=0, (3)

then (3) together with the following conditions are necessary and sufficient for the existence of
P, (Y, Y1, 00)-solutions of equation (1)

. S . me() I (t)
lim g Lo(t)| =071 =Yy, lim —-00=
tlTruIlely o(®)[ =0 b tlTruI} In(t)

For such solutions the following asymptotic representations take place as t T w

YOy ()]~ =(1—0p—0 0 _ 1 )
PO exp(R( Ty — 70T @l gy = el

=0, (1 —00—01)l(t)>0 as t € [by,w.
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Theorem 4. If in (1) the function p is a continuously differentiable, the function o satisfies the
condition S and N

L BN

thw RI(|In |y, () |[) N (2)
then with (3) the following conditions are necessary and sufficient for the existence of
P,(Yy, Y1, £00)-solutions of equation (1)

:()7

1

17R(|1n|7rw(t)||)> =Y1, aod(1—o00—o1)ln|m(t)] >0 as t€ |a,w|.
—0p — 01

lim ¥ ex <
%y Yy €Xp
For such solutions the following asymptotic representations take place as t T w

W (1) oV B )
) e R(my@7 @)~ Fmmmn oW = oWl
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Motivated by article [7], in this paper, we consider a boundary value problem for functional
differential equation of the fourth order. We obtain sharp sufficient conditions for the existence
and uniqueness of solutions.

Boundary value problems for fourth order functional differential equations are considered in
[2-6,8].

Definition 1. A linear operator T' from the space of all continuous real functions CJ[0, 1] into the
space of all integrable functions L[0, 1] is called positive if it maps every nonnegative continuous
function into an almost everywhere nonnegative integrable function.

Consider the boundary value problem for a fourth order functional differential equation:

{x<4><t> = —(Tz)(t) + f(1), te0,1],

- o B oy (1)
z(0) =c1, @(0)=co, x(1)=c3, @(1)=cu,

where T' : C[0,1] — LJ[0,1] is a linear bounded operator, f € L[0,1], ¢;, i = 1,...,4, are real
constants.

This problem possesses the Fredholm property (see, for example, [7]). Therefore, this problem
is uniquely solvable if and only if the homogeneous problem

{x<4> (t) = —(Tz)(t), telo1],

2(0)=0, @0)=0, =z(1)=0, &(1)=0, (2)

has only the trivial solution.
The Green function G(t, s) of problem (2) is defined by the equality

t2(1 — 8)%(3s — t — 2st)
6

(1 —1)2s%(3t — s — 2st)
6

So, problem (2) is equivalent to the equation

ifo<t<s<l,
G(t,s) =

if 0<s<t<1.

r=—-GTx,

1
where (G2)(t) = [ G(t,s)z(s)ds, t € [0,1], is the Green operator.
0

By using the principle of contraction mappings, we get that problem (1) has a unique solution
if at least one from the following inequalities is fulfilled:

1T lcjoa1-xi0,1 <192,  (IT]lcpo,1]—Lefo,1] < 384

Let p € L]0, 1] be non-negative function.
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Definition 2. S(p) is a set of all linear positive operators 7' : C[0,1] — LJ0, 1] satisfying the
condition
T1 = p,

where 1 is the unit function.

Theorem 1. Boundary value problem (1) has a unique solution for every operator T' € S(p) if and
only if the inequality

1
1—1—/G’ t1,s)p(s)ds 1+ [ G(t1,s)p(s)ds
>0

G(te, s)p(s)ds

o O —

to
/G(tg, s)p(s)ds 1+
to

holds for all 0 < t; <ty <1 and all ty € [0,1].
The base of the proof of Theorem 1 is the following lemma.

Lemma 1. Let p € L[0, 1] be a non-negative function. Then the boundary value problem (1) has a
unique solution for every operator T € S(p) if and only if the problem

{w<4> (t) = —p1()x(tr) — pa(t)x(ta), t € [0,1],
z(0)=0, #(0)=0, =(1)=0, (1)=0,
has only the trivial solution for all 0 < t; <ty <1 and for all functions p1, p2 € L[0,1] such that
pi(t) +p2(t) =p, 0<pi(t) <p(t), te[0,1], i=1,2.
Consider the case where p(t) = P > 0 is a constant.

Lemma 2. Let p(t) = P > 0 be a constant. If for some T € S(P) problem (2) has a non-trivial
solution, then for some T € S(P) problem (2) has a symmetric non-trivial solution x such that
x(t) = —x(1 —t) for all t € [0,1].

By Lemma 2, we can put tp = 1/2 and to = 1 — 1, 1 € [0,1/2] in Theorem 2 if p(t) = P. So,
by Theorem 1, in this case problem (1) is uniquely solvable for all operators T' € S(P) if and only if

1
P <

max G(1—t1,8)ds— [ G(t1,8)ds
tle[01/2](1/f2 1 1/f2 1 )

1 RV,
= 92 = 1760v33 — 416 ~ 2954.
max t2(1 —2t1)(3 — 4ty) 3
t1€[0,1/2]

Corollary 1. Let p € L[0,1] be a non-negative function such that

1760 176033
vraisup p(t) < 6 \ﬁ — 416, p(t) £ 63\/37 — 416.

t€[0,1]
Then boundary value problem (1) is uniquely solvable for all operators T € S(p).

The constant in the Corollary 1 is sharp.
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Let us consider the differential equation

y" = aop(t)eo(y)e1(y'). (1)

In this equation oy € {—1;1}, functions p : [a,w][—]0, +o0[ (—00 < a < w < 400), and ; : Ay, —
10, +o0o[ (i € {0,1}) are continuous, Y; € {0,+00}, Ay, is either an interval [y?, Y;[! or an interval
1Yi, 9.

We also suppose that the function ¢; is a regularly varying function of index o; as y — Y}
(y € Ay;) ( [3, pp. 10-15]), the function ¢ is twice continuously differentiable on Ay, and satisfies
the conditions

/ 0 as c A s lim S Oa +00 ’ lim
oY) # Yy Yoo IV woly) €1 } v=Yo  (¢p(y))?
yGAYO yGAYO

The solution y of the equation (1), that is defined on the interval [tg,w[C [a,w[, is called
P, (Y, Y1, \g)-solution (—oo < A\g < 400) if the following conditions take place

O gl A, 90 =Y =0.1), i SO
o ot ' U ey (y()

The aim of the work is to find the necessary and sufficient conditions for the existence of
P, (Yo, Y1, \og)-solutions of the equation (1) if \g € R\ {0; 1}, to find asymptotic representations of
such solutions and its first order derivatives as t 1 w.

Definition 1. We say that a slowly varying as z — Y (z € Ay) function 6 : Ay —]0; +-o00[ satisfies
the condition S as z — Y if for any continuous differentiable normalized slowly varying as z — Y
(z € Ay) function L : Ay, —]0; +oo] the following relation is valid

0(zL(z)) =0(z)(1+o0(1)) as z—=Y (2 € Ay).

Definition 2. We say that a slowly varying as z — Y (z € Ay) function L : Ay — |0; +oo] satisfies
the condition S} as z — Y if for any finite segment [a;b] C ]0; +00]

L(A
limsup |In|z]| - ( (\2) _ 1)‘ < 400 for all A € [a;d].
z=Y L(Z>
zEAY

f Y; = o0 (Y; = —00), we will take yf > 0 or y? < 0, respectively.
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Conditions S and S; are satisfied, for example, for the functions: Inly|, |In|y||* (© € R),
Inln |y|.

Let us introduce the following notations.

t if w=+oc0
Tw(t) = "0y = o,
(t) {t_w i w < 400, 1) = e1(¥)ly]
) it [ oo ds = oc,
1
Boy) = [ lo(e) T dz, A, = i
Yo
Aw Yo if [ |<,00(z)\ﬁ dz = const,
Yo
Y
Po(7) . O (L ()P (D1 (IL(1)))
) = d Z1=1 i) F(t) = .
1(y> / - T, 1 yi)n;,o 1(y)7 ( ) Ww(t).[{(t)
Ay yEAY,

1
If ¢ - lim |7, (7)|%0~T = Y7, we put
tTw

t

1) =20 = 11755 -3+ [ [matm)p(r)6n (1ma(r) 73

BO

w

1
Y dr
)

1
1—0o
bdr = o0,

7 ()P (| () 0T 4)

1
T dr < oo,

7 (T)p(r)61 () 0Ty

Yy
, boif / NI g s,
NoI(T (Ao — D)o (7)
/ Or dT, B(}) = b,
Xo —
B, w if / M dr = const,
| Bo-Dmm

1
where b € [a; w][ is chosen in such a way that y0|m,(¢))|%0-T € Ay, as t € [b;w].
The following conclusions take place for the equation (1).

Theorem 1. Let o1 # 1, the function py satisfy the condition S, and the following limit relation
be true

L ()
oy )
Ay, ((3 (z))

=, 7 € R\ {1,0}. (2)

The next conditions are necessary for the existence of P,(Yp, Y1, \o)-solutions of the equation

(1), if Ao € R\ {0,1}:

_1
Tw(®)ylyoAo(No — 1) > 0,  m,(H)ylag(ho — 1) >0, i - lim |, (£) %0~ = ¥4,

N _ g T L ()7 () _ X
e O =Y e T = W R e ) ) -1
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These conditions are also sufficient for the existence of P,,(Yo, Y1, Ao)-solutions of the equation (1) if

I(t) 1 (t)Ao(o1 — 1) > 0 as t € [a;w]
1___(2=70)X0
|7 ()] (1*“/0)()\0*1)11(15)
5i(t)
Moreover, for each such solution the following asymptotic representations take place ast T w

y (O (@) _ It
1 (y(1)) I(t)

RACR©)

and the function is a normalized slowly varying function as t T w.

D1(y(1)) = Li(®)[1 + o(1)], [1+o(1)].

Let us notice that the function ®~1(2) is a slowly varying function as z — Z;.
If the condition (2) is not true, the following theorem takes place.

Theorem 2. Let for equation (1) o1 # 1, the function 01(z) satisfy the condition S as z — Y;

(z € Ay,), the function ®~1(z) - qyl(@%l(z)) satisfy the condition S1 as z — Zy. Then for existence
of the equation’s (1) P, (Yo, Y1, \o)-solutions, where A\g € R\ {0,1}, it is necessary, and, if

It)(t)Ao(o1 — 1) >0 for t €]b,w],
and finite or infinite limits
1T OO 1))

limm, (t)F'(t) and 1
tlTroerw() (t) an e In|Iy(1)]

exist, sufficient the fulfilment of the following conditions

T ()0 Ao(No — 1) > 0, 7, (H)yap(ho —1) >0 as t € [a;w],

0 1. 1 . . I{/(t)fl(t) . )\0—1
-1 t)| -t =Yy, limIi(t) =2 lim ————= =1, lmF(t{) = .
v limimOPet =0, lmh(t) =24, lm =gy =L I F0 ==g

Moreover, for every such solution the following asymptotic representations as t 1 w take place

7, ()Y (t) _ Ao
y(t) Ao —1

®1(y(t)) = Li(t)[1 + o(1)], [1+ o(1)].

/ -1
Note that if in the limit relation (2) 7o = 1, the function ®~!(z)- M satisfies the condition
S1 as 2 — 7.

The next example illustrates the obtained results of Theorem 1.
Let’s consider the following differential equation

1 .
y' = Ly P, (3)

where L : [2, +00[ —]0, 400, 2}3;"; >0,8>0,8#1aste[2+00].
1

This is an equation of the form (1), where a = 2, a9 = 1, p(t) = Zt_?’L(t)e_tS, wo(y) = elvl”,
e1(y) = lyl>.

Theorem 1 implies that the equation (3) has a one-parameter family of P (400, +00, 2)-solu-
tions, and every such solution and the derivative of such solution satisfy the following asymptotic
representations

e2¥' ) = (L)) 22 1+ 0(1)], ¥ (B)3(t) =271+ 0(1)] as t T w.

y'(t)
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To illustrate the results of Theorem 2, we consider the differential equation

y" = 1(t) exp (exp(ly|*) — exp(th)) |y|7°|y/|* as t € [2,+oc]. (4)

Here, 09,01 € R, 01 > 1, a,d €10, 400[, function 1 : [2, +o0[— ]0, +00] is continuous regularly
varying on an infinity function of index v, v € R.
This equation is an equation of the type (1), where

ag=1, p(t)=v(t)exp(—exp(t?)), @oly) = |yl exp(exp(ly|*)), 1(y) = ¥/|7".

We investigate the question of the existence and asymptotic behavior as t — 400 of Py (00, Y1, Ag)-
solutions of the equation (4) for which Ao € R\ {0,1}.
In this case
mo(t) =t, 61(y) =1.

So, the function 0, satisfies the condition S.
Taking into account the choice of BY _ as t — 400, we have

L -1 q-g+1_ 1 td
1(0) = o — 17 -y - T (o) exp (SR ) g o)
-

At the same way as t — +o0o we have

1 —1\2 q_9g4_1_ 1 td
1) = o~ 117 g (D) ) ep (SR )1y o)
o1 —

In addition, in this case, since Yy = oo, taking into account the choice of A%, we obtain

o1 —1 %0 41— e
Bofy) = Pty T (SR )1 o) sy oe,

Similarly, we have

o1 — 1\2 % 11_9 ex @
Biy) = (Z2) e (2D gy ) 1k o)) sy o

At the same time,

! (ad—1 _1\2 %7&”1
(I)fl(y) : (I)1<(I); ) = (o1 . 1 Iny - (ln ((01 — l)lny)) ¢ [1+4o0(1)] as y — oo.

It means that condition S; is satisfied.
Thus, all the conditions of Theorem 2 are satisfied. By virtue of this theorem, the equation

4) can have only Py (400,400, 4 _)_solutions of the class of Py (00 , Y1, Ag)-solutions. From
+ d—a +

Theorem 2 it also follows that the equation (4) has one-parameter family of Py (400, 400, dda)
solutions.

Also, taking into account the known asymptotic behavior of the function <I>f1, it is easy to obtain
that every P, (400,400, d%‘la)—solution of the equation (4) and the derivative of such solution
satisfy the following asymptotic representations

b (exr;(lly(t)l“) 3 2|y(t)|a>

(y(H)7T -

Ter (G\2 1-2dp L L. exp(t?) d
b <7> -t =01 . q¢h1-91 () - exp <7 — 2t )[1 +o(1)] as t — +oo,
d g1 — 1
y(t)

t

:‘d—a‘

y(t) = [1+40(1)] as t — +o0.
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Denote by Md; the class of difference equations
2(n+1) = A(n)z(n), =(n) €R®, ne Ny ¥ NU{0}, (1)

of dimension s > 2 with matrix coefficient A(-): Ng — EndR® such that
sw{mwﬁmmmwmﬂmm:nem}<+m,

where || - || is the operator norm generated by the Euclidean norm in R® (the Euclidean norm
will be denoted by the same symbol). In our further consideration we will identify the system (1)
with its coefficient matrix and we will write A(-) € Md,, or simply A € Md,. The solution z( -)
of the system (1) is a sequence z(-) = (z(n)); 25 of vectors from R® satisfying for all n € Ny
the equation (1). The set of all solution of a system A(-) € Md, with standard operations of
multiplication by scalars and vector addition forms a linear space over R, which will be denoted by
X4. A natural isomorphism between linear spaces R®* and X4 is given by a bijection & «+— x(-;&).

For natural numbers k£ > m denote by A(k,m) a matrix equal to

I AG) if k>m
i=k—1

and to identity s x s matrix I if & = m. With this notation we have x(n;zo) = A(n,0)zo and
A(k,m) = ®(k)®(m)~!, where ®(-) is any fundamental matrix of the system (1).
Together with the system (1) we will consider the adjoint system

y(n+1) = AT (n)y(n), y(n) eR®, neNy, A7T(-) L (AT()L. 2)

It is obvious that the system adjoint to the system (2) is the system (1), therefore the systems (1)
and (2) are called mutually adjoint.

With each system A € Md, we associate the so-called: Lyapunov regularity coefficients o, (A),
Perron regularity coefficient op(A) and Grobman regularity coefficient o (A) [3,4,6,8]. The role
of these coefficients lies in the fact that they essentially characterize the response of the system (1)
to linear exponentially decreasing and non-linear of higher order of smallness perturbations. In
particular, the equality of at least one of them (and then any) to zero is equivalent to the regularity
in Lyapunov sense of the system (1).



44 International Workshop QUALITDE — 2017, December 24 — 26, 2017, Tbilisi, Georgia

Now, we will present definitions of regularity coefficients of a system A € Mds. Let A\j(A) <

- < Xs(A) denote the Lyapunov exponents of the system (1) and pi(A) > -+ > us(A) the

Lyapunov exponents of the adjoint system (2) (the first ones are numbered in non-decreasing order

and the second in non-increasing order). By W(A) we denote the set of all fundamental matrices

of the system (1). For any sequence (X (n));/2) of s x s matrices by \;[X] we denote the Lyapunov

exponent of its ¢-th column, ¢ = 1, ..., s. The Lyapunov, Perron and Grobman regularity coefficients
are given by the following formulae:

A) défZ)\i(A)— lim n~'In|det.A(n,0)], (3)

. n—-+o0o
op(A ‘i—eflrr<1§<}fs{>\ )+ pi(A)}, (4)
oc(A) Y inf  max {\[®]+ N[ 7)), (5)

PEV(A) 1<i<s

Let us notice that by the formula (3) the Lyapunov regularity coefficient of the adjoint system (2)
is given by
S
= Z“Z( + Tim n'ln|det.A(n,0)|.
¢ n—+o0

For continuous time system, in the monograph [2, pp. 55, 74], it has been shown that the regularity
coefficients of any system A € My, s > 2 satisfy the following relations

0<op(A) <og(A) <sop(A) and 0 <og(A4) <or(A) < sog(A),

where M denotes the set of liner differential systems with piecewise continuous coefficient s x s-
matrices uniformly bounded on the nonnegative half-line [0, +00). In addition, in [2, p. 151] it
has been shown that all these inequalities are achievable and there exists a system A € Mg such
that the Lyapunov, Perron and Grobman regularity coefficients are pairwise different. In the
monograph [5, pp. 21, 22] the following improvement of the last inequality

0<op(A) <og(A) <or(A) <sop(A) (6)

has been proved for any system A € Mg, s > 2.

In the paper [9], it has been shown that the inequalities (6) describe all possible relations between
the regularity coefficients of differential systems. In other words, it was shown that for any natural
s > 2 and ordered triple of numbers (p, g,[) satisfying the inequalities 0 < p < g < ¢ < sp, there
exists a system A € My, such that op(A) = p, 0g(A) = g and o (A) = . For the difference
systems an analogical result was presented in [1].

From the definitions (4) and (5) of the Perron op(A) and Grobman o (A) regularity coefficients
it follows that op(A) = op(A~T) and og(A) = og(A~T). However, analogical equality for Lya-
punov o, (A) regularity coefficient does not hold in general. The example of systems A € M, such
that o7(A) # or(A™T), is constructed in [2, p. 155]. Analogical example of system A € Md, can
be constructed. The question about the relation between the Lyapunov regularity coefficients of
mutually adjoint systems, i.e. the question about description of the set of pairs (o (A),or(A™T))
was solved in [9]. In this paper it has been shown that for each natural s > 2 and each non-negative
numbers ¢ and ¢* there exists a system A € M, such that ¢ = or(A) and ¢* = o (A~T) if and
only if s71¢* < ¢ < sf*. Analogous result for the discrete-time systems has been proved in [7].

From (6) it is straightforward to obtain the following chain of the inequalities

0 <op(A) < oc(A) < min (or(A), UL(—AT)) < max (UL(A),JL(—AT)) < sop(A).
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Consequently, it is important to know for which nonnegative numbers p, g, ¢, and ¢* one can
construct a system A € Md; satisfying the equalities 0,(A) = p, 0g(A) = g, o(A) = ¢, and
or(A~T) = ¢*. The answer to the last question is given by the following theorem.

Theorem. For any integer s > 2 and an ordered quadruple (p,g,¢,¢*) of real numbers satisfying
the inequalities 0 < p < g < min(¢, £*) < max(¢,¢*) < sp, there exists a system A € Mds such that
JP(A) =D UG(A) =9 UL(A) - £7 and UL<A7T) ={".

The authors express their gratitude to E. A. Barabanov for his interest in the paper.
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Consider the differential equation
m
y' = cipi(t)eily), (1)
i=1

where a; € {—=1,1} (i =1,m), p; : [a,w[—]0,+o0[ (i = 1,m ) are continuous functions, —oo < a <
w < 400, i : Ay, —10,4+00[ (i = 1,m ), where Ay, is some one-sided neighborhood of the point
Yy, Yy is equal either to 0 or to +o00, are continuous functions for ¢ = 1,1 and twice continuously
differentiable for ¢ = [+ 1, m, so that

i i) =\ (i
y= Yo vi(y)

1,1) for any A >0, (2)

YEAQY,
" )
oi(y) #0 as y € Ay,, lim ¢;(y) € {0,400}, lim w =1 (@G=I0l4+1m). (3)
y—=Yo y=Yo '3 (y)

yEAY, yEAY,

It follows from the conditions (2) and (3) that ¢; (i = 1,1) are regularly varying functions,
as y — Yy, of orders o; and ¢; (i = [+ 1,m) are rapidly varying functions, as y — Yy (see [5,
Introduction, pp. 2, 4]).

Definition. A solution y of the differential equation (1) is called P, (Yp, \p)-solution, where —oo <
Ao < 400, if it is defined on some interval [to,w[ C [a,w| and satisfies the following conditions

ither 0 2(t
either 0, lim y'=(t)

= 2=\
or  doo, thwy" Oy 0

. . /
ltlTrgjly(t) =Yo, limy (t) = {

There have been known the results of the asymptotic behavior of P, (Yp, Ag)-solutions of dif-
ferential equation (1) in case when there is only one item with a regularly or rapidly varying
nonlinearity on the right-hand side of the equation (1) (see [1-3]). The case [ = m has been also
investigated when all nonlinearities on the right-hand side of differential equation (1) are regularly
varying functions (see [4]). The general case, when, in addition to items with regularly varying non-
linearities there are items with rapidly varying nonlinearities on the right-hand side of the equation
(1), has not been studied yet.

In this paper, for \g € R\ {0;1} the existence conditions of P, (Yy, Ag)-solutions of the differ-
ential equation (1) and asymptotic representations, as ¢t 1T w, of such solutions and their first-order
derivatives, are established in case when on each such solution the right-hand side of equation is
equivalent, as t T w, to the s-th item, that is when

o PO2i(0)

o pe(Dos(y(0)) =0 forall i€ {1,...,m}\ {s}. (4)
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Let

[b, Yo if Ay, is a left neighborhood of Yy,

Ay, = Ay, (b), where Ay, (b) =
Yo %(), W %(0) {]Yo, bl if Ay, is a right neighborhood of Yp,

and the number b satisfy the inequalities

bl <1 as Yp=0 and b>1 (b<—1) as Yp=+oo (Yp=—00).

1 if Ay (b) = [b, Yo,
—1 if Ay (b) =Y, b,

t
t if w= 400, /
Ji(t) = | wo(m)p;(7)dT,
t—w if w< 400, () J (T)pi{r)

(Pz(s)’ y—Yo
yeAYg(b)
where
4 w ( YO
f/()()d + b1f/dy o0
a i (T T =4+00 = )
/ vi(y)
AZ: w B’L: YO
w if /FW(T)pi(T)dT:COTISt, Yo if/ dy = const
/ / vi(y)

Theorem 1. Let \g € R\ {0;1} and o5 # 1 for some s € {1,...,l}. For the existence of
P, (Yo, \o)-solutions of the equation (1), satisfied the limit relations (4), it is necessary that the
inequalities

aspro > 0, vorido(Ao — D7y(t) >0 as t €la,w| (5)
and conditions
0s(o = D lim /(1) = Z,, lim f]s>(i;( ) _ (1A—0 is)le | "
im pi(t)pi(H, (Oés()\o —1)Js(1))) — or all 7 s
ttw py(t)ps(Hs Has(ho — 1)J5(1))) =0 forall i€ {l,...., 1} \ {s}, (7)

AU 00 — 1101+ 8)
ttw ps(t)ps(Hs (045(/\0—1) s(t))

hold, where 8; are arbitrary numbers of a one-sided neighborhood of zero. Moreover, for each of
such solutions the following asymptotic representations hold

=0 forall ie{l+1,...,m}

y(t) = Hy (s = DIO) 1+ 0(1)] at 170, ®
J(o) = M (@00 = D(0)

Do — Dra(d) [14+0(1)] at t 1 w. (9)
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Theorem 2. Let \g € R\ {0;1} and o5 # 1 for some s € {1,...,1}, the conditions (5)—(7) hold

and
pi(t)pi(Hy (as(Ao — 1)1 + u)))

tho  pe(t)ps(Hs  (as(No — 1) (1))

uniformly with respect to u € [—9,0] for any 0 < § < 1. Let also one of the following two
conditions hold

=0 forall ie{l+1,...,m}

or Mog# —1, or \g=-1 and os < 1.

Then the differential equation (1) has P,,(Yy, Ao)-solutions that admit the asymptotic representations
(8) and (9). Moreover, there is a one-parameter family of such solutions in case \o(1 — o5) < 0
and two-parameter one in case A\o(1 — os) > 0 and 7,(t)(1 — A3) <0 as t €]a,w].

Besides the above-mentioned facts we also need the following auxiliary notations

J()i(t) Z/Fw<7)p0i<7) dT,
A;

(X0 — D2 (8)poi(t)pi(H; " (os(Xo — 1) Joi(t)))
Hi (Ao — 1) Joi(t)) 7

1

Goi(T §d7'
) wO’L /| 0 |
w(T)

y=H; ' (c;(Ao—1)Jos(t))

where pg; : [a,w][—]0, 400 are continuous functions so that po;(t) ~ p;(t) as t T w, to is some
number of [a,w].

Theorem 3. Let \g € R\ {0;1} and for some s € {l+1,...,m} the conditions
/
TR = 0(1) as y— Yo (y € Ay, (b)) forall i € {I+1,...,m} (10)

hold. For the existence of P, (Yy, \o)-solutions of the equation (1) that admit the limit relations (4),
it is necessary that for some continuous function pos : [a,w[—]0,+00] such that pos(t) ~ pi(t) as
t 1 w the conditions

asvoo >0, asps(Ao — 1)Jos(t) <0 at t €la,w|, (11)

. . . Ww(t)‘]/s(t) _ ; _ Ao
as(Ao — 1) hm Jos(t) = Zs, 1#3 T(Ot) = o0, {tlTl})lqoS(t) "1 (12)
pi(t )(pZ(H (Oés()\o — 1)Jos())) =0 forall ie{1,...,m}\ {s} (13)

tlTIg pos(t)ps(Hs H(as(No — 1) Jos(t)))

hold. Moreover, for each of such solutions the following asymptotic representations hold

(1) = o — DD 1+ 200 at 1

Gos(t)
)\()H;l(as()\g — 1>J05(t>)
t

y'(t) = Do = Dma(d) [1+o0(1)] at t1w.
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Theorem 4. Let A\g € R\ {0;1}, for some s € {l+1,...,m} the function ps might be represented
in the form
Ps(t) = pos(t)[1 + rs(t)], where ltle rs(t) =0,

Pos : [a,w[— 10, +00[ is a continuously differentiable function, rs : [a,w[—]—1,+00[ is a continuous
function, the conditions (10)—(13) hold and there exist finite or equal to infinity limits

(&) [y Yos () (t)
vs = Um Pos(t), limm,(t)qps(t), lim —2U ‘ 5 " o os (DU ()
w w S Y (ps(y) 2 s ” 2 t
! " yeyzyo(%b) (sos(y)) #s(y) ai 7/’05( )

Then

1) if asps = 1, the differential equation (1) has a one-parameter family of P, (Yy, Ao)-solutions
with asymptotic representations

y(t) = Hy Y (as(Mo — 1) Jos(2)) [1 + C;OO(:()t)

-1 Qg - s — -3
_ MoH, (;0 _(Af)ml(?t;]o (1)) [Ao)\o 1q08(t) + [Gos(D)] 20(1)} at t 1w

] at t 1T w,

y'(t)

[2) if asps = —1 and

= D)(2-3))
7 I A=)

) a0 + 0] - 2] =0,

Ao —1
im0 [ (522 = a0 ans ) + 52— 01 (0)] = 0

zm: pi(t)pi(Hy  (as(Ao — D) Jos(t)
(t)ps(Hs H(as(Xo — 1) Jos(1))

lim 5, (1)
tTw i=1 bos
1#£s
the differential equation (1) has a P,,(Yy, Ao)-solution with asymptotic at t T w representations

o o(1)
y(t) = H, 1(as(/\o —1)Jos(t)) [1 + m}’

_ MNoHH(as(No — 1) Jos(t)) [AO -1 ) o(1) }
(%o = D () Ao T ()| Gos (D)2

Moreover, there exists a two-parameter family of such solutions in case when

y'(t)

4
BN (57vs +3) + Xo(—4vs —5) +2) <0 as v, = const, =< Ao <1 as 75 = too.
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1 Introduction

We consider the planar autonomous differential systems

%:P(l‘,y,A), % :Q(‘Tvyv)‘) (11)
depending on a scalar parameter A € R. Our goal is to derive conditions on P and @ such that
there is a A\g € R with the property that for all A\ > X\g system (1.1) has a unique limit cycle
in the phase plane which is hyperbolic and stable. Our approach to treat this problem is based
on the bifurcation theory of planar autonomous systems. The underlying idea of our approach
can be formulated as follows: We assume that A = Ay and A\ = 400 are bifurcation points of
system (1.1) connected with the appearance of a limit cycle which is hyperbolic and stable, and
we suppose that the interval (g, 4+00) does not contain any bifurcation point of system (1.1). The
class of Dulac—Cherkas functions, the theory of one-parameter families of rotated vector fields and
singularly perturbed systems are key ingredients in our approach [1,3-5,8-10]. In the Appendix
their basic properties are summarized. We illustrate our approach by an example.

2 Assumptions. Main result

Consider system (1.1) under the following assumptions:

(A1) P,Q:R xR xR — R are sufficiently smooth.

(A2) System (1.1) has VX € R a unique equilibrium E(\) in the finite part of the phase plane.
Without loss of generality we may suppose that E()) is located at the origin V A.

(A3) The origin changes its stability at A = \g and is unstable for A > A\g.

(Ay) There exists for A > \g a Dulac—Cherkas function U (z,y, ) of system (1.1) in the phase plane
such that the set Wy = {(z,y) € R?: U(x,y,\) = 0} consists of a unique oval surrounding
the origin.
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(As) For A > \g there is a one-to-one mapping
fz(pl(xvyv)\)? ?:¢1($>ya)\)
such that system (1.1) will be transformed into the system

Az — 4y
(T,7,N), i

= Q7.0 1)

with the following properties:

(i) The functions P and Q have for A > \g the same smoothness as the functions P and Q.
(ii) The origin is the unique equilibrium of system (2.1) Y X > X.
(iii) Ao is a Hopf bifurcation point for system (2.1) connected with the bifurcation of a stable

limit cycle Ty from the origin for increasing X which is positively (that is anti-clockwise)
oriented.

(iv) System (2.1) represents for X\ > Ao a one-parameter family of positively rotated vector
fields.

(Ag) For A > X\ there is a one-to-one mapping

52902(377?/7)‘)7 §:¢2(x,y,)\), T:X(t7)\)’

where T increases with t for any A > Ao, such that system (1.1) will be transformed into the
system

de  ~ _ _ dy ~ . _

= = P(z,y,e), ¢—=Q(z,y,¢) (2.2)

dr
with the following properties:

(i) There is a smooth function ¢ : (Ao, +00) — RT with ((A) — 0 as A — +oo such that
e =¢(A).

(ii) The functions P and @ have for € > 0 the same smoothness as the functions P and Q.

(iii) There is a sufficiently small positive number & such that for e € (0,0) system (2.2) has a

family {fg} of uniformly bounded hyperbolic stable limit cycles which surround the origin
and are positively oriented.

The following theorem is our main result.

Theorem 2.1. Under the assumptions (A1)—(Ag) system (1.1) has for X > Ao a unique family
{T'»} of limit cycles which are hyperbolic, stable and positively oriented, and whose amplitudes are
bounded on any bounded \-interval.

3 Example

We present an application of Theorem 2.1 for the Liénard system

dx dy 9

— =— —=z—ANz*1-1 3.1

I Bl C Y (31)
with ¢ € N. For ¢ = 1, system (3.1) represents the famous van der Pol system. We show that
system (3.1) has the same properties as the van der Pol system. For this purpose we prove that

the assumptions (A;)-(Ag) are fulfilled for system (3.1). In particular, we get the following results
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Lemma 3.1. The function
U(z,y, \) =22 +y2 -1

is a Dulac—Cherkas function for system (3.1) in the phase plane for A > 0.
Finally, we apply Theorem 2.1 and get the result

Theorem 3.2. System (3.1) has for all X > 0 (A < 0) a unique limit cycle which is hyperbolic
stable (unstable) and positively oriented.

Full version of the derived results as a corresponding paper has been submitted for publication.

4 Appendix

Suppose that P, @ satisfy assumption (A;). We denote by X () the vector field defined by system
(1.1), by A some A-interval and by € some region in R?.

Definition 4.1. A function ¥ : Q x A — R with the same smoothness as P, () is called a Dulac—
Cherkas function of system (1.1) in Q for A\ € A if there exists a real number k # 0 such that

¢ = (grad U, X(\)) + k¥ divX(\) >0 (<0) for (z,y,A) € QxA. (4.1)

Remark 4.2. Condition (4.1) can be relaxed by assuming that ® may vanish in Q on a set of
measure zero, and that no closed curve of this set is a limit cycle of (1.1).

The following two theorems can be found in [2].

Theorem 4.3. Let ¥ be a Dulac—Cherkas function of (1.1) in Q for X € A. Then any limit cycle
Ty of (1.1) in Q is hyperbolic and its stability is determined by the sign of the expression K®W
onTy.

Theorem 4.4. Let Q be a p-connected region, let ¥ be a Dulac—Cherkas function of (1.1) in
such that the set Wy = {(z,y) € Q: ¥(z,y,\) = 0} consists of s ovals in 2. Then system (1.1)
has at most p — 1 4 s limit cycles in €.

The following facts can be found in [7].

Definition 4.5. Let the assumption (A;) be satisfied. System (1.1) is said to define a one-
parameter family of negatively (positively) rotated vector fields for A € A if for A € A the equilibria
of system (1.1) are isolated and at all ordinary points it holds

0Q(z,y, \)
O

OP(z,y,\)

A(xayaA) = P(l‘,y,A) I\

—Q(-f,y,A) <0 (> 0)
Remark 4.6. This condition can be relaxed by assuming that A vanishes on a set of measure zero
and that no closed curve of this set is a limit cycle of (1.1).

Theorem 4.7. Suppose that the assumptions (A1) and (A2) are satisfied and that system (1.1)
represents a one-parameter family of negatively (positively) rotated vector fields. Let {T'y} be a family
of hyperbolic stable limit cycles of system (1.1) with positive orientation. Then the amplitude of Ty
decreases monotonically with decreasing (increasing) A, and the family terminates at A\ = A, when
I'y, represents an equilibrium.
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Consider the singularly perturbed system

dx dy
under the following assumptions

(C1) f,g:R%? = R are sufficiently smooth, € is a small positive parameter.

(Co) The origin is the unique equilibrium of system (4.2) in the finite part of the phase plane. It
is unstable for € > 0. The trajectories are positively oriented near the origin.

(C3) g(z,y) = 0 has the unique simple solution x = p(y), where ¢ is sufficiently smooth and

satisfies
©(0) =0, ¢'(0)<0.

¢©'(y) = 0 has exactly two real roots y_ and y4 satisfying

y- <0, ¢"(y-) <0, y+ >0, ¢"(ys+)>0.

xA

Figure 1. Closed curve Zj.

Using assumption (C3) we can define a closed curve Zj in the phase plane consisting of two
finite segments of the curve 2 = ¢(y) bounded by the points D = (y_, p(y+)), A = (y—, p(y—)) and
C = (y+,9(y+)), B = (y++,¢(y—)) and of two finite segments of the straight lines z = p(y_) and
x = ¢(y+) bounded by the points A, B and D, C, respectively (see Figure 1).

The following theorem is a special case of a more general theorem by E. F. Mishchenko and

N. Kh. Rozov in [6].

Theorem 4.8. Under the assumptions (C1)—(C3), system (4.2) has for sufficiently small e a unique
limit cycle Tz in a small neighborhood of Zy which is stable and positively oriented
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The existence of a T-periodic solution to the second-order differential equation

u” = h(t)g(u) (1)

is studied in the first part. Here, h € L(R/TZ) and g € C*(R,;R,) (R, stands for positive real
numbers) is a nonincreasing function with a strong singularity at zero, i.e.,

1
lim [ g(s)ds = +o0. (2)

z—0t
x

By a T-periodic solution to (1) we understand a T-periodic positive function u : R — R which is
absolutely continuous together with its first derivative on [0, 7] and satisfies the equality (1) almost
everywhere on [0, 7.

In addition to the assumptions imposed on g previously, we will need to assume the following
technical condition hold:

1
there exists 7 > 0 such that liminf 93 +)z) H_>H,y, (3)
T—+00 g(l‘)

where

T T

Hy = [Ins))ds. H-= [I(s)-ds,
0 0
. 1 1 . L.

denoting by [a]+ 5 (la]+a), [a]- = 5 (|a] —a) for any real number a. Obviously, the condition (3)

implies that h ; T f h(s)ds < 0. However, this is not restrictive because h < 0 is also a necessary

condition for the ex1stence of a T-periodic solution in the case when ¢ is strictly decreasing (see
Remark 2 below). For example, the condition (3) is satisfied when g(z) = 1/2* (the nonlinearity
in the model equation) provided h < 0.

Remark 1. Without loss of generality we can and we will assume that

lim g(z) < 1. (4)

T—r+00

Indeed, if this is not the case, we can pass to the equation
' = h(t)g(w),
where h(t) = (goo + 1)A(t) for t € R, §(z) = g(x)/(goo + 1) for € Ry, and goo = lim g(z).

T—r+00
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Theorem 1. Let h < 0, g satisfy (2), (3), and (4), and let there exist pairwise disjoint intervals
[ak,bx] C [0,T] (k=1,...,n) such that

h(t) >0 for a.e. te U[ak,bkL
k=1

h(t) <0 fora.e te[0,T]\ Uak,bk

Let, moreover, there exist ¢, € (ag,br) (k=1,...,n) such that
by
lirn+ h(s)g(Ck(s —to)) ds = 400 for every to € [ax,cx] (k=1,...,n),
t—td
t

¢
lim [ h(s)g(Dg(to — s))ds = 400 for every to € [cp,br] (k=1,...,n),

t—ty
ag

where

r hl(by — r h|(cx —
Cp = L rls =) UGN
b, — ¢k, 4 L — ak 4

_ T
P =g ')+ lInlh.

Then the equation (1) has at least one T-periodic solution.

Remark 2. Note that the condition A < 0 is necessary for the existence of a T-periodic solution
to (1) in the case when g is a strictly decreasing function. Indeed, if u is a T-periodic solution to
(1), then dividing both sides of (1) by g(u) and integrating it over [0, 7] we arrive at

T T T
0>/u’28g’(u /us /h()d
2(u(s)) g(u(s) e
0 0 0

provided h(t) # 0.

The equation

;"

u// — (t) (5)

)\ Y
u
with A > 0, can be viewed as a particular case of (1). Thus from Theorem 1 we obtain the following
assertion.

Corollary 1. Let A > 1 and let there exist pairwise disjoint intervals [ag,b;| C [0,T] (k=1,...,n)
and o > 0 such that

h(t) > a(by —t)(t —ax)]*" for ace. t € fap,be] (k=1,...,n),

h(t) <0 for a.e. t€[0,T]\ O[ak,bk].
k=1

Then the equation (5) has a T-periodic solution if and only if h < 0.
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Slightly different result can be obtained in the case where the function g possesses two singu-
larities. Therefore, we will consider the equation of the form

u” = oh(t)g(u) (6)

in the second part. Here again, h € L(R/TZ), o > 0 is a parameter, and g : (A,B) — Ry is
a continuous function with —oo < A < B < +o00. Moreover, we assume that g is continuously
differentiable, and there exists P € (A, B) such that

g (x) <0 for x € (A, P), ¢'(z)>0 for z € (P,B), (7)
P T

[lim [ g(s)ds = +oo, i g(s)ds = +00 (8)
T P

In this case, by a T-periodic solution to (6) we understand a T-periodic function u : R — (A, B)
which is absolutely continuous together with its first derivative on [0, 7] and satisfies the equality
(6) almost everywhere on [0, 7).

Obviously, Hy H_ # 0 is a necessary condition for solvability of a periodic problem for (6).

Theorem 2. Let h #0, g satzsfy (7) (8 ) and let there exist pairwise disjoint intervals (ag,by) C
ce=1,.

0,77, (z4,9:) C[0,T] (k=1,. m) such that
U akabk U xzvyi] = [OvT]v (9)
k=1 i=1

h(t) >0 for a.e. te U(ambk),
k=1

h(t) <0 fora.e. te U(a;,,yz)

i=1
Let, moreover, there exist ci, € (ag,bg) and z; € (x;,y;) (k=1,...,n;i=1,...,m) such that
to-&-%}f
lim+ / h(s)g(A+ Ck(s — tg)) ds = +oo for every tg € [ag,cx] (k=1,...,n),
t—std
t
lim / g(A+ Dy(tog — s))ds = +oo for every tg € [cx,bi] (k=1,...,n),
t—t,
tof
tO+BI;iP
lim+ / |h(s)|g(B — Ki(s — tg)) ds = 400 for every to € [z, 2] (i=1,...,m),
t—std
t
¢
lim / |h(s)|g(B — Li(to — s)) ds = +oo for every to € [zi,yi] (i=1,...,m).
t—t,
OtO_BL—iP
where B-A B-A B-A B-A
Ck — -D - - ’ KZ = - I LZ = -
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Then there exists o, > 0 such that the equation (6) has at least two T-periodic solutions for every
0 < o < 04 and at least one T-periodic solution for o = o,. Moreover, there exists c* > o, such
that the equation (6) has no T-periodic solution for every o > o*.

The equation
" Uh(t)
_ 10
uM1 — u)H (10)

with A > 0, u > 0, can be viewed as a particular case of (6). Thus from Theorem 2 we obtain the
following assertion.

Corollary 2. Leth # 0, A > 1, u > 1 and let there exist pairwise disjoint intervals (ay, by) C [0, T},
(xi,y:) C[0,T) (k=1,...,n;i=1,...,m) such that (9) holds. Furthermore, let there exist a > 0
such that

h(t) > af(br, — 1)t —ar)]"" for ace. t€lap,bi] (k=1,...,n),

h(t) < —a[(yi —t)(t — xi)]“_l fora.e. t €z, y] =1,...,m).
Then there exists o, > 0 such that the equation (10) has at least two T-periodic solutions for every

0 < 0 < 0« and at least one T-periodic solution for o = o.. Moreover, there exists * > o, such
that the equation (10) has no T-periodic solution for every o > o*.

The proofs of the above-presented results can be found in the papers [1,2].
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Integral equations of the form

t

#(t) = w(to) + / d[A]z = £(t) — f(to)

to

are natural generalizations of systems of linear differential equations. Their main goal is that they
admit solutions which need not be absolutely continuous. Up to now such equations have been
considered by several authors starting with J. Kurzweil [6] and T. H. Hildebrandt [3]. For further
contributions see e.g. [1,5,8,9,11-14] and the references therein. These papers worked with several
different concepts of the Stieltjes type integral like Young’s (Hildebrandt), Kurzweil’s (Kurzweil,
Schwabik and Tvrdy), Dushnik’s (Honig) or Lebesgue’s (Ashordia, Meng and Zhang). Thus an
interesting question arises: what are the relationships between all these concepts?

It is known that (cf. [6, Theorem 1.2.1]) the Kurzweil-Stieltjes integral is in finite dimensional
setting equivalent with the Perron—Stieltjes, while the relationship between the Perron—Stieltjes
and the Lebesgue—Stieltjes integrals has been described already in [10, Theorem VI.8.1]. Further-
more, the relationship between the Young—Stieltjes and the Dushnik—Stieltjes integrals (DS) follows
from [7, Theorem B]. Finally, the relationship between the Young-Stieltjes (YS) integral and the
Kurzweil-Stieltjes (KS) one has been described in [11] and [12].

In this paper the symbols like R, N, [a, b], (a,b), var® f and || f||eo have their usual and traditional
meaning. For more details we refer to the preliminary version of the monograph [9]. In addition,
recall that a finite ordered set o = {ao,...,a,p)} of points from [a,b] is a division of [a,b] if
a=ap < - < a,p) = b The couple of ordered sets P = («,§) is a partition of [a,b] if « is
a division of [a,b] and & = {{1,...,§,(p)} is such that §; € [a;j_1,q;] for all j. If P = (a,§) is
a division of [a,b], the elements of o and £ are always denoted respectively as «; and ;. At the
same time the number of elements of £ is always denoted by v(P). For functions f, g: [a, b] =R and
a partition P = (o, &) of [a,b] we set

and, if g is regulated,

T

v(P)

Sy (P) = (f(ajfl)AJrg(Oéjfl) + (&) [9(aj—)—g(aj—1+)] + f(aj)A_g(Oéj))
1

.
Il
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b b
« YS integral (Y) [ f dg (DS integral (D) [ f dg) exists and equals I € R if

a a

for every € > 0 there is a division a. of [a,b] such that
Sy (P)—1I| <e (or [S(P)—1|<ce)
holds for all partitions P = (e, &) of [a, b] such that @ D e, and
aj_1 <& <aj; forall je{l,...,v(a)}.

b
o KS integral (K) [ f dg exists and has a value I € R if

for every £ > 0 there exists a function ¢ : [a,b] — (0, 1) such that
I —S(P)|<e
holds for all partitions P = (e, §) of [a, b] such that
[aj—1, 5] C &5 = 62(&5), &5 + 6=(&5)]-

It is not difficult to see that for all the three integrals under consideration the estimates

b b
' [ dg‘ < lfllos vart g and ' [ dg\ < (19(@)] + 19(5)] + vart g) | lloe

are true whenever the corresponding integral exists. Indeed, it is enough to show that analogous
inequalities are satisfied by the sums [S(P)| and |Sy (P)| for arbitrary compatible partitions. To
see how to prove the latter inequality for the YS integral, it helps to observe that the relation

f(@)[glat+)—g(@)] + F(&) [9(B—)—gla+)] + f(B)[9(B)—9(6-)]
= [f(a)=f(©)]gla+) + [F(&)—f(B)]g(B—) + f(B)g(B) — fla)g(a)

is true if f : [a,b] — R, g is regulated on [a,b], and a < a < £ < 3 <b.
Next convergence results are also true for all the three integrals under consideration.

Proposition. Let f : [a,b] = R, g € BV([a,b]) and let the sequence {f,} tend uniformly to f on
[a,b]. Then:

b b
e If all the integrals [ f, dg, n € N, exist, then the integral [ f dg exists, too, and
a a

Tim fndg—/fdg

b b
e If all the integrals [ f dgn, n € N, exist, then the integral [ f dg exists, too, and
a

a

b b

lim [ fdg,= /f dg.

n—oo
a a
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For KS integrals the proofs are available in Section 6.3 of [9]. Their ideas are pretty transparent
and applicable also to YS and DS integrals: First, we notice that in both situations the sequences of
integrals depending on n are Cauchy sequences in R and therefore they have a limit I € R. Further,
uniform convergence and the above estimates implies that the limit integrals exist and equals I.

Now we can formulate and justify our main result.

Theorem. Suppose f and g are regulated on [a,b] and at least one of them has a bounded variation

b b b
on [a,b]. Then all the integrals (K) [ f dg, (Y) [ f dg and (D) [ f dg ezist and
a a a

b b b

(K) / f dg=(Y) / f dg = f(B)g(b) - f(a)g(a) - (D) / g df. (1)

Sketch of the proof:

o It is not difficult to verify that the equalities (1) hold for every f : [a,b] — R whenever g is a
finite step function and, similarly, they are also true whenever g is regulated and f is a finite
step function. (For analogous arguments see Examples 6.3.1 in [9].)

o Approximate uniformly regulated functions by sequences of finite step functions.

o Applying convergence results stated in Proposition, it is easy to complete the proof.
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Consider the linear differential system
i=A(t)z, zeR? t>t, (1)

with bounded continuously differentiable on the semi-axis [tg, +00) coefficients and with negative
characteristic exponents Aj(A) < A2(A) < 0, which is a linear approximation for a nonlinear
perturbed differential system

g=A{t)y+ f(t,y), yeR? t >t (2)

In this system, the so-called m-perturbation f : [tg, +00) x R? — R? is likewise continuously differ-
entiable in its arguments t > tg and y1,y2 € R, of order m > 1 of smallness in the neighbourhood
of the origin and admissible growth outside of it:

If & y)| < Crllyll™, Cp = const, yeR? t >t (3)

Perron’s effect [17], [15, pp. 50-51; 3-11] (see also [13,14]) of replacing the values of characteristic
exponents establishes the existence both of the linear system (1) with fixed characteristic exponents
A1 < A2 < 0 and of the nonlinear system (2) with perturbation (3) of order m = 2 of smallness and
with all infinitely extendable to the right nontrivial solutions y(t,c) with initial vectors y(tp,c) =
¢ = (c1,¢2) # 0. In addition, all such solutions starting at the time moment ¢ = ¢y on the axis
c1 = 0 have exponents, equal to the higher characteristic exponent Ay of the initial system (1) (that
allows one to consider this effect partial), and the exponents of all the rest nontrivial solutions of
system (2) coincide with some Ao > 0 (calculated incidentally in [5, pp. 13-15]). Generalizations of
that effect in various directions have been obtained in [2,3,6-8,10,11].

The question on the realization of such a (continual) version of Perron’s effect, when the set
A(A, f) of Lyapunov’s exponents of all nontrivial solutions (necessarily infinitely extendable to the
right) of the corresponding system (2) with perturbation (3) would have been measurable, fully
belonged to the positive semi-axis, had continuum power and even positive Lebesque measure,
remained open. A positive answer to this question is contained, particularly, in the theorem below
which defins in a general case an explicit representation of Lyapunov’s exponents of all nontrivial
solutions y(t, ¢) of the needed nonlinear system (2) through their initial values ¢ = (cy, c2) € R2.

Note that earlier we have constructed the perturbed differential systems (2) with an exponen-
tially stable zero solution whose set of characteristic exponents of solutions from a sufficiently small
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neighbourhood of a zero solution belongs fully to the negative semi-axis and: (1) is [4] of positive
measure (a positive length segment); (2) consists [18] of a countable set of nonintersecting con-
nectivity components. Further, these sets of exponents were fully described in [1]. Obviously, the
results obtained there are not connected with the realization of Perron’s effect (and, all the more,
with its continual analogue) of replacing negative values of characteristic exponents of the system
of linear approximation (1) by positive ones for all nontrivial solutions of the nonlinear system (2)
with perturbations (3) of order m > 1 of smallness.
The following theorem is valid [9].

Theorem. For any parameters m > 1, Ay < A2 < 0 and bounded continuously differentiable on
the azis Ro =R\ {0} functions

Vi Ry =5 |Bi, bi| C [Aa,+00), by < o, i=1,2, (4)

there exist the linear system (1) with characteristic exponents A\ (A) = A1 < A2 = X2(A) and
continuously differentiable in its arguments t > ty and y1,y2 € R, the m-perturbation f(t,y) such
that all nontrivial solutions y(t,c) of the nonlinear perturbed system (2) are infinitely extendable to
the right and have characteristic exponents

_ Jti(a), a#0, =0,
AMy(-,¢)] = {¢2(62)’ co#0, c=(c1,02) € R2.

Corollary. A continual version of Perron’s effect of replacing the negative values of characteristic
exponents of the system of linear approrimation (1) by positive ones of all nontrivial solutions of
the nonlinear system (2) with perturbation (3) of order m > 1 is realized through the functions 1;
with sets of values, that is, by the intervals |B;,b;] C (0,400) of positive length (and of positive
Lebesgue measure).

Remark. A set of values of each of the bounded, continuously differentiable on the axis R\ {0}
functions 1 and 19 may consist of two connectivity components. The corresponding analogue of the
above-formulated theorem establishing also a continual version of Perron’s effect holds in this case,
as well. The above theorem admits generalization with replacing the inclusion |5;, b;| C [A2, +00) in
condition (4) by a weaker inclusion |3;, b;| C [A\;, +00). Moreover, by sufficiently obvious changes in
the proof of theorem cited in [9], one can prove an analogous statement for the bounded functions
11 and ¥y from the Naire first class and their Suslin sets of values.
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