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1 Formulation of the problem

Analytical results presented here are based on a common research with Jana Burkotová and they
are contained in the paper [1] where in addition numerical simulations are discussed. In particular,
here we study the existence and asymptotic behaviour of Kneser solutions to the nonlinear second
order ODE,

(p(t)u′(t))′ + q(t)f(u(t)) = 0, t ∈ [0,∞), (1)

satisfying

u(0) = u0 ∈ (0, L), 0 ≤ u(t) ≤ L for t ∈ [0,∞), (2)

or

u(0) = u0 ∈ (L0, 0), L0 ≤ u(t) ≤ 0 for t ∈ [0,∞), (3)

where the interval [L0, L] is specified in the following way:

L0 < 0 < L, f(L0) = f(0) = f(L) = 0.

Note that equation (1) is singular because we assume that p(0) = 0 (see (6)), and therefore there
is a time singularity at t = 0.

A function u is called a solution to equation (1) on [0,∞) if u ∈ C1[0,∞), pu′ ∈ C1[0,∞), and u
satisfies equation (1) for all t ∈ [0,∞). The solution u to equation (1) on [0,∞) is called a solution
to problem (1), (2) or problem (1), (3) if u additionally satisfies condition (2) or (3), respectively.
A solution u to equation (1) on [0,∞) is called a Kneser solution if there exists t0 > 0 such that

u(t)u′(t) < 0 for t ∈ [t0,∞). (4)

2 Existence of Kneser solutions to singular equation (1)

In this section, the existence of Kneser solutions to problems (1), (2) and (1), (3) is discussed under
the assumptions that f is continuous on [L0, L], p is continuous on [0,∞) and p ≡ q. For more
details see [1] and [5]. For the existence of other types of solutions and a deeper study of this
problems see also [2], [3], [4].

Theorem 1. Let us assume that

f ∈ Liploc(0, L], f(x) > 0 for x ∈ (0, L), (5)

p ∈ C1(0,∞), p(0) = 0, p′ > 0 on (0,∞), lim
t→∞

p′(t)

p(t)
= 0, (6)
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p′(t)
t∫
0

p(s) ds

p2(t)
≥ c, t ∈ (0,∞), (7)

xf(x)

F (x)
≥ 2

2c− 1
, x ∈ (0, A0], (8)

hold for some c > 1
2 and A0 ∈ (0, L), where F (x) =

x∫
0

f(z) dz.

Then, for each u0 ∈ (0, A0] there exists a unique Kneser solution u to problem (1), (2) with
p ≡ q. This solution has the following properties:

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0, u′(0) = 0, u′(t) < 0, t ∈ (0,∞).

A dual statement for an initial condition u0 from a negative neighbourhood of zero is given in
the following theorem.

Theorem 2. Let us assume that (6) and (7) with a constant c > 1
2 hold, and let

f ∈ Liploc[L0, 0), f(x) < 0 for x ∈ (L0, 0). (9)

Further, assume that there exists B0 ∈ (L0, 0) such that the inequality

xf(x)

F (x)
≥ 2

2c− 1
, x ∈ [B0, 0), (10)

is satisfied.
Then, for each u0 ∈ [B0, 0), there exists a unique Kneser solution u to problem (1), (3) with

p ≡ q. This solution has the following properties:

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0, u′(0) = 0, u′(t) > 0, t ∈ (0,∞).

To our knowledge, the existence of Kneser solutions to singular problems (1), (2) and (1), (3)
with p(0) = 0 and p ̸= q remains an open problem. Let us note, that the condition u′(0) = 0
is necessary for the smoothness of the solution in the case where p ≡ q is an increasing function.
To see this, let us consider a solution u to (1), (2) or (1), (3). Since u ∈ C1[0,∞), the assumption
p(0) = 0 yields p(0)u′(0) = 0. Since f is continuous on [L0, L] and u(0) ∈ (L0, L), there exist M > 0
and δ > 0 such that |f(u(t))| ≤ M for t ∈ (0, δ). We now integrate (1) and use the monotonicity
of p to obtain

|u′(t)| =
∣∣∣∣ 1

p(t)

t∫
0

p(s)f(u(s)) ds

∣∣∣∣ ≤ M

p(t)

t∫
0

p(s) ds ≤ Mt, t ∈ (0, δ).

Consequently, u′(0) = 0 holds.

1 Asymptotic properties of Kneser solutions

This section focuses on properties of Kneser solutions to problems (1), (2) and (1), (3) in the neigh-
bourhood of infinity. Asymptotic formulas for the solutions and for their first derivatives are pro-
vided. In the following analysis, we assume that the data functions p and q are regularly varying
at infinity and

f ∈ C[L0, L], xf(x) > 0 for x ∈ (L0, 0) ∪ (0, L). (11)
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A function g, which is positive and measurable on [τ0,∞), τ0 > 0, is called regularly varying of
index α ∈ R if for each λ > 0

lim
t→∞

g(λt)

g(t)
= λα.

The set of all regularly varying functions of index α is denoted by RV (α).

Our proofs are based on

Karamata Integration Theorem. Let L(t) ∈ SV , c > 0.

(i) If α > −1, then
t∫

c

sαL(s) ds ∼ 1

α+ 1
tα+1L(t) as t → ∞.

(ii) If α < −1, then
∞∫
t

sαL(s) ds ∼ − 1

α+ 1
tα+1L(t) as t → ∞.

(iii) If α = −1, then

l(t) =

t∫
c

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

l(t)
= 0.

Note, that if

p ∈ C[0,∞), p > 0 on (0,∞), p(0) = 0, (12)

q ∈ C[0,∞), q > 0 on (0,∞), (13)

then problems (1), (2) and (1), (3) have no Kneser solutions in case that

∞∫
1

ds

p(s)
= ∞. (14)

This follows from (12), (13), (11) and the following arguments: Let u be a solution to (1), (2).
Then, pu′ is decreasing for t > 0. Assume that pu′ ≤ 0 for t ≥ t1 > 0. By integrating inequality
p(t)u′(t) < p(t1)u

′(t1) = K < 0, we obtain

u(t) ≤ u(t1) +K

t∫
t1

ds

p(s)
.

Therefore, as t tends to infinity, lim
t→∞

u(t) ≤ −∞ contradicting (2). This means that u′ > 0 on

[t0,∞). Hence, any solution of (1), (2) is increasing and there exists no Kneser solution to (1), (2).
Similar arguments can be given for problem (1), (3). According to the Karamata Integration The-
orem, condition (14) is satisfied when p ∈ RV (α) with α < 1. For α = 1, the integral may be
convergent (or may not) and hence Kneser solutions to the problem could exist. Therefore, in the
following asymptotic analysis, we restrict our attention to the case α ≥ 1. We first formulate the
asymptotic properties of Kneser solutions to problem (1), (2), or (1), (3).
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Theorem 3. Assume that (11) holds and that p ∈ RV (α)∩C[0,∞), q ∈ RV (β)∩C[0,∞), α ≥ 1,
β > 0, β − α > −1. Let u be a Kneser solution to problem (1), (2) or (1), (3). Then,

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (15)

We finally focus our attention to the first derivatives of Kneser solutions.

Theorem 4. Assume that (11) holds and that p ∈ RV (α)∩C[0,∞), α ≥ 1, q ∈ RV (β)∩C[0,∞),
β > 0, β − α > −1, and in addition

∃ r > 1 : lim inf
x→0

|f(x)|
|x|r

> 0, lim sup
x→0

|f(x)|
|x|r

< ∞. (16)

Let u be a Kneser solution to problem (1), (2) or (1), (3). Then, for any ε > 0

lim
t→∞

t
β−α+2
r−1

−ε|u(t)| = 0. (17)
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