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Consider the linear Pfaff system

∂x

∂ti
= Ai(t)x, x ∈ Rn, t = (t1, t2, . . . , tm) ∈ Rm

+ , i = 1,m, (1)

with bounded coefficient matrices Ai(t) continuously differentiable in Rm
+ = {t ∈ Rm : t ≥ 0} and

satisfying the condition of complete integrability [1, pp. 14–24], [2, pp. 16–26]. The characteristic
vector [1, p. 83], [3], λ[x] = λ and the lower characteristic vector [4] p[x] = p of a nontrivial solution
x : Rm

+ → Rn \ {0} of system (1) is defined by the conditions

Lx(λ) ≡ lim
t→∞

ln ∥x(t)∥ − (λ, t)

∥t∥
= 0, Lx(λ− εei) > 0, ∀ ε > 0, i = 1, . . . ,m, (2)

lx(p) ≡ lim
t→∞

ln ∥x(t)∥ − (p, t)

∥t∥
= 0, lx(p+ εei) < 0, ∀ ε > 0, i = 1, . . . ,m, (3)

where ei = (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0) ∈ Rm
+ is a unit coordinate vector. The characteristic set Λx [3] and

the lower characteristic set Px [4] of a nontrivial solution x : Rm
+ → Rn \{0} of system (1) is defined

as the unions of all characteristic vectors Λx = ∪λ[x] and all lower characteristic vectors Px = ∪p[x]
of that solution. The sets [3], [4] Λ(A) =

∪
x̸=0

Λx and P (A) =
∪
x ̸=0

Px referred respectively to as the

characteristic and the lower characteristic sets of system (1).
We generalize the statement on joint implementation of the characteristic and the lower cha-

racteristic sets of the linear Pfaff system (1) with two-dimensional time (m = 2) [6] on the system
(1) with m-dimensional time t.

Definition 1 ([9]). A set D ⊂ Rm is said to be bounded above (respectively, below) if there exists
an r ∈ Rm such that d ≤ r (respectively, d ≥ r) for all d ∈ D (d ≤ r is equivalent to the inequalities
di ≤ ri, i = 1,m).

We introduce an analog of notions of least upper bound and greatest lower bound of a one-
dimensional set for a bounded set D ⊂ Rm [10, p. 11], [7, p. 32] without considering these bounds
as elements of an ordered set of subsets of the space Rm. To this end, to each point r ∈ Rm, we
assign the sets

K(r) = {p ∈ Rm : p ≥ r}, K(r) = {p ∈ Rm : p ≤ r},

which are referred to as the upper and lower direct m-dimensional angles, respectively, with vertex
at the point r.
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Definition 2 ([9]). The least upper (respectively, greatest lower) bound of a set D ⊂ Rm bounded
above (respectively, below) is defined as the set supD (respectively, infD) of vertices of all upper
direct m-dimensional angles K(r) (respectively, lower direct m-dimensional angles K(r)), each of
which has the unique common point, the angle vertex, with the set D,

supD ≡
{
r ∈ Rm : D ∩K(r) = {r}

} (
respectively, infD ≡

{
r ∈ Rm : D ∩K(r) = {r}

})
.

Definition 3 ( [9]). A set D ⊂ Rm is said to be upper closed (respectively, lower closed) if it
contains the least upper bound (respectively, the greatest lower bound) of itself.

Let the set D ⊂ Rm be a connected upper and lower closed convex set. Note that the sets are
its least upper bound supD and greatest lower bound infD have the properties of characteristic
and lower characteristic sets, respectively.

Theorem. Let sets P ⊂ Rm and Λ ⊂ Rm be defined, respectively, convex function pm =
fP (p1, . . . , pm−1) : Rm−1 → R and concave function λm = fΛ(λ1, . . . , λm−1) : Rm−1 → R con-
tinuous monotonically decreasing in their convex closed bounded domain, and satisfy

sup
{
pi : (p1, p2, . . . , pm) ∈ P

}
≤ inf

{
λi : (λ1, λ2, . . . , λm) ∈ Λ

}
, i = 1,m.

Then there exists a completely integrable Pfaff equation

∂x

∂ti
= Ai(t)x, x ∈ R, t ∈ Rm

+ , i = 1,m, (12)

with bounded infinitely differentiable coefficient Ai(t) with characteristic set Λ(A) = Λ and lower
characteristic set P (A) = P .

Sketch of the proof. Without loss of generality, one can assume (to within a shift) that the set
P ⊂ Rm lies in the m-dimensional cube [d1, d2] × · · · × [d1, d2] ⊂ Rm

− , and the set Λ ⊂ Rm lies in
the cube [|d2|, |d1|]× · · · × [|d2|, |d1|] ⊂ Rm

+ , where d1 < d2 ≤ 0.

I. Preliminary construction

Let us assume that the sets P and Λ, determines the functions fP and fΛ, admit the following
parametric representation

P : p = H(α) and Λ : p = G(α), α = (α1, α2, . . . , αm−1), αi ∈ [0, 1].

By the assumptions of the theorem, for each point of the sets P and Λ ⊂ Rm, there exists a
tangent hyperplane, and if several tangent hyperplanes exist at some point of that set, then we
take a hyperplane whose normal has coordinates of one sign. In addition, any of those tangent
hyperplanes µ at the set P ⊂ Rm lies not below that set, and any of those tangent hyperplanes ν
at the set Λ ⊂ Rm lies not above that set Λ. It means that for each s ∈ P , there exists Ms ∈ µ
such that s ≤ Ms, and for each s ∈ Λ, there exists Ms ∈ ν such that s ≥ Ms. Let the tangent
hyperplane µ of the set P at the point H(α) and the tangent hyperplane ν of the set Λ at the point
G(α) be defined by the points q(i)(α) ∈ Rm and r(i)(α) ∈ Rm, i = 1,m, respectively,

µ(α, ζ) = q(1)(α) · (1− ζm−1) · · · (1− ζ2)(1− ζ1) + q(2)(α) · (1− ζm−1) · · · (1− ζ2)ζ1 + · · ·
+ q(m−1)(α) · (1− ζm−1)ζm−2 + q(m)(α) · ζm−1, ζ = (ζ1, ζ2, . . . , ζm−1), ζi ∈ [0, 1],

ν(α, ζ) = r(1)(α) · (1− ζm−1) · · · (1− ζ2)(1− ζ1) + r(2)(α) · (1− ζm−1) · · · (1− ζ2)ζ1 + · · ·
+ r(m−1)(α) · (1− ζm−1)ζm−2 + r(m)(α) · ζm−1, ζ = (ζ1, ζ2, . . . , ζm−1), ζi ∈ [0, 1].
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In this case, we set q(1)(α) = H(α), r(1)(α) = G(α) and require that the projections of those
tangents µ(α, ζ) and ν(α, ζ) to the coordinate axes lies inside the corresponding projections of the
sets P and Λ, respectively.

We construct the sequence {τ (j)n (h)}, h = (h1, h2, . . . , hm−1), where j for any fixed n ∈ N ranges
over the values 1, 2, and hi for fixed values of n, j, h1, . . . , hi−1 ranges over the values 1, . . . , 2n.

We set the first element τ
(1)
1 (1, . . . , 1) of that sequence to unity, and other elements obtained by

multiplying by two the previous element of this sequence.

As a result, we obtain

τ (j)n (h) = 2
2

n∑
l=1

(2(l−1))m−1+(j−1)(2n)m−1+(h1−1)(2n)m−2+···+(hm−3−1)(2n)2+(hm−2−1)2n+hm−1−1

≤ τ
(1)
n+1(1, . . . , 1) = 2

2
n+1∑
l=1

(2(l−1))m−1

≡ 2σm(n).

We set τt = t1 + t2 + · · · + tm. We divide the subset Rm
+ = {t = (t1, t2, . . . , tm) : ti ≥ 0} of

the space Rm by the planes τt = 2k, k ∈ N , into the layers {t ∈ Rm
+ : 2k ≤ τt < 2k+1}, with

the closed “lower” face and the open “upper” face. By Π
(1)
0 (1, . . . , 1) we denote the initial layer

{t ∈ Rm
+ : 0 ≤ τt < τ

(1)
1 (1, . . . , 1)}. Next successively denote the layers by Π

(j)
n (h), where j takes

the values 1, 2 for a fixed n ∈ N , and hi takes the values 1, . . . , 2n for a fixed n, j, h1, . . . , hi−1.

The lower part of the layer Π
(j)
n (h) is defined as the layer

Π̃(j)
n (h) =

{
t ∈ Π(j)

n (h) : τ (j)n (h) ≤ τt < τ (j)n (h)
}
,

where

τ (j)n (h) ≡ τ (j)n (h)
√
2 ,

and the top part is defined as the layer

˜̃
Π(j)

n (h) =
{
t ∈ Π(j)

n (h) : τ (j)n (h) ≤ τt < τ (j)n (h)
√
2
}
.

Following [4], [9], on the segment ∆
(1)
0 = [0, 1] we construct perfect set

P0 =

+∞∩
n=1

2n∪
k=1

∆(k)
n ,

similar to the Cantor perfect set [8, p. 50] with a nonzero Lebesgue measure and modified step

functions Θ(α) [8, p. 200]. Wherein the length of the nst rank segments ∆
(k)
n will be assumed

equal εn = exp(d1 · 2σm(n)), and the middle of these segments will be denoted α
(k)
n . Next on the

segment ∆
(1)
0 = [0, 1] we define continuous nondecreasing Cantor step function Θ(α) : ∆

(1)
0 →

[0, 1] = {Θ(α) : α ∈ P0} with intervals δ
(k)
n = ∆

(k)
n \ (∆(2k−1)

n+1 ∪∆
(2k)
n+1) of constant values.

Note that by the definition of P0 for all the n ∈ N there exists a number k = k(n)(α) ∈
{1, . . . , 2n}, for which the inequality |α(k)

n − α| ≤ εn/2, k = k(n)(α), n ∈ N . Therefore we have

Θ
(
α
(kn(α))
n

)
→ α if n → ∞. We introduce the notation Θ(α, h) ≡ (Θ(α

(h1)
n ), . . . ,Θ(α

(hm−1)
n )),

n ∈ N .
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II. Construction of the equation

For further constructions, we use the following functions infinitely differentiable on the interval
[τ1, τ2]:

e01(τ, τ1, τ2) =

{
exp

{
− [τ − τ1]

−2 exp
(
− [τ − τ2]

−2
)}

if τ1 < τ < τ2,

i− 1 if τ = τi, i = 1, 2,

e00(τ, τ1, τ2) =

{
exp

(
24(τ2 − τ1)

−4 − (τ − τ1)
−2(τ − τ2)

−2
)

if τ1 < τ < τ2,

0 if τ = τi, i = 1, 2,

these are analogs of standard functions infinitely differentiable on the segment [0, 1]. Note that the
function e00(τ, τ1, τ2) attains its maximum value unity in the middle of the segment [τ1, τ2]. On the
sets

Π(1) ≡
+∞∪
n=1

2n∪
h1=1

· · ·
2n∪

hm−1=1

Π(1)
n (h)

and

Π(2) ≡
+∞∪
n=1

2n∪
h1=1

· · ·
2n∪

hm−1=1

Π(2)
n (h),

we introduce the vector functions

Q(i)(τt) =

0 if t ∈ Π̃
(j)
n (h),

q(i)(Θ(α, h))e00

( τt

τ
(j)
n

(h), 1,
√
2
)

if t ∈ ˜̃
Π

(j)
n (h),

i = 1,m,

R(i)(τt) =

0 if t ∈ Π̃
(j)
n (h),

r(i)(Θ(α, h))e00

( τt

τ
(j)
n

(h), 1,
√
2
)

if t ∈ ˜̃
Π

(j)
n (h),

i = 1,m.

We introduce the functions

E(t) = e(Q
(1)(τt),t) + e(Q

(2)(τt),t) + · · ·+ e(Q
(m)(τt),t) if t ∈ Π(1),

E(t) =
[
e−(R(1)(τt),t) + e−(R(2)(τt),t) + · · ·+ e(R

(m)(τt),t)
]−1

if t ∈ Π(2).

Obviously, the function E(t) takes a value equal to m if t ∈ Π̃
(1)
n (h), and the function E(t) takes

a value equal to m−1 if t ∈ Π̃
(2)
n (h). We construct the function x(t), t ∈ Rm

+ , by the following rule

x(t) =



m−1 + [m−m−1]e01

( τt

τ
(j)
n

(h), 1,
√
2
)

if t ∈ Π̃
(1)
n (1, 1, . . . , 1),

E(t) if t ∈ Π(1) \ Π̃(1)
n (1, 1, . . . , 1),

m+ [m−1 −m]e01

( τt

τ
(j)
n

(1, 1, . . . , 1), 1,
√
2
)

if t ∈ Π̃
(2)
n (1, 1, . . . , 1),

E(t) if t ∈ Π(2) \ Π̃(2)
n (1, 1, . . . , 1).

This function is infinitely differentiable and is a solution of the Pfaff equation (12) with bounded
infinitely differentiable on Rm

+ coefficients

Ai(t) = x−1(t)
∂x(t)

∂ti
.

The infinite differentiability of Ai(t) follows from the similar property of the functions, through
which they are defined. Boundedness of coefficients Ai(t) easy to show with the help of estimates

given in [5] for functions de01(τ,τ1,τ2)
dτ and de00(τ,τ1,τ2)

dτ , defined on any interval [τ1, τ2] of length τ2−τ1 ≤
1/2.
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III. Computation of the characteristic sets

Using conditions (2) and (3), the definition of the characteristic and the lower characteristic vectors,
and the obvious estimates

ln E(t) > max
i∈{1,2,...,m}

{
(Q(i)(τt), t)

}
, lnE(t) < min

i∈{1,2,...,m}

{
(R(i)(τt), t)

}
,

can be shown that the characteristic set of functions x(t) is the set Λ = ΛE , and the lower charac-
teristic set of functions x(t) is the set P = PE .

Comment

The result for equation (12) is easy to transfer on system (1).
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