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On the half-line R+ = [0,+∞[ , we consider the two-dimensional system of nonlinear ordinary
differential equations

u′ = g(t)|v|
1
α sgn v,

v′ = −p(t)|u|α sgnu,
(1)

where α > 0 and p, g : R+ → R are locally Lebesgue integrable functions such that

g(t) ≥ 0 for a.e. t ≥ 0. (2)

By a solution of system (1) on the interval J ⊆ [0,+∞[ we understand a pair (u, v) of functions
u, v : J → R, which are absolutely continuous on every compact interval contained in J and satisfy
equalities (1) almost everywhere in J .

Definition 1. A solution (u, v) of system (1) is called non-trivial if |u(t)|+ |v(t)| ̸= 0 for t ≥ 0. We
say that a non-trivial solution (u, v) of system (1) is non-oscillatory if at least one of its component
does not have a sequence of zeros tending to infinity.

Remark 2. It was proved by Mirzov in [11] that all non-extendable solutions of system (1) are
defined on the whole interval [0,+∞[ . Therefore, when we are speaking about a solution of system
(1), we assume that it is defined on [0,+∞[ . Moreover, in [11, Theorem 1.1], it is shown that a cer-
tain analogue of Sturm’s theorem holds for system (1) if the function g is nonnegative. Especially,
under assumption (2), if system (1) has a non-oscillatory solution, then any other its non-trivial
solution is also non-oscillatory. Consequently, it is possible to introduce the following definition.

Definition 3. We say that system (1) is non-oscillatory if all its non-trivial solutions are non-
oscillatory.

Oscillation and non-oscillation theory for ordinary differential equations and their systems is a
widely studied topic of the qualitative theory of differential equation. Below presented results are
closely related to those which are established in [1, 2, 4–10, 12, 13]. Some criteria stated in these
papers are generalized below.

Indeed, one can see that system (1) is a generalization of the equation

u′′ +
1

α
p(t)|u|α|u′|1−α sgnu = 0, (3)

where α ∈ ]0, 1] and p : R+ → R is a locally integrable function. This equation is studied in the
existing literature and some oscillation and non-oscillation criteria for equation (3) can be found,
e.g., in [5, 8].
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Moreover, many results (see, e.g., survey given in [2]) are known in the non-oscillation theory
for the so-called “half-linear” equation(

r(t)|u′|q−1 sgnu′
)′
+ p(t)|u|q−1 sgnu = 0, (4)

where q > 1, p, r : [0,+∞[→ R are continuous and r is positive. It is clear that (4) is a particular
case of system (1). Indeed, if the function u, with the properties u ∈ C1 and r|u′|q−1 sgnu′ ∈ C1,
is a solution of equation (4), then the vector function (u, r|u′|q−1 sgnu′) is a solution of system (1)

with g(t) := r
1

1−q (t) for t ≥ 0 and α := q − 1.
However, there are some restrictions on functions p and g in the above-mentioned papers. It is

usually assumed that p(t) ≥ 0 or
t∫
0

p(s) ds > 0 for large t. Moreover, the coefficient g(t) := r
1

1−q (t)

of the half-linear equation (4) cannot have zero points in any neighbourhood of infinity. Below we
formulate criteria without these additional assumptions.

We consider two different cases, when the coefficient g is non-integrable and integrable on the
half-line.

a) The case
+∞∫
0

g(s) ds = +∞

At first, we assume that
+∞∫
0

g(s) ds = +∞, (5)

and we put

f(t) :=

t∫
0

g(t) ds for t ≥ 0.

In view of assumptions (2) and (5), there exists tg ≥ 0 such that f(t) > 0 for t > tg and f(tg) = 0.
We can assume without loss of generality that tg = 0, since we are interested in the behaviour of
solutions in the neighbourhood of +∞, i.e., we have

f(t) > 0 for t > 0

and, moreover,
lim

t→+∞
f(t) = +∞.

We put

cα(t) :=
α

fα(t)

t∫
0

g(s)

f1−α(s)

( s∫
0

p(ξ) dξ

)
ds for t > 0.

It is known (see [3, Corollary 2.5 (with ν = 1− α)]) that if a finite limit of the function cα(t) does
not exist and lim inf

t→+∞
cα(t) > −∞, then system (1) is oscillatory. Consequetly, in what follows it is

natural to assume that
lim

t→+∞
cα(t) =: c∗α ∈ R. (6)

We put

Q(t;α) := fα(t)

(
c∗α −

t∫
0

p(s) ds

)
for t > 0,
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where the number c∗α is given by (6). Moreover, we denote lower and upper limits of the function
Q( · ;α) as follows

Q∗(α) := lim inf
t→+∞

Q(t;α), Q∗(α) := lim sup
t→+∞

Q(t;α).

Theorem 4. Let (6) hold. Let, moreover, the inequalities

−2α+ 1

α+ 1

( α

1 + α

)1+α
< Q∗(α) and Q∗(α) <

1

α+ 1

( α

1 + α

)1+α

be satisfied. Then system (1) is nonoscillatory.

We denote by B(ξ) the greatest root of the equation

|x|
α

α+1 + x+ ξ = 0,

where ξ ≤ 0. Now we can formulate the next theorem which complements the previous one in
a certain sense.

Theorem 5. Let (6) hold. Let, moreover, the inequalities

−∞ < Q∗(α) ≤ −2α+ 1

α+ 1

( α

1 + α

)1+α

and

Q∗(α) < [B(Q∗(α))]
α

α+1 −B(Q∗(α))

be satisfied. Then system (1) is nonoscillatory.

b) The case
+∞∫
0

g(s) ds < +∞

Now we assume that the coefficient g is integrable on [0,+∞[ , i.e.,

+∞∫
0

g(s) ds < +∞.

Let

f̃(t) :=

+∞∫
t

g(t) ds for t ≥ 0.

In view of assumptions (2) and (5), we have

lim
t→+∞

f̃(t) = 0

and

f̃(t) > 0 for t ≥ 0.

We put

c̃α(t) := f̃(t)

t∫
0

g(s)

f̃2(s)

( s∫
0

f̃α+1(ξ)p(ξ) dξ

)
ds for t ≥ 0.
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According to [3, Corollary 2.11 (with ν = 1− α)], the system (1) is oscillatory if function c̃α(t)
does not have a finite limit and lim inf

t→+∞
c̃α(t) > −∞. Consequently, we assume that there exists

a finite limit of the function c̃α, i.e.,

lim
t→+∞

c̃α(t) =: c̃∗α ∈ R.

We denote

Q̃(t;α) :=
1

f̃(t)

(
c̃∗α −

t∫
0

f̃α+1(s)p(s) ds

)
for t > 0.

Moreover, we denote lower and upper limits of the functions Q̃( · ;α) as follows

Q̃∗(α) := lim inf
t→+∞

Q̃(t;α), Q̃∗(α) := lim sup
t→+∞

Q̃(t;α).

Now we formulate next nonoscilation criteria by using lower and upper limits of the function Q̃(t;α).
We denote by Ã(ν) and B̃(ν) the smallest and the greatest root of the equation

α|x|
α+1
α + (α+ 1)x+ ν = 0.

Theorem 6. Let the inequalities

Ã(ν) + ν < Q̃∗(α) and Q̃∗(α) <
( α

α+ 1

)α+1

be fulfilled with ν = 2α+1
α+1

(
α

1+α

)1+α
. Then system (1) is nonoscillatory.

The following theorem complements previous one in a certain sense. Before we formulate it, we
denote by B̂(η) the greatest root of the equation

α|x|
α+1
α − αx+ η = 0,

where η <
(

α
α+1

)α+1
.

Theorem 7. Let the inequalities

−∞ < Q̃∗(α) ≤ Ã(ν) + ν

with ν = 2α+1
α+1

(
α

1+α

)1+α
, and

Q̃∗(α) < Q̃∗(α) + B̂(Q̃∗(α)) + B̃
(
Q̃∗(α) + B̂(Q̃∗(α))

)
be satisfied. Then system (1) is nonoscillatory.
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