An Estimate for Solutions to a Uniformly Charged Functional Differential Equation with Full Memory

V. P. Maksimov

Perm State University, Perm, Russia E-mail: maksimov@econ.psu.ru

1 Introduction

Here we consider a class of functional differential systems that arises under attempts to reduce functional differential systems with continuous and discrete times [3] to equations with only continuous time having in mind to apply some results from the theory of functional differential equations [2]. First we recall the description of a class of continuous-discrete functional differential equations with linear Volterra operators and appropriate spaces where those are considered. Then a continuous-discrete system is reduced to a continuous system that turns out to be a charged functional differential system with a full memory. For this system, an estimate of solutions, which can be useful for analysis of their properties, is obtained.

2 Preliminaries

To describe the continuous subsystem, let us introduce the linear operator \mathcal{L} :

$$(\mathcal{L}x)(t) = \dot{x}(t) - \int_{0}^{t} K(t,s)\dot{x}(s)\,ds + A(t)x(0), \ t \in [0,T].$$
(1)

Here the elements $k_{ij}(t,s)$ of the kernel K(t,s) are measurable on the set $\{(t,s): 0 \leq s \leq t < \infty\}$ and such that

 $|k_{ij}(t,s)| \leq \kappa(t), \quad i,j = 1, \dots, n,$

where function κ is summable on [0,T] for any finite T > 0, the elements $(n \times n)$ -matrix A are summable on [0,T] for any finite T > 0. By $AC^n[0,T]$ we denote the space of absolutely continuous functions $x : [0,T] \to \mathbb{R}^n$, $L^n[0,T]$ denotes the space of functions Lebesgue summable on $z : [0,T] \to \mathbb{R}^n$,

$$||x||_{AC^n} = |x(0)| + ||\dot{x}||_{L^n}, \quad ||z||_{L^n} = \int_0^T |z(t)| dt$$

where $|\alpha| = \max_{i=1,\dots,n} |\alpha_i|$ for $\alpha = col(\alpha_1,\dots,\alpha_n) \in \mathbb{R}^n$ (we reserve $\|\cdot\|$ for the corresponding norm in \mathbb{R}^n). The operator $\mathcal{L} : AC^n[0,T] \to L^n[0,T]$ is bounded. The theory of equation $\mathcal{L}x = f$ is thoroughly treated in [2,6]. The equation $\mathcal{L}x = f$ covers differential equations with concentrated and/or distributed delay and integrodifferential Volterra equations. The Cauchy problem

$$\mathcal{L}x = f, \quad x(0) = \alpha$$

is uniquely solvable for any $f \in L^n[0,T]$ and $\alpha \in \mathbb{R}^n$ and its solution has the representation

$$x(t) = X(t)\alpha + \int_{0}^{t} C_1(t,s)f(s) \, ds,$$

where $X(\cdot)$ is the fundamental matrix, $C_1(\cdot, \cdot)$ is the Cauchy matrix [5].

For description of the discrete subsystem, we introduce the operator Λ :

$$(\Lambda y)(t_i) = y(t_i) - \sum_{j < i} B_{ij} y(t_j), \quad i = 1, 2, \dots, \mu, \quad 0 = t_0 < t_1 < \dots < t_\mu = T.$$

Here B_{ij} are constant $(\nu \times \nu)$ -matrices. Denote $J = \{t_0, t_1, \ldots, t_\mu\}$, $FD^{\nu}(\mu)$ is the space of functions $y : J \to R^{\nu}$ normed by $\|y\|_{FD^{\nu}(\mu)} = \sum_{i=0}^{\mu} |y(t_i)|$. Recall some facts on equation $\Lambda y = g$ (see, for instance, [1]). The Cauchy problem

$$\Lambda y = g, \quad y(0) = \beta$$

is uniquely solvable for any $g \in FD^{\nu}(\mu)$ $\beta \in R^{\nu}$ and its solution has the form

$$y(t_i) = Y(t_i)\beta + \sum_{j \leqslant i} C_2(i,j)g(t_j), \quad i = 1, 2, \dots, \mu,$$
(2)

where $Y(\cdot)$ is the fundamental matrix, $C_2(\cdot, \cdot)$ is the Cauchy matrix.

Consider the system

$$(\mathcal{L}x)(t) = \sum_{j: t_j < t} U_j(t)y(t_j) + f(t), \ t \in [0, T],$$
(3)

$$(\Lambda y)(t_i) = \sum_{j: t_j < t_i} A_{ij} x(t_j) + g(t_i), \quad i = 1, 2, \dots, \mu,$$
(4)

that consists of subsystem (3) with continuous time and subsystem (4) with discrete time. Here A_{ij} are constant matrices of dimension $\nu \times n$, U_j are $(n \times \nu)$ -matrices with summable elements. The subsystems are connected between each other with respect their states.

3 A charged functional differential system

To reduce system (3), (4) to an equation with respect to $x(\cdot)$, we solve (4) with respect to $y(\cdot)$ by means of (2):

$$y(t_i) = Y(t_i)y(t_0) + \sum_{j \leq i} C_2(i,j) \Big(\sum_{j: t_\ell < t_j} A_{j\ell}x(t_\ell)\Big) + \sum_{j \leq i} C_2(i,j)g(t_j), \quad i = 1, 2, \dots, \mu,$$

and then substitute the right-hand side of the latter into (3). After immediate calculations subsystem (3) can be rewritten in the form of a charged (by the terms $V_j(t)x(t_j)$) functional differential equation

$$(\mathcal{L}x)(t) = \sum_{j:t_j < t} V_j(t)x(t_j) + r(t), \ t \in [0,T]$$

In the sequel, we consider this equation in the case $t_j = j$ and assume that T is as great as we wish:

$$(\mathcal{L}x)(t) = \sum_{j < t} V_j(t)x(j) + r(t), \ t \in [0, \infty).$$
(5)

Our aim is to obtain an estimate of solutions to (5). We derive this estimate on the base of the following Lemma that is a kind of the Gronwall-Bellman inequality.

Lemma. Let p(j), q(j), v(j), z(j), j = 0, 1, 2, ... be nonnegative sequences such that

$$z(j) \le \upsilon(j) + p(j) \sum_{k=0}^{j-1} q(k) z(k), \quad k = 1, 2, \dots, \quad z(0) \le \upsilon(0).$$
(6)

Then the estimate

$$z(j) \le v(j) + p(j) \sum_{\ell=0}^{j-1} M_{j\ell} q(\ell) v(l), \quad j = 1, 2, \dots,$$
(7)

where

$$M_{j\ell} = \exp\Big(\sum_{i=\ell}^{j-1} p(i)q(i)\Big),\,$$

holds.

Remark. Let us note that, as to compare with the traditional version of (6), where v(j) = cp(j), c > 0 and the estimate has the form

$$z(j) \le cp(j) \prod_{\ell=0}^{j-1} \left(1 + p(\ell)q(\ell) \right)$$
(8)

(see, for instance, Corollary of Lemma 1.1 [4]), the estimate (7) can be much more sharp. Really, put v(j) = 1+1/(1+j); p(j) = 1/(1+j); $q(j) = 1/(1+j)^2$. By means of (7) we obtain $z(100) \le 1.1$, whereas (8) gives $z(100) \le 6.5$.

Denote

$$d_j = X(j)x_0 + \int_0^j C_1(j,s)r(s) \, ds, \quad D_{jk} = \int_k^j C_1(j,s)V_k(s) \, ds$$

Theorem. Let the following inequalities take place:

$$|d_j| \le v(j), \quad ||D_{jk}|| \le p(j)q(k), \quad j,k = 1,2,\dots, \quad k \le j,$$

where v(j), p(j), q(j), j = 1, 2, ... are nonnegative sequences. Then the estimate (7) holds for z(j) = |x(j)|.

Proof. First we use the representation of solutions to (1) as applied to (5):

$$x(t) = X(t)x_0 + \int_0^t C_1(t,s)r(s)\,ds + \int_0^t C_1(t,s)\sum_{k < s} V_k(s)x(k)\,ds, \ t \in [0,T].$$

Thus, for sections x(j), we have the system

$$x(j) = X(j)x_0 + \int_0^j C_1(j,s)r(s)\,ds + \int_0^j C_1(j,s)\sum_{k< s} V_k(s)x(k)\,ds.$$
(9)

Next note that the expression

$$\int_{0}^{j} C_1(j,s) \sum_{k < s} V_k(s) x(k) \, ds$$

can be written in the form

$$\sum_{k < j} D_{jk} x(k)$$

This follows from the immediate calculations. Denote

$$w(j) = X(j)x_0 + \int_0^j C_1(j,s)r(s) \, ds$$

and rewrite (9) in the form

$$x(t_j) = w(t_j) + \sum_{k < j} D_{jk} x(k).$$
(10)

To complete the proof, it remains to apply Lemma to the inequality

$$|x(j)| \le |w(j)| + \sum_{k < j} ||D_{jk}|| \, |x(k)|,$$

which follows from (10).

This Theorem makes it possible to take into account asymptotic properties of the Cauchy matrix, the coefficients $V_j(t)$ as weights of the charges x(j), and the free term r(t) in (5) to answer questions about asymptotic behaviour of solutions. Here we restrict ourselves by the following example.

Example. Consider the linear charged differential equation

$$\dot{x}(t) + 2tx(t) = \sum_{j < t} v_j(t)x(j) + r(t), \ t \in [0, \infty),$$

where $|v_j(t)| \leq c \frac{1}{(1+j)^2}$. For this equation, the solution x(t) with the initial condition $x(0) = x_0$ is bounded on $[0, \infty)$ for any r(t) such that the inequality $|r(t)| \leq d(1+t)$ holds with a d > 0 almost everywhere on $[0, \infty)$, and the estimate

$$|x(j)| \le \left(e^{-j^2} + \frac{11}{10} \frac{ce^{\frac{11}{5}c}}{\frac{e}{4} + j}\right)|x_0| + \frac{3}{2}\left(1 + \frac{2ce^{\frac{11}{5}c}}{\frac{e}{4} + j}\right)d, \quad j = 1, 2, \dots$$

holds.

References

- D. L. Andrianov, Boundary value problems and control problems for linear difference systems with aftereffect. (Russian) *Izv. Vyssh. Uchebn. Zaved. Mat.* **1993**, no. 5, 3–16; translation in *Russian Math. (Iz. VUZ)* **37** (1993), no. 5, 1–12.
- [2] N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the theory of functional differential equations: methods and applications. *Contemporary Mathematics and Its Applications*, 3. *Hindawi Publishing Corporation, Cairo*, 2007.
- [3] A. Chadov and V. Maksimov, Linear boundary value problems and control problems for a class of functional differential equations with continuous and discrete times. *Funct. Differ. Equ.* 19 (2012), no. 1-2, 49–62.

I					
L					
L					
L					
	-	-	-	-	_

- [4] V. B. Demidovich, The asymptotic behavior of the solutions of finite difference equations. I. General statements. (Russian) *Differencial'nye Uravnenija* **10** (1974), 2267–2278.
- [5] V. P. Maksimov, The Cauchy formula for a functional-differential equation. (Russian) *Differencial'nye Uravnenija* **13** (1977), no. 4, 601–606, 770–771.
- [6] V. P. Maksimov, Questions of the general theory of functional differential equations. (Russian) Perm State University, Perm, 2003.