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1 Introduction

Here we consider a class of functional differential systems that arises under attempts to reduce
functional differential systems with continuous and discrete times [3] to equations with only con-
tinuous time having in mind to apply some results from the theory of functional differential equa-
tions [2]. First we recall the description of a class of continuous-discrete functional differential
equations with linear Volterra operators and appropriate spaces where those are considered. Then
a continuous-discrete system is reduced to a continuous system that turns out to be a charged
functional differential system with a full memory. For this system, an estimate of solutions, which
can be useful for analysis of their properties, is obtained.

2 Preliminaries

To describe the continuous subsystem, let us introduce the linear operator L :

(Lx)(t) = ẋ(t)−
t∫

0

K(t, s)ẋ(s) ds+A(t)x(0), t ∈ [0, T ]. (1)

Here the elements kij(t, s) of the kernel K(t, s) are measurable on the set {(t, s) : 0 6 s 6 t < ∞}
and such that

|kij(t, s)| 6 κ(t), i, j = 1, . . . , n,

where function κ is summable on [0, T ] for any finite T > 0, the elements (n × n)-matrix A
are summable on [0, T ] for any finite T > 0. By ACn[0, T ] we denote the space of absolutely
continuous functions x : [0, T ] → Rn, Ln[0, T ] denotes the space of functions Lebesgue summable
on z : [0, T ] → Rn,

∥x∥ACn = |x(0)|+ ∥ẋ∥Ln , ∥z∥Ln =

T∫
0

|z(t)| dt,

where |α| = max
i=1,...,n

|αi| for α = col(α1, . . . , αn) ∈ Rn (we reserve ∥ · ∥ for the corresponding norm

in Rn). The operator L : ACn[0, T ] → Ln[0, T ] is bounded. The theory of equation Lx = f is
thorouhgly treated in [2, 6]. The equation Lx = f covers differential equations with concentrated
and/or distributed delay and integrodifferential Volterra equations. The Cauchy problem

Lx = f, x(0) = α
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is uniquely solvable for any f ∈ Ln[0, T ] and α ∈ Rn and its solution has the representation

x(t) = X(t)α+

t∫
0

C1(t, s)f(s) ds,

where X( · ) is the fundamental matrix, C1( · , · ) is the Cauchy matrix [5].
For description of the discrete subsystem, we introduce the operator Λ:

(Λy)(ti) = y(ti)−
∑
j<i

Bijy(tj), i = 1, 2, . . . , µ, 0 = t0 < t1 < · · · < tµ = T.

Here Bij are constant (ν×ν)-matrices. Denote J = {t0, t1, . . . , tµ}, FDν(µ) is the space of functions

y : J → Rν normed by ∥y∥FDν(µ) =
µ∑

i=0
|y(ti)|. Recall some facts on equation Λy = g (see, for

instance, [1]). The Cauchy problem

Λy = g, y(0) = β

is uniquely solvable for any g ∈ FDν(µ) β ∈ Rν and its solution has the form

y(ti) = Y (ti)β +
∑
j6i

C2(i, j)g(tj), i = 1, 2, . . . , µ, (2)

where Y ( · ) is the fundamental matrix, C2( · , · ) is the Cauchy matrix.
Consider the system

(Lx)(t) =
∑

j: tj<t

Uj(t)y(tj) + f(t), t ∈ [0, T ], (3)

(Λy)(ti) =
∑

j:tj<ti

Aijx(tj) + g(ti), i = 1, 2, . . . , µ, (4)

that consists of subsystem (3) with continuous time and subsystem (4) with discrete time. Here
Aij are constant matrices of dimension ν × n, Uj are (n × ν)-matrices with summable elements.
The subsystems are connected between each other with respect their states.

3 A charged functional differential system

To reduce system (3), (4) to an equation with respect to x( · ), we solve (4) with respect to y( · ) by
means of (2):

y(ti) = Y (ti)y(t0) +
∑
j6i

C2(i, j)
( ∑

j: tℓ<tj

Ajℓx(tℓ)
)
+

∑
j6i

C2(i, j)g(tj), i = 1, 2, . . . , µ,

and then substitute the right-hand side of the latter into (3). After immediate calculations subsys-
tem (3) can be rewritten in the form of a charged (by the terms Vj(t)x(tj)) functional differential
equation

(Lx)(t) =
∑
j:tj<t

Vj(t)x(tj) + r(t), t ∈ [0, T ].

In the sequel, we consider this equation in the case tj = j and assume that T is as great as we
wish:

(Lx)(t) =
∑
j<t

Vj(t)x(j) + r(t), t ∈ [0,∞). (5)

Our aim is to obtain an estimate of solutions to (5). We derive this estimate on the base of the
following Lemma that is a kind of the Gronwall-Bellman inequality.
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Lemma. Let p(j), q(j), υ(j), z(j), j = 0, 1, 2, . . . be nonnegative sequences such that

z(j) ≤ υ(j) + p(j)

j−1∑
k=0

q(k)z(k), k = 1, 2, . . . , z(0) ≤ υ(0). (6)

Then the estimate

z(j) ≤ υ(j) + p(j)

j−1∑
ℓ=0

Mjℓq(ℓ)υ(l), j = 1, 2, . . . , (7)

where

Mjℓ = exp
( j−1∑

i=ℓ

p(i)q(i)
)
,

holds.

Remark. Let us note that, as to compare with the traditional version of (6), where υ(j) = cp(j),
c > 0 and the estimate has the form

z(j) ≤ cp(j)

j−1∏
ℓ=0

(
1 + p(ℓ)q(ℓ)

)
(8)

(see, for instance, Corollary of Lemma 1.1 [4]), the estimate (7) can be much more sharp. Really,
put υ(j) = 1+1/(1+j); p(j) = 1/(1+j); q(j) = 1/(1+j)2. By means of (7) we obtain z(100) ≤ 1.1,
whereas (8) gives z(100) ≤ 6.5 .

Denote

dj = X(j)x0 +

j∫
0

C1(j, s)r(s) ds, Djk =

j∫
k

C1(j, s)Vk(s) ds.

Theorem. Let the following inequalities take place:

|dj | ≤ υ(j), ∥Djk∥ ≤ p(j)q(k), j, k = 1, 2, . . . , k ≤ j,

where υ(j), p(j), q(j), j = 1, 2, . . . are nonnegative sequences. Then the estimate (7) holds for
z(j) = |x(j)|.

Proof. First we use the representation of solutions to (1) as applied to (5):

x(t) = X(t)x0 +

t∫
0

C1(t, s)r(s) ds+

t∫
0

C1(t, s)
∑
k<s

Vk(s)x(k) ds, t ∈ [0, T ].

Thus, for sections x(j), we have the system

x(j) = X(j)x0 +

j∫
0

C1(j, s)r(s) ds+

j∫
0

C1(j, s)
∑
k<s

Vk(s)x(k) ds. (9)

Next note that the expression
j∫

0

C1(j, s)
∑
k<s

Vk(s)x(k) ds
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can be written in the form ∑
k<j

Djkx(k).

This follows from the immediate calculations. Denote

w(j) = X(j)x0 +

j∫
0

C1(j, s)r(s) ds

and rewrite (9) in the form

x(tj) = w(tj) +
∑
k<j

Djkx(k). (10)

To complete the proof, it remains to apply Lemma to the inequality

|x(j)| ≤ |w(j)|+
∑
k<j

∥Djk∥ |x(k)|,

which follows from (10).

This Theorem makes it possible to take into account asymptotic properties of the Cauchy
matrix, the coefficients Vj(t) as weights of the charges x(j), and the free term r(t) in (5) to answer
questions about asymptotic behaviour of solutions. Here we restrict ourselves by the following
example.

Example. Consider the linear charged differential equation

ẋ(t) + 2tx(t) =
∑
j<t

vj(t)x(j) + r(t), t ∈ [0,∞),

where |vj(t)| ≤ c 1
(1+j)2

. For this equation, the solution x(t) with the initial condition x(0) = x0 is

bounded on [0,∞) for any r(t) such that the inequality |r(t)| ≤ d(1 + t) holds with a d > 0 almost
everywhere on [0,∞), and the estimate

|x(j)| ≤
(
e−j2 +

11

10

ce
11
5

c

e
4 + j

)
|x0|+

3

2

(
1 +

2ce
11
5

c

e
4 + j

)
d, j = 1, 2, . . .

holds.
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