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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with a bounded piecewise continuous coefficient matrix A and the Cauchy matrix XA. Suppose
that ∥A(t)∥ ≤ a < +∞ for all t ≥ 0. In [8], see also [9, p. 379] and [1, p. 236], I. G. Malkin has
used estimations of the form

∥XA(t, s)∥ ≤ D exp(α(t− s) + βs), t ≥ s ≥ 0, D > 0, α, β ∈ R, (2)

in order to investigate asymptotic stability of the trivial solution to a system

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ 0,

with a nonlinear perturbation f(t, y) of a higher order. An ordered pair (α, β) ∈ R2 is called a
Malkin estimation for system (1) if there exists a number D = D(α, β) > 0 such that (2) holds.
We denote the set of all Malkin estimations for system (1) by E(A).

A pair (α, β) ∈ R2 is said to be a minimal Malkin estimation [7] if (α + ξ, β + η) ∈ E(A) for
all ξ > 0, η > 0, and (α + ξ, β + η) ̸∈ E(A) for all ξ ≤ 0, η ≤ 0, ξ2 + η2 ̸= 0. Note that a
minimal Malkin estimation is not necessarily an element of E(A) by definition; an example is given
below. On the other hand, if (α, β) ∈ E(A) and numbers ξ and η are nonnegative, then the pair
(α+ ξ, β + η) satisfies inequality (2) with the same D = D(α, β) since t ≥ s ≥ 0, i.e. the inclusion
(α+ ξ, β + η) ∈ E(A) is now valid.

We denote the set of all minimal Malkin estimations for system (1) by M(A).
It can be easily seen that the set of minimal Malkin estimations for system (1) coincides with

the set of Grudo characteristic vectors [2] for the function ∥XA(t, s)∥ with respect to the cone
C = {(t, s) ∈ R2 : t ≥ s ≥ 0}. Using this fact and the results of [2] we can give [7] another
description for the set M(A). Let K = {(α, β) ∈ R2 : α > 0, β > 0} be the positive cone of R2

and 4 be the partial order in R2 corresponding to K. Then M(A) coincides with the set of all
minimal with respect to 4 elements of clE(A), where cl is the operator of closure.

The invariant uniform exponent ι[x] of a nonzero solution x to system (1) is the number
supN(x), where the set N(x) consists of all numbers

lim
k→+∞

1

(tk − sk)
ln

∥x(tk)∥
∥x(sk)∥

such that the sequence of pairs τk = (tk, sk) ∈ R2, tk ≥ sk ≥ 0, k ∈ N, satisfy the condition
inf
k
s−1
k tk > 1 and tk − sk → +∞ as k → +∞.

The invariant general exponent I0(A) for system (1) is the number

I0(A) = sup
θ>0

lim
s→+∞

1

(θ − 1)s
ln ∥XA(θs, s)∥. (3)
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These two exponents are invariant with respect to generalized Lyapunov transformations [3],
whereas the analogous Bohl uniform and general exponents are not invariant.

There exists an alternative characterization for I0(A) given in [7]. Namely, I0(A) is the first
component of a unique pair (α, 0) ∈ M(A). It should be stressed that the pair (I0(A), 0) is
always in M(A), but the inclusion (I0(A), 0) ∈ E(A) is not valid in general. Indeed, according
to [1, p. 109], [4, p. 68], and [5, p. 63] for any ε > 0 we have

∥XA(t, s)∥ ≤ Dε exp
(
(Ω0(A) + ε)(t− s)

)
(4)

with some Dε > 0, where

Ω0(A) = lim
T→+∞

lim
k→∞

T−1 ln
∥∥XA(kT, kT − T )

∥∥ (5)

is the general exponent of system (1). A similar estimation

∥XA(t, s)∥ ≤ Dε exp(α(t− s)) (6)

with α < Ω0(A) is not possible at all. Thus, (Ω0(A) + ε, 0) ∈ E(A) for each ε > 0 and there
are no pairs (α, 0) ∈ E(A) with α < Ω0(A). On the other hand, from (3) and (5) we can assert
that the inequality Ω0(A) ≥ I0(A) is always valid and that Ω0(A) > I0(A) in general. Thereby
(I0(A), 0) ̸∈ E(A) in general too.

It was proved in [7] that the invariant general exponent I0(A) is the attainable upper bound
for invariant uniform exponents under exponentially small perturbations. Our aim is to obtain
some similar interpretation for all elements of M(A). To this end, we first obtain some alternative
formulas for I0(A) and ι[x].

Proposition 1. For any system (1) the equalities

I0(A) = lim
θ→1+0

lim
s→+∞

1

(θ − 1)s
ln ∥XA(θs, s)∥ = lim

θ→1+0
lim
k→∞

1

(θ − 1)θk
ln

∥∥XA(θ
k+1, θk)

∥∥
hold.

Proof. Let

R(θ, s) =
1

(θ − 1)s
ln ∥XA(θs, s)∥, R(θ) = lim

k→∞
R(θ, θk), I = lim

θ→1+0
R(θ).

Take any ε > 0, θ > 1 and put ϑ = 1 + εa−1(θ − 1)/(θ + 1). By definition of lower limit, for any
ε > 0 and ϑ > 1 there exists a number θε ∈]1, ϑ] such that the inequality R(θε) < I + ε holds.
Then by definition of upper limit, for the same ε > 0 there exists a number Nε ∈ N such that the
inequality

R(θε, θ
j
ε) < lim

j→∞
R(θε, θ

j
ε) + ε < I + 2ε

is valid for each j > Nε.

Take any s > θNε
ε and find numbers p, q ∈ N such that s ∈ [θpε , θ

p−1
ε [ and θs ∈ [θq+2

ε , θq+1
ε [ .

Then we have

θpε − s ≤ θpε − θp−1
ε = θp−1

ε (θε − 1) ≤ (θε − 1)s,

θs− θq+1
ε ≤ θq+2

ε − θq+1
ε = θq+1

ε (θε − 1) ≤ (θε − 1)θs,
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and

(θ − 1)sR(θ, s) ≤ ln ∥X(θs, θq+1
ε ) ∥+ ln ∥X(θpε , s)∥+

q∑
j=p

ln ∥X(θj+1
ε , θjε) ∥

≤ a(θs− θq+1
ε + θpε − s) +

q∑
j=p

(θj+1
ε − θjε)R(θε, θ

j
ε)

≤ as(θ + 1)(θε − 1) + (θq+1
ε − θpε) max

q≤j≤p
R(θε, θ

j
ε) ≤ as(θ + 1)(ϑ− 1) + (θ − 1)s max

q≤j≤p
R(θε, θ

j
ε).

By the above assumptions we have

R(θ, s) ≤ a(θ + 1)(ϑ− 1)/(θ − 1) + max
q≤j≤p

R(θε, θ
j
ε) ≤ max

j≥Nε

R(θε, θ
j
ε) + ε ≤ I + 3ε,

for all ε > 0 and θ > 1 and all sufficiently large s. Hence, the relation R̃(θ) := lim
s→∞

R(θ, s) ≤ I is

valid for each θ > 1. Now, we obtain

I0 := sup
θ>1

R̃(θ) ≤ I and lim
θ→1+0

R̃(θ) ≤ I.

On the other hand, lim
θ→1+0

R̃(θ) ≥ lim
θ→1+0

R(θ) = I, since R̃(θ) ≥ R(θ). Thus,

lim
θ→1+0

R̃(θ) ≥ I ≥ lim
θ→1+0

R̃(θ)

and therefore the limit lim
θ→1+0

R̃(θ) = I ≥ I0 exists. Since the last inequality is possible only as an

equality, we have the required assertion.

Remark. The above proof essentially follows from the well-known scheme of the similar proof for
general exponent, see [1, p. 110], [4, p. 67], or [5, p. 61].

Proposition 2. For any nonzero solution x to system (1) the following equalities

ι[x] = sup
θ>0

lim
s→+∞

1

(θ − 1)s
ln

∥x(θs)∥
∥x(s)∥

= lim
θ→1+0

lim
s→+∞

1

(θ − 1)s
ln

∥x(θs)∥
∥x(s)∥

= lim
θ→1+0

lim
k→∞

1

(θ − 1)θk
ln

∥x(θk+1)∥
∥x(θk)∥

are valid.

To prove Proposition 2, we use some theorems from [11] concerning the growth of x instead of
standard estimates for the Cauchy matrix used in the proof of Proposition 1, but the rest of the
proof is rather analogous to previous one.

Definition. The number

ιθ[x] := lim
s→+∞

1

(θ − 1)s
ln

∥x(θs)∥
∥x(s)∥

is called the θ-uniform exponent of a nonzero solution x to system (1).
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Together with original system (1), consider the perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (7)

with piecewise continuous bounded perturbation matrix Q. Let Rσ be the set of all piecewise
continuous bounded perturbations Q such that

λ[Q] = lim
t→+∞

t−1 ln ∥Q(t)∥ < −σ, σ ∈ R.

Put
iθ(A+Q) = sup

y
ιθ[y],

where the supremum is taken over all non-trivial solutions of system (7).

Theorem. For any (α, β) ∈ M(A), there exists a number θ > 1 such that

α = sup
{
iθ(A+Q) : Q ∈ Rβ

}
.

The proof is based on Millionshchikov’s rotation method [10], [3], [5, p. 75].
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