On Proper Oscillatory Solutions of Higher Order Emden–Fowler Type Differential Systems

Ivan Kiguradze

A. Razmadze Mathematical Institute of I. Javakhishvili Tbiisi State University, Tbilisi, Georgia E-mail: kig@rmi.ge

On the interval $\mathbb{R}_+ = [0, +\infty)$, we consider the differential system

$$u_1^{(n_1)} = p_1(t)|u_2|^{\lambda_1}\operatorname{sgn}(u_2), \quad u_2^{(n_2)} = p_2(t)|u_1|^{\lambda_2}\operatorname{sgn}(u_1), \tag{1}$$

where

 $n_1 + n_2$ is even, $\lambda_1 > 0$, $\lambda_1 \lambda_2 > 1$,

and $p_i : \mathbb{R}_+ \to \mathbb{R}$ (i = 1, 2) are continuous functions such that

$$p_1(t) \ge 0$$
, $p_2(t) \le 0$ for $t \in \mathbb{R}_+$.

If $n_1 = 1$, $n_2 = n - 1$, $\lambda_1 = 1$, $\lambda_2 = \lambda$, $p_1(t) \equiv 1$ and $p_2(t) \equiv p(t)$, then system (1) is equivalent to the Emden–Fowler type differential equation

$$u^{(n)} = p(t)|u|^{\lambda}\operatorname{sgn}(u).$$

Therefore this system may naturally be called as Emden–Fowler type differential system.

A nontrivial solution (u_1, u_2) of system (1) defined on some infinite interval $[t_0, +\infty] \subset \mathbb{R}_+$ is said to be **proper**.

A proper solution (u_1, u_2) of (1) is said to be **oscillatory** if its components u_1 and u_2 change sign in any neighbourhood of $+\infty$.

We have established the necessary and sufficient conditions for the oscillation of all proper solutions of system (1) and also the conditions guaranteeing the existence of a multiparametric family of proper oscillatory solutions of that system.

Such results were known earlier only in the cases where $n_1 = n_2 = 1$ or $p_1(t) \equiv 1$ and $\lambda_1 = 1$ (see [1,2] and the references therein).

Theorem 1. If the conditions

$$\int_{0}^{+\infty} p_1(t) dt = +\infty, \tag{2}$$

$$\int_{0}^{+\infty} t^{n_2 - 1} \left[\int_{0}^{t} (t - s)^{n_1 - 1} \left(\frac{s}{t}\right)^{(n_2 - 1)\lambda_1} p_1(s) \, ds \right]^{\lambda_2} p_2(t) \, dt = -\infty, \tag{3}$$

$$\lim_{x \to +\infty} \int_{0}^{x} t^{n_1 - 1} \left[\int_{t}^{x} (s - t)^{n_2 - 1} |p_2(s)| \, ds \right]^{\lambda_1} p_1(t) \, dt = +\infty \tag{4}$$

are fulfilled, then every proper solution of system (1) is oscillatory.

If

$$\liminf_{t \to +\infty} \frac{\int_{0}^{t} (t-s)^{n_1-1} s^{(n_2-1)\lambda_1} p_1(s) \, ds}{t^{(n_2-1)\lambda_1} \int_{0}^{t} (t-s)^{n_1-1} p_1(s) \, ds} > 0, \tag{5}$$

then (3) takes the form

$$\int_{0}^{+\infty} t^{n_2 - 1} \left[\int_{0}^{t} (t - s)^{n_1 - 1} p_1(s) \, ds \right]^{\lambda_2} p_2(t) \, dt = -\infty.$$
(6)

Theorem 2. Let conditions (2) and (5) be fulfilled. Then for the oscillation of all proper solutions of system (1), it is necessary and sufficient that equalities (4) and (6) be satisfied.

Corollary 1. Let there exist numbers $t_0 > 0$, $r_i > 0$ (i = 1, 2), $\mu_1 \leq 1$ and μ_2 such that

$$r_1 \le t^{\mu_1} p_1(t) \le r_2, \quad r_1 \le -t^{\mu_2} p_2(t) \le r_2 \text{ for } t \ge t_0.$$
 (7)

Then for the oscillation of all proper solutions of system (1), it is necessary and sufficient that the inequality

$$\mu_2 \le \frac{n_1 - \mu_1}{\lambda_1} + n_2 \tag{8}$$

be fulfilled.

Theorems 1 and 2 leave the question on the existence of proper solutions of system (1) open. The answer to this question gives the following theorem.

Theorem 3. If n_1 is even and $n_2 = n_1$, then system (1) has n_1 -parametric family of proper solutions satisfying the condition

$$\int_{0}^{+\infty} \left(p_1(t) |u_2(t)|^{1+\lambda_1} + p_2(t) |u_1(t)|^{1+\lambda_2} \right) dt < +\infty.$$

From Corollary 1 and Theorem 3 it follows

Corollary 2. Let $n_2 = n_1$, n_1 be even and there exist numbers $t_0 > 0$, $r_2 > r_1 > 0$, $\mu_1 \le 1$ and μ_2 such that inequalities (7) and (8) are fulfilled. Then system (1) has n_1 -parametric family of proper oscillatory solutions.

References

- [1] I. Kiguradze and T. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations. *Springer Science & Business Media*, 2012.
- [2] J. D. Mirzov, Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica, 14. Masaryk University, Brno, 2004.