Invariant Tori and Dichotomy of Linear Extension of Dynamical Systems

Petro Feketa

University of Applied Sciences Erfurt, Germany E-mail: petro.feketa@fh-erfurt.de

Yuriy Perestyuk

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine E-mail: yuriy.perestyuk@gmail.com

1 Introduction and preliminaries

We consider a system of differential equations defined in the direct product of a torus $\mathcal{T}_m, m \in \mathbb{N}$ and an Euclidean space $\mathbb{R}^n, n \in \mathbb{N}$,

$$\frac{d\varphi}{dt} = a(\varphi), \quad \frac{dx}{dt} = A(\varphi)x + f(\varphi), \tag{1.1}$$

where $(\varphi_1, \ldots, \varphi_m)^{\mathsf{T}} \in \mathcal{T}_m$, $(x_1, \ldots, x_n)^{\mathsf{T}} \in \mathbb{R}^n$, $a \in \mathcal{C}^1(\mathcal{T}_m)$ is an *m*-dimensional vector function, $A, f \in \mathcal{C}(\mathcal{T}_m)$ are $n \times n$ square matrix and *n*-dimensional vector function respectively; $\mathcal{C}^r(\mathcal{T}_m)$ stands for the space of continuously differentiable up to the order $r \ 2\pi$ -periodic with respect to each of the variables $\varphi_j, j = 1, \ldots, m$ functions defined on the surface of the torus \mathcal{T}_m . The problem of the existence and construction of invariant toroidal manifold

$$x = u(\varphi) \in \mathcal{C}(\mathcal{T}_m), \ \varphi \in \mathcal{T}_m$$

of the system (1.1) for any inhomogeneity $f(\varphi) \in \mathcal{C}(\mathcal{T}_m)$ can be solved using a notion of Green–Samoilenko function [7]. The existence of such a function is sufficient for the existence of non-trivial invariant torus for system (1.1). In particular, Green–Samoilenko function exists if for any $\varphi \in \mathcal{T}_m$ the system

$$\frac{dx}{dt} = A(\varphi_t(\varphi))x \tag{1.2}$$

is exponential dichotomous on the entire real axis $\mathbb{R} = (\infty, +\infty)$. This means that there exist a projection matrix $C(\varphi) = C^2(\varphi)$ and constants $K \ge 1$, $\alpha > 0$ that do not depend on φ , τ such that the following inequalities

$$\begin{aligned} \left\| \Omega_0^t(\varphi) C(\varphi) \Omega_\tau^0(\varphi) \right\| &\leq K e^{-\alpha(t-\tau)}, \ t \geq \tau, \\ \left\| \Omega_0^t(\varphi) (I - C(\varphi)) \Omega_\tau^0(\varphi) \right\| &\leq K e^{-\alpha(\tau-t)}, \ \tau \geq t \end{aligned}$$
(1.3)

are satisfied for any $t, \tau \in \mathbb{R}$. Here $\Omega_{\tau}^{t}(\varphi)$ is $(n \times n)$ -dimensional fundamental matrix of the system (1.2) such that $\Omega_{\tau}^{\tau}(\varphi) \equiv I_{n}; \varphi_{t}(\varphi)$ is a solution of the initial value problem $\frac{d\varphi}{dt} = a(\varphi), \varphi_{0}(\varphi) = \varphi$.

In recent papers [3,5,6] some particular classes of system (1.1) were distinguished for which the corresponding homogenous equations possess Green–Samoilenko function. These are the systems whose matrix $A(\varphi)$ becomes Hurwitz matrix for φ -s from the non-wandering set of dynamical system $\frac{d\varphi}{dt} = a(\varphi)$. We recall here the definition of non-wandering set.

Definition 1.1. A point φ is called wandering if there exist its neighbourhood $U(\varphi)$ and a positive number T > 0 such that

$$U(\varphi) \cap \varphi_t(U(\varphi)) = 0 \text{ for } t \ge T.$$

Let W be a set of all wandering points of dynamical system and $\Omega = \mathcal{T}_m \setminus W$ be a set of non-wandering points. From the compactness of a torus it follows that the set Ω is nonempty and compact.

Analogously to [5,6], in this paper we also consider the case when matrix $A(\varphi)$ is a constant matrix in non-wandering set Ω : $A(\varphi)|_{\varphi \in \Omega} = \widetilde{A}$. However we do not require the real parts of all eigenvalues of matrix \widetilde{A} to be negative in order to guarantee the existence of invariant toroidal manifold for system (1.1).

2 Main results

To state the main result of the paper we recall that system (1.2) possesses exponential dichotomy property on semiaxes \mathbb{R}_+ and \mathbb{R}_- if there exist projection matrices $C_+(\varphi) = C_+^2(\varphi)$ and $C_-(\varphi) = C_-^2(\varphi)$ and constants $K_1, K_2 \ge 1$, $\alpha_1, \alpha_2 > 0$ that do not depend on φ, τ such that for any $\varphi \in \mathcal{T}_m$ the following inequalities

$$\begin{aligned} \left\| \Omega_0^t(\varphi) C_+(\varphi) \Omega_\tau^0(\varphi) \right\| &\leq K_1 e^{-\alpha_1(t-\tau)}, \quad t \geq \tau, \\ \left\| \Omega_0^t(\varphi) (I - C_+(\varphi)) \Omega_\tau^0(\varphi) \right\| &\leq K_1 e^{-\alpha_1(\tau-t)}, \quad \tau \geq t, \quad \forall t, \tau \in \mathbb{R}_+, \\ \left\| \Omega_0^t(\varphi) C_-(\varphi) \Omega_\tau^0(\varphi) \right\| &\leq K_2 e^{-\alpha_2(t-\tau)}, \quad t \geq \tau, \\ \left\| \Omega_0^t(\varphi) (I - C_-(\varphi)) \Omega_\tau^0(\varphi) \right\| &\leq K_2 e^{-\alpha_2(\tau-t)}, \quad \tau \geq t, \quad \forall t, \tau \in \mathbb{R}_- \end{aligned}$$

$$(2.1)$$

are satisfied.

Theorem 2.1. Let matrix $A(\varphi)$ from (1.1) be constant in non-wandering set Ω :

$$A(\varphi)|_{\varphi\in\Omega} = \widetilde{A},$$

and the corresponding linear system $\frac{dx}{dt} = \widetilde{A}x$ be exponential dichotomous on \mathbb{R} . Then for any $\varphi \in \mathcal{T}_m$ the corresponding homogenous system $\frac{dx}{dt} = A(\varphi_t(\varphi))x$ is exponential dichotomous on semiaxes \mathbb{R}_+ and \mathbb{R}_- , e.g. there exist projection matrices $C_+(\varphi)$ and $C_-(\varphi)$ such that the inequalities (2.1) are satisfied and

$$C_{\pm}(\varphi_t(\varphi)) = \Omega_0^t(\varphi) C_{\pm}(\varphi) \Omega_t^0(\varphi), \quad C_{\pm}^2(\varphi) = C_{\pm}(\varphi).$$

For example, the conditions of Theorem 2.1 are satisfied in the case when the real parts of all eigenvalues of constant matrix \tilde{A} are nonzero.

Denote by $D(\varphi) = C_+(\varphi) - (I - C_-(\varphi))$ an $(n \times n)$ -dimensional matrix. Let $D^+(\varphi)$ be its Moore–Penrose pseudoinverse [2], and $P_{N(D)}(\varphi)$ and $P_{N(D^*)}(\varphi)$ be $(n \times n)$ -orthoprojector matrices

$$P_{N(D)}^{2}(\varphi) = P_{N(D)}(\varphi) = P_{N(D)}^{*}(\varphi),$$

$$P_{N(D^{*})}^{2}(\varphi) = P_{N(D^{*})}(\varphi) = P_{N(D^{*})}^{*}(\varphi)$$

that project \mathbb{R}^n onto the kernel $N(D) = \ker D(\varphi)$ and co-kernel $N(D^*) = \ker D^*(\varphi)$ of the matrix $D(\varphi)$:

 $P_{N(D^*)}(\varphi) = I - D(\varphi)D^+(\varphi), \quad P_{N(D)}(\varphi) = I - D^+(\varphi)D(\varphi).$

Theorem 2.1 states that exponential dichotomy on \mathbb{R} property of a "limit system" $\frac{dx}{dt} = \widetilde{A}x$ implies the exponential dichotomy on semiaxes \mathbb{R}_+ , \mathbb{R}_- for the system $\frac{dx}{dt} = A(\varphi_t(\varphi))x$. Combination of this result with [1,4] immediately leads to the following corollaries.

Corollary 2.1. Let matrix $A(\varphi)$ from (1.1) be constant in non-wandering set Ω :

$$A(\varphi)\big|_{\varphi\in\Omega} = \widetilde{A},$$

and the corresponding linear system $\frac{dx}{dt} = \widetilde{A}x$ be exponential dichotomous on \mathbb{R} . Then system (1.1) has an invariant toroidal manifold if and only if the inhomogeneity $f(\varphi) \in \mathcal{C}(\mathcal{T}_m)$ satisfies the following constraint

$$P_{N(D^*)}(\varphi) \int_{-\infty}^{+\infty} C_{-}(\varphi) \Omega^0_{\tau}(\varphi) f(\varphi_{\tau}(\varphi)) \, d\tau = 0.$$

Corollary 2.2. Let matrix $A(\varphi)$ from (1.1) be constant in non-wandering set Ω :

$$A(\varphi)\big|_{\varphi\in\Omega} = A,$$

and the corresponding linear system $\frac{dx}{dt} = \widetilde{A}x$ be exponential dichotomous on \mathbb{R} . If additionally for any $\varphi \in \mathcal{T}_m$ matrices \widetilde{A} and $(A(\varphi) - \widetilde{A})$ commute then system (1.1) has an invariant toroidal manifold for any inhomogeneity $f(\varphi) \in \mathcal{C}(\mathcal{T}_m)$.

3 Conclusions and discussion

New results that are presented in this paper allow to investigate qualitative behavior of solutions of a class of nonlinear systems that have a simple structure of limit sets and recurrent trajectories. Additionally they can be used to prove the persistence of a stable invariant toroidal manifold under the perturbation of the right-hand side of (1.1) in the case when this perturbation is sufficiently small only in non-wandering set Ω , but not on the whole surface of the torus \mathcal{T}_m .

References

- A. A. Boichuk, A criterion for the existence of a unique invariant torus of a linear extension of dynamical systems. (Russian) Ukran. Mat. Zh. 59 (2007), no. 1, 3–13; translation in Ukrainian Math. J. 59 (2007), no. 1, 1–11.
- [2] A. A. Boichuk and A. M. Samoilenko, Generalized inverse operators and Fredholm boundaryvalue problems. Translated from the Russian by P. V. Malyshev and D. V. Malyshev. VSP, Utrecht, 2004.
- [3] P. Feketa and Yu. Perestyuk, Perturbation theorems for a multifrequency system with impulses. *Nelīnīīnī Koliv.* 18 (2015), no. 2, 280–289; translation in *J. Math. Sci. (N.Y.)* 217 (2016), no. 4, 515–524.
- [4] O. Leontiev and P. Feketa, A new criterion for the roughness of exponential dichotomy on ℝ. Miskolc Math. Notes 16 (2015), no. 2, 987–994.
- [5] M. O. Perestyuk and P. V. Feketa, On preservation of the invariant torus for multifrequency systems. Translation of Ukraïn, Mat. Zh. 65 (2013), no. 11, 1498-1505; Ukrainian Math. J. 65 (2014), no. 11, 1661–1669.
- [6] M. Perestyuk and P. Feketa, On preservation of an exponentially stable invariant torus. Tatra Mt. Math. Publ. 63 (2015), 215–222.
- [7] A. M. Samoĭlenko, Elements of the mathematical theory of multi-frequency oscillations. Translated from the 1987 Russian original by Yuri Chapovsky. *Mathematics and its Applications* (Soviet Series), 71. Kluwer Academic Publishers Group, Dordrecht, 1991.