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1 Introduction

In this paper, a problem is considered whose origin was the Lagrange problem. It is a problem on
finding the form of the firmest column of given volume. The Lagrange problem was the source for
different extremal eigenvalue problems. One of them is the eigenvalue problem for second-order
differential equations with an integral condition on the potential.

The Dirichlet problem for the equation y′′ + λQ(x)y = 0 with non-negative summable on [0, 1]

function Q(x) satisfying
1∫
0

Qγ(x) dx = 1, as γ ∈ R, γ ̸= 0, was considered in [1]. The Dirichlet

problem for the equation y′′−Q(x)y+λy = 0 with a real integrable on (0, 1) by Lebesgue function
Q was considered in [8] for γ > 1.

In this paper, the problems of that kind are considered under different integral conditions, in
particular, if the integral condition contains a weight function. The purpose of research is to give
methods of finding the sharp estimates for the first eigenvalue of Sturm–Liouville problems with
Dirichlet boundary conditions for those values of the integral condition parameters for which the
estimates are finite, and to prove attainability of those estimates.

Consider the Sturm–Liouville problem

y′′ + σQ(x)y + λy = 0, x ∈ (0, 1), (1)

y(0) = y(1) = 0, (2)

where σ = ±1, and Q belongs to the set Tα,β,γ of all real–valued locally integrable functions on
(0, 1) with non–negative values such that the following integral condition holds

1∫
0

xα(1− x)βQγ(x) dx = 1, α, β, γ ∈ R, γ ̸= 0. (3)

A function y is a solution to problem (1), (2) if it is absolutely continuous on the segment [0, 1],
satisfies (2), its derivative y′ is absolutely continuous on any segment [ρ, 1− ρ], where 0 < ρ < 1

2 ,
and equality (1) holds almost everywhere in the interval (0, 1).

A function y ∈ H1
0 (0, 1) is called a weak solution to equation (1) if for any function ψ ∈ C∞

0 (0, 1)
the following equality

1∫
0

(y′ψ′ + σQ(x)yψ) dx = λ

1∫
0

yψ dx
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holds.

We give estimates for

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q), Mα,β,γ = sup
Q∈Tα,β,γ

λ1(Q).

For any function Q ∈ Tα,β,γ by HQ we denote the closure of the set C∞
0 (0, 1) in the norm

∥y∥HQ
=

( 1∫
0

y′
2
dx+

1∫
0

Q(x)y2 dx

) 1
2

.

For any function Q ∈ Tα,β,γ it is proved (see, for example, [5, 6]) that

λ1(Q) = inf
y∈HQ\{0}

R[Q, y], where R[Q, y] =

1∫
0

(y′2 − σQ(x)y2) dx

1∫
0

y2 dx

.

Previous results are published in [2–7]. Results of this type can be useful to give methods of
finding the sharp estimates for eigenvalues in cases of non-differentiable functionals.

2 Main results

2.1 Estimates for σ = −1

By Friedrichs’ inequality for any function Q ∈ Tα,β,γ we obtain

inf
y∈HQ\{0}

1∫
0

y′2 dx+
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

> inf
y∈HQ\{0}

1∫
0

y′2 dx

1∫
0

y2 dx

> inf
y∈H1

0 (0,1)\{0}

1∫
0

y′2 dx

1∫
0

y2 dx

= π2.

Consequently, for any α, β, γ ∈ R, γ ̸= 0, we have

mα,β,γ = inf
Q∈Tα,β,γ

inf
y∈HQ\{0}

R[Q, y] > π2.

If γ > 0, then it is proved that mα,β,γ = π2 (see, for example, [5, 6]).

Put γ < 0. For any positive function Q ∈ Tα,β,γ by the Hölder inequality we have

1∫
0

Q(x)y2 dx >
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 ] dx

) γ−1
γ

. (4)

Consider the subspace Bα,β,γ of functions in the space H1
0 (0, 1) such that

∥y∥2Bα,β,γ
=

1∫
0

y′
2
dx+

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

< +∞.
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By inequality (4) we have HQ ⊂ Bα,β,γ ⊂ H1
0 (0, 1). Put m = inf

y∈Bα,β,γ\{0}
G[y], where

G[y] =

1∫
0

y′2 dx+
( 1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

1∫
0

y2 dx

.

Since
inf

y∈HQ\{0}
R[Q, y] > inf

y∈HQ\{0}
G[y] > inf

y∈Bα,β,γ\{0}
G[y] = m,

it follows that

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q) > inf
y∈HQ\{0}

G[y] > inf
y∈Bα,β,γ\{0}

G[y] = m.

The following two theorems prove that mα,β,γ = m.
Consider the set

Γ =

{
y ∈ Bα,β,γ |

1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx = 1

}
.

Theorem 2.1. If γ < 0, then there exists a non-negative function u ∈ Γ such that G[u] = m,
moreover, for γ < −1 u is a weak solution to the equation

u′′ +mu = x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1 .

Theorem 2.2. Suppose that γ < 0 and the function u satisfies the conditions of Theorem 2.1.
Then there exists a sequence Qn(x) ∈ Tα,β,γ such that R[Qn, u] → G[u] = m as n → ∞ and
mα,β,γ = m.

Remark 2.1. In the case of γ < 0, inequalities for mα,β,γ = m can be found, for example, in [5,6].

Theorem 2.3 (see [2, 6, 7]). For Mα,β,γ the following estimates hold:

1. If γ < 0 or 0 < γ < 1, then we have Mα,β,γ = ∞.

2. If γ > 1, then we have Mα,β,γ <∞, moreover:

1) If γ > 1, then there is a function Q∗ ∈ Tα,β,γ and a positive on (0, 1) function u ∈ HQ∗

such that R[Q∗, u] = G[u] = m and Mα,β,γ = m > π2. The function u satisfies the
equation

u′′ +mu = x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1

and the condition
1∫

0

x
α

1−γ (1− x)
β

1−γ u
2γ
γ−1 dx = 1.

In the case of γ > 1, α = β = 0, m is the solution of the system of the equations

H∫
0

du√
mH2 −mu2 − 2

pH
p + 2

pu
p
=

1

2
,

H∫
0

up√
mH2 −mu2 − 2

pH
p + 2

pu
p
du =

1

2
,
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where H = max
x∈[0,1]

u(x), p = 2γ
γ−1 s.

2) If γ > 1 and α, β > γ, then we have Mα,β,γ 6 R[ 1
y21
, y1], where y1(x) = x

α
2γ (1− x)

β
2γ .

3) If β 6 γ < α and y2(x) = x
α
2γ sinπ(1− x), then we have

Mα,β,γ 6

1∫
0

y′2
2 dx+ π2( γ−1

3γ−β−1)
γ−1
γ

1∫
0

y22 dx

for γ > 1,

Mα,β,γ 6

1∫
0

y′2
2 dx+ π2

1∫
0

y22 dx

for γ = 1.

If α 6 γ < β and y3(x) = (1− x)
β
2γ sinπx, then we have

Mα,β,γ 6

1∫
0

y′3
2 dx+ π2

( γ−1
3γ−β−1

) γ−1
γ

1∫
0

y23 dx

for γ > 1,

Mα,β,γ 6

1∫
0

y′3
2 dx+ π2

1∫
0

y23 dx

for γ = 1.

4) If γ > 1, then

(a) for α > γ, β 6 0 and y2(x) = x
α
2γ sinπ(1− x) we have Mα,β,γ 6 R[ 1

y22
, y2];

(b) for β > γ, α 6 0 and y3(x) = (1− x)
β
2γ sinπx we have Mα,β,γ 6 R[ 1

y23
, y3].

5) If γ = 1 > α > 0 > β or γ = 1 > β > 0 > α, then Mα,β,γ 6 2π2.

6) If γ = 1 > α, β > 0, then Mα,β,γ 6 3π2.

7) If γ = 1, α, β 6 0, then Mα,β,γ 6 5
4 π

2. If γ = 1, α = β = 0, then there exist functions
Q∗(x) ∈ T0,0,1 and u ∈ H1

0 (0, 1) such that

M0,0,1 = R[Q∗, u] =
π2

2
+ 1 +

π

2

√
π2 + 4 .

Remark 2.2. In the case of γ > 1, inequalities for Mα,β,γ = m can be found, for example, in [6,7].
In the case of γ = 1, attainability of sharp estimates for Mα,β,1 were proved in [10].

2.2 Estimates for σ = 1

Theorem 2.4. 1. For any α, β, γ ∈ R, γ ̸= 0, we have Mα,β,γ 6 π2.
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2. If γ > 1, then M0,0,γ = π2 and there exist functions Q∗(x) ∈ T0,0,γ and u ∈ H1
0 (0, 1) such

that m0,0,γ = R[Q∗, u] > π2

2 .

3. If γ = 1, then M0,0,1 = π2, m0,0,1 = λ∗, where λ∗ ∈ (0, π2) is the solution to the equation

2
√
λ = tg(

√
λ
2 ). Here m0,0,1 is attained at Q(x) = δ(x− 1

2).

4. If 1
2 6 γ < 1, then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ = π2.

5. If 1
3 6 γ < 1/2, then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ 6 π2.

6. If 0 < γ < 1
3 , then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ < π2.

7. If γ < 0, then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ < π2, and there exist
functions Q∗(x) ∈ T0,0,γ and u ∈ H1

0 (0, 1) such that M0,0,γ = R[Q∗, u].

Remark 2.3. The result M0,0,γ < π2 for 0 < γ < 1/2 was obtained in [9].
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[2] S. S. Ezhak, On estimates for the first eigenvalue of the Sturm–Liouville problem with Dirichlet
boundary conditions. (Russian) In: Astashova I. V. (ed.) Qualitative Properties of Solutions to
Differential Equations and Related Topics of Spectral Analysis: Scientific Eedition, UNITY-
DANA, Moscow, 2012, 517–559.

[3] S. Ezhak, On estimates for the first eigenvalue of the Sturm–Liouville problem with Dirichlet
boundary conditions and integral condition. Differential and difference equations with appli-
cations, 387–394, Springer Proc. Math. Stat., 47, Springer, New York, 2013.

[4] S. S. Ezhak, On a minimization problem for a functional generated by the Sturm–Liouville
problem with integral condition on the potential. (Russian) Vestnik of Samara State University,
no. 6(128), 2015, 57–61.

[5] M. Telnova, Some estimates for the first eigenvalue of the Sturm-Liouville problem with a
weight integral condition. Math. Bohem. 137 (2012), no. 2, 229–238.

[6] M. Yu. Telnova, Estimates for the first eigenvalue of a Sturm–Liouville problem with Dirichlet
conditions and a weight integral condition. (Russian) In: Astashova I. V. (ed.) Qualitative
Properties of Solutions to Differential Equations and Related Topics of Spectral Analysis: Sci-
entific Eedition, UNITY-DANA, Moscow, 2012, 609–647.

[7] M. Yu. Telnova, On the upper estimates for the first eigenvalue of a Sturm–liouville problem
with a weighted integral condition. (Russian) Vestnik of Samara State University, no. 6(128),
(2015), 124–129.

[8] V. A. Vinokurov and V. A. Sadovnichii, On the range of variation of an eigenvalue when the
potential is varied. (Russian) Dokl. Akad. Nauk, Ross. Akad. Nauk 392 (2003), no. 5, 592–597;
translation in Dokl. Math. 68 (2003), no. 2, 247–252.

[9] A. A. Vladimirov, On some a priori majorant of eigenvalues of Sturm–Liouville problems.
https://arxiv.org/abs/1602.05228.

[10] A. A. Vladimirov, On majorants of eigenvalues of Sturm-Liouville problems with potentials
from balls of weighted spaces. https://arxiv.org/abs/1412.7992.


