Asymptotic Behavior of Some Special Classes of Solutions of Essentially Nonlinear *n*-th Order Differential Equations

M. O. Bilozerova

Odessa I. I. Mechnikov National University, Odessa, Ukraine E-mail: Marbel@ukr.net

The following differential equation

$$y^{(n)} = \alpha_0 p(t) \exp\left(R\left(|\ln|y^{(n-1)}||\right)\right) \prod_{i=0}^{n-1} \varphi_i(y^{(i)})$$
(1)

is considered. In (1) $\alpha_0 \in \{-1,1\}, p : [a, \omega[1 \rightarrow]0, +\infty[(-\infty < a < \omega \le +\infty)), \varphi_i : \Delta_{Y_i} \rightarrow 0, 0 \in \{-1,1\}, p : [a, \omega[1 \rightarrow]0, +\infty[(-\infty < a < \omega \le +\infty)), \varphi_i : \Delta_{Y_i} \rightarrow 0, 0 \in \{-1,1\}, p \in$ $]0, +\infty[$ (i = 0, ..., n) are continuous functions, $R:]0, +\infty[\rightarrow]0, +\infty[$ is continuously differentiable function, $Y_i \in \{0, \pm \infty\}$, Δ_{Y_i} is either the interval $[y_i^0, Y_i]^2$, or the interval $[Y_i, y_i^0]$. We suppose also that R is a regularly varying on infinity function of index μ , $0 < \mu < 1$, every $\varphi_i(z)$ is a regularly

varying as $z \to Y_i$ $(z \in \Delta_{Y_i})$ of index σ_i and $\sum_{i=0}^{n-1} \sigma_i \neq 1$. We call the measurable function $\varphi : \Delta_Y \to]0, +\infty[$ a regularly varying as $z \to Y$ of index σ if

for every $\lambda > 0$ we have

$$\lim_{\substack{z \to Y\\z \in \Delta_Y}} \frac{\varphi(\lambda z)}{\varphi(z)} = \lambda^{\sigma},$$

where $Y \in \{0, \pm \infty\}$, Δ_Y is some one-sided neighbourhood of Y. If $\sigma = 0$, such function is called a slowly varying.

It follows from the results of monograph [5] that regularly varying functions have the following properties.

 M_1 : Function $\varphi(z)$ is regularly varying of index σ as $z \to Y$ if and only if it admits the representation

$$\varphi(z) = z^{\sigma}\theta(z),$$

where $\theta(z)$ is a slowly varying function as $z \to Y$.

- M_2 : If function $L: \Delta_{Y^0} \to]0, +\infty[$ is slowly varying as $z \to Y_0$, the function $\varphi: \Delta_Y \to \Delta_{Y^0}$ is regularly varying as $z \to Y$, then the function $L(\varphi) : \Delta_Y \to [0, +\infty)$ is slowly varying as $z \to Y$.
- M_3 : If function $\varphi: \Delta_Y \to]0, +\infty[$ satisfies the condition

$$\lim_{\substack{z \to Y \\ z \in \Delta}} \frac{z\varphi'(z)}{\varphi(z)} = \sigma \in \mathbb{R},$$

then φ is regularly varying as $z \to Y$ of index σ .

¹If $\omega > 0$, we take a > 0.

²If $Y_i = +\infty$ ($Y_i = -\infty$), we take $y_i^0 > 0$ ($y_i^0 < 0$).

We say that a slowly varying as $z \to Y$ ($z \in \Delta_Y$) function $\theta : \Delta_Y \to]0; +\infty[$ satisfies the condition S if for any continuous differentiable function $L : \Delta_{Y_i} \to]0; +\infty[$ such that

$$\lim_{\substack{z \to Y_i \\ z \in \Delta_{Y_i}}} \frac{zL'(z)}{L(z)} = 0,$$

the following condition takes place

$$\theta(zL(z)) = \theta(z)(1+o(1))$$
 as $z \to Y$ $(z \in \Delta_Y)$.

We call defined on $[t_0, \omega] \subset [a, \omega]$ solution y of the equation (1) the $P_{\omega}(Y_0, Y_1, \ldots, Y_{n-1}, \lambda_0)$ solution, where $-\infty \leq \lambda_0 \leq +\infty$, if the following conditions take place

$$y^{(i)}: [t_0, \omega[\to \Delta_{Y_i}, \quad \lim_{t \uparrow \omega} y^{(i)}(t) = Y_i \ (i = 0, \dots, n-1), \quad \lim_{t \uparrow \omega} \frac{(y^{(n-1)}(t))^2}{y^{(n)}(t)y^{(n-2)}(t)} = \lambda_0.$$

In regular cases $\lambda_{n-1}^0 \in R \setminus \{0, \frac{1}{2}, \frac{2}{3}, \dots, \frac{n-2}{n-1}\}$, the $P_{\omega}(Y_0, Y_1, \dots, Y_{n-1}, \lambda_0)$ -solutions of the equation (1) have been established in [3]. Such $P_{\omega}(Y_0, Y_1, \dots, Y_{n-1}, \lambda_0)$ -solutions are regularly varying functions as $t \uparrow \omega$ of indexes different from $\{0, 1, \dots, n-1\}$.

The cases $\lambda_0 \in \{0, \frac{1}{2}, \frac{2}{3}, \dots, \frac{n-2}{n-1}\}$ are singular. Such solutions are regularly varying functions as $t \uparrow \omega$ of indexes $\{0, 1, \dots, n-1\}$, so such solutions or some of their derivatives are slowly varying functions as $t \uparrow \omega$. Therefore for investigation of such solutions we must put additional conditions on functions $\varphi_0, \dots, \varphi_{n-1}$ and on the function p. The case $\lambda_0 = 0$ is of the most difficult ones. It is presented in this work. The case was investigated before [1,4] only when $R(z) \equiv 1$ and the function $\varphi_{n-1}(z)|z|^{-\sigma_{n-1}}$ satisfies the condition S. For equations of type (1), that contain, for example, functions like $\exp(|\ln |y||^{\mu})$ ($0 < \mu < 1$), the asymptotic representations of $P_{\omega}(Y_0, Y_1, \dots, Y_{n-1}, 0)$ -solutions were not established before. Let us notice that function $\exp(R(|\ln |z||))$ does not satisfy the condition S.

Now we need the following subsidiary notations.

$$\begin{split} \gamma_{0} &= 1 - \sum_{j=0}^{n-1} \sigma_{j}, \quad C = \frac{1}{1 - \sigma_{n-1}}, \quad \eta = \prod_{j=0}^{n-3} ((n-i-2)!)^{\sigma_{i}}, \quad \gamma = \sum_{i=0}^{n-3} (i+2-n)\sigma_{i}, \\ \theta_{i}(z) &= \varphi_{i}(z)|z|^{-\sigma_{i}} \quad (i=0,\ldots,n-1), \\ Q(t) &= -\pi_{\omega}(t) \Big| \frac{(1 - \sigma_{n-1})}{\eta} |\pi_{\omega}(t)|^{-\gamma} I_{0}(t) \theta_{n-1} (y_{n-1}^{0} |I_{0}(t)|^{\frac{1}{1 - \sigma_{n-1}}}) \Big|^{\frac{1}{1 - \sigma_{n-1}}} \operatorname{sign} y_{n-1}^{0}, \\ I_{0}(t) &= \int_{A_{\omega}^{0}}^{t} p(\tau) \, d\tau, \quad I_{1}(t) = \int_{A_{\omega}^{1}}^{t} \frac{Q(\tau)}{\pi_{\omega}(\tau)} \, d\tau, \\ I_{0}(t) &= \int_{A_{\omega}^{0}}^{t} p(\tau) \, d\tau = +\infty, \\ \omega, \quad \operatorname{if} \int_{a}^{\omega} p(\tau) \, d\tau < +\infty, \quad A_{\omega}^{1} = \begin{cases} a, \quad \operatorname{if} \quad \int_{a}^{\omega} |\frac{Q(\tau)}{\pi_{\omega}(\tau)}| \, d\tau = +\infty, \\ \omega, \quad \operatorname{if} \quad \int_{a}^{\omega} p(\tau) \, d\tau < +\infty, \end{cases} \end{split}$$

The following conclusions take place.

Theorem 1. Let in equation (1) $\sigma_{n-1} \neq 1$, the function θ_{n-1} satisfy the condition S and

$$\lim_{t \uparrow \omega} \frac{R'(|\ln |I(t)||)I_1(t)I'_0(t)}{I_0(t)I'_1(t)} = 0.$$

We suppose also that there exists the finite or infinite limit

$$\lim_{t \uparrow \omega} \frac{\pi_{\omega}(t)p(t)}{I_0(t)} \,. \tag{2}$$

Then the following conditions are necessary and sufficient for the existence of $P_{\omega}(Y_0, Y_1, \ldots, Y_{n-1}, 0)$ solutions of equation (1),

Here i = 0, ..., n - 3.

For any such solution the following asymptotic representations take place as $t \uparrow \omega$

$$\frac{y^{(n-1)}(t)}{\exp(R(|\ln|y^{(n-1)}(t)||))\prod_{j=0}^{n-1}\varphi_j(y^{(j)}(t))} = \alpha_0(1-\sigma_{n-1})I_0(t)[1+o(1)],\tag{3}$$

$$\frac{y^{(n-1)}(t)}{y^{(n-2)}(t)} = \frac{I_1'(t)(1-\sigma_{n-1})}{\gamma_0 I_1(t)} [1+o(1)], \quad \frac{y^{(i)}(t)}{y^{(n-2)}(t)} = \frac{[\pi_\omega(t)]^{n-i-2}}{(n-i-2)!} [1+o(1)], \quad (4)$$
$$i = 0, \dots, n-3.$$

Theorem 2. Let in equation (1) $\sigma_{n-1} \neq 1$, the function θ_{n-1} satisfy the condition S and

$$\lim_{t \uparrow \omega} \frac{I_0(t)Q'(t)}{R'(|\ln|I(t)||)Q(t)I'_0(t)} = 0.$$

We suppose also that there exists the finite or infinite limit (2). Then the following conditions are necessary and sufficient for the existence of $P_{\omega}(Y_0, Y_1, \ldots, Y_{n-1}, 0)$ -solutions of equation (1),

$$\begin{split} \lim_{t\uparrow\omega} \frac{I_0(t)}{p(t)R'(|\ln|I_0(t)||)} &= 0, \quad \lim_{t\uparrow\omega} y_{n-1}^0 |I_0(t)|^{\frac{1}{1-\sigma_{n-1}}} = Y_{n-1}, \\ \lim_{t\uparrow\omega} y_{n-2}^0 \Big| \frac{Q(t)}{R'(|\ln|I_0(t)||)} |^{\frac{1-\sigma_{n-1}}{\gamma_0}} &= Y_{n-2}, \quad \lim_{t\uparrow\omega} y_i^0 |\pi_\omega(t)|^{n-i-2} = Y_i, \\ \alpha_0 y_{n-1}^0(1-\sigma_{n-1})I_0(t) > 0, \quad (1-\sigma_{n-1})\gamma_0 Q(t) y_{n-2}^0 y_{n-1}^0 > 0, \\ & y_i^0 y_{i+1}^0 \pi_\omega(t)(n-i-2) > 0 \quad as \ t \in [a,\omega[.$$

Here i = 0, ..., n - 3.

For any such solution the representation (3), the second representation in (4) and the following asymptotic representation

$$\frac{y^{(n-1)}(t)}{y^{(n-2)}(t)} = \frac{I_1'(t)}{\gamma_0 R'(|\frac{1-\sigma_{n-1}}{\ln |I_0(t)|}|)} \left[1 + o(1)\right]$$

take place as $t \uparrow \omega$.

References

- [1] М. А. Белозерова, Асимптотические представления решений дифференциальных уравнений п-го порядка. Сборник трудов Международной миниконференции "Качественная теория дифференциальных уравнений и приложения", Изд-во МЭСИ, Москва, 2011, 13– 27.
- [2] М. О. Білозерова, Асимптотичні зображення особливих розв'язків диференціальних рівнянь другого порядку з правильно змінними нелінійностями. *Буковинський математичний журнал* **3** (2015), № 2, 7–12.
- [3] M. A. Bilozerowa and V. M. Evtukhov, Asymptotic representations of solutions of the differential equation $y^{(n)} = \alpha_0 p(t) \prod_{i=0}^{n-1} \phi_i(y^{(i)})$. Miskolc Math. Notes **13** (2012), no. 2, 249–270.
- [4] А. М. Кюроt, Асимптотическое поведение решений неавтономных обыкновенных дифференциальных уравнений n-го порядка с правильно меняющимися нелинейностями. Вісник Одеського національного університету. Математика. Механіка 18 (2013), Вип. 3, 16–34.
- [5] E. Seneta, Regularly varying functions. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976.