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1 Introduction

The subject of q-calculus, also known as quantum calculus, rests on the concept of finite difference
re-scaling. The formal work on q-difference equations dates back to the first quarter of twentieth
century. The applications of q-calculus in several important disciplines like combinatorics, special
functions, quantum mechanics, etc. led to the recent development of the subject. q-calculus is
also regarded as a subfield of time scales calculus (unified setting for studying dynamic equations
on both discrete and continuous domains). In this short note, we present some recent results on
boundary value problems (BVP) of q-difference and fractional q-difference equations and inclusions.

2 BVP for q-difference equations and inclusions

We begin with some preliminary concepts of q-calculus.

Definition 2.1. Let f be a function defined on a q-geometric set I, i.e., qt ∈ I for all t ∈ I. For
0 < q < 1, we define the q-derivative as

Dqf(t) =
f(t)− f(qt)

(1− q)t
, t ∈ I \ {0}, Dqf(0) = lim

t→0
Dqf(t).

For t ≥ 0, we consider a set Jt = {tqn : n ∈ N ∪ {0}} ∪ {0} and define the definite q-integral of
a function f : Jt → R by

Iqf(t) =

t∫
0

f(s) dqs =

∞∑
n=0

t(1− q)qnf(tqn),



International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia 9

provided that the series converges.
For a, b ∈ Jt, we have

b∫
a

f(s) dqs = Iqf(b)− Iqf(a) = (1− q)
∞∑
n=0

qn
[
bf(bqn)− af(aqn)

]
.

Consider the boundary value problem for a second order q−difference equation with non-sepa-
rated boundary conditions

D2
qx(t) = f(t, x(t)), t ∈ I, x(0) = ηx(T ), Dqx(0) = ηDqx(T ), (2.1)

where f ∈ C(I × R,R), I = [0, T ] ∩ {qn : n ∈ N} ∪ {0}, T is a fixed constant and η ̸= 1 is a fixed
real number. By using a variety of fixed point theorems such as Banach’s contraction principle,
Leray–Schauder nonlinear alternative, Schauder fixed point theorem and Krasnoselskii’s fixed point
theorem, several results are proved for the problem (2.1) in [5], which are listed below.

Theorem 2.2. Let f : I × R → R be a continuous function satisfying the condition

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀ t ∈ I, u, v ∈ R,

where L is a Lipschitz constant. Then the boundary value problem (2.1) has a unique solution,
provided

L

(
1

1 + q
+

|η(1 + ηq)|
(1 + q)(η − 1)2

+
∣∣∣ η

η − 1

∣∣∣)T 2 < 1.

Theorem 2.3. Assume that:

(H1) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈
L1([0, T ],R+) such that

|f(t, u)| ≤ p(t)ψ(∥u∥) for each (t, u) ∈ I × R;

(H2) there exists a number M > 0 such that

∥u∥
/(

T
(
1 +

|η|(1 + |1− η|)
(η − 1)2

)
ψ(M)∥p∥L1

)
> 1.

Then the BVP (2.1) has at least one solution.

Theorem 2.4. Assume that there exist constants

0 ≤ c < 1

/(
1

1 + q
+

|η(1 + ηq)|
(1 + q)(η − 1)2

+
∣∣∣ η

η − 1

∣∣∣)
and N > 0 such that |f(t, u)| ≤ c

T 2 |u| + N for all t ∈ I, u ∈ C(I). Then the BVP (2.1) has at
least one solution.

Theorem 2.5. Assume that there exists a constant M1 such that

|f(t, u)| ≤M1

/(
1

1 + q
+

|η(1 + ηq)|
(1 + q)(η − 1)2

+
∣∣∣ η

η − 1

∣∣∣)T 2, ∀ t ∈ I, u ∈ [−M1,M1].

Then the BVP (2.1) has at least one solution.
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Theorem 2.6. Assume that f : I×R → R is a continuous function and the following assumptions
hold:

(H3) |f(t, u)− f(t, v)| ≤ L|u− v|, ∀ t ∈ I, u, v ∈ R;

(H4) |f(t, u)| ≤ µ(t), ∀ (t, u) ∈ I × R, and µ ∈ C(I,R+).

If (
|η(1 + ηq)|

(1 + q)(η − 1)2
+

∣∣∣ η

η − 1

∣∣∣)T 2 < 1,

then the boundary value problem (2.1) has at least one solution on I.

In [4], the authors discussed the existence and nonexistence of solutions for nonlinear second
order q-integro-difference equation: D2

qu(t) = f(t, u(t)) + Iqg(t, u(t)), f, g ∈ C(I × R,R) supple-
mented with non-separated boundary conditions given in (2.1). Similar results were proved for
other classes of boundary value problems. The results for the second order q-difference equa-
tion D2

qx(t) = f(t, x(t)), t ∈ I, supplemented with non-separated boundary conditions α1x(0) −
β1Dqx(0) = γ1x(η1), α2x(1) − β2Dqx(1) = γ2x(η2) were proved in [13], with three-point integral

boundary conditions αx(η) + βDrx(η) = 0,
T∫
0

x(s) dps = 0 in [22], nonlocal and integral boundary

conditions

x(0) = x0 + g(x), x(1) = α

ν∫
µ

x(s) dqs,

and

x(ξ) = g(x), αDrx(η) + β

T∫
η

x(s) dps = 0

in [8] and [18], respectively. For results on inclusions, see [7] and [17].
Boundary value problems for nonlinear q-difference hybrid equations and inclusions were studied

in [11]. In [11] the authors have investigated the problem:

D2
q

( x(t)

f(t, x(t))

)
= g(t, x(t)), t ∈ Iq, x(0) = 0, x(1) = 0,

where f ∈ C(Iq × R,R \ {0}), g : C(Iq × R,R) are such that f(t, x(t)), g(t, x(t)) are continuous
at t = 0, 1, Iq = {qn : n ∈ N} ∪ {0, 1}, q ∈ (0, 1) is a fixed constant. An existence result was
established by using a fixed point theorem for the product of two operators under Lipschitz and
Carathéodory conditions.

Agarwal et al. [3] discussed the existence, uniqueness and existence of extremal solutions for
a nonlinear boundary value problem of q-difference equations with nonlocal q-integral boundary
condition given by

Dqu(t) = f
(
t, u(t), u(ϕ(t))

)
, u(0) = λ

η∫
0

g(s, u(s)) dqs+ µ, t ∈ Iq,

where f ∈ C(Iq × R × R,R), g ∈ C(Iq × R,R), ϕ ∈ C(Iq, Iq), η ≥ 0, λ, µ ∈ R, Iq = {qn : n ∈
N} ∪ {0, 1}, q ∈ (0, 1) is a fixed constant.

The notions of q-derivative and q-integral were extended on finite intervals. For a fixed k ∈
N∪{0}, let Jk := [tk, tk+1] ⊂ R be an interval and 0 < qk < 1 be a constant. We define qk-derivative
of a function f : Jk → R at a point t ∈ Jk as follows:
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Definition 2.7. Let f : Jk → R be a continuous function and let t ∈ Jk. Then we define the
qk-derivative of the function f as

Dqkf(t) =
f(t)− f(qkt+ (1− qk)tk)

(1− qk)(t− tk)
, t ̸= tk, Dqkf(tk) = lim

t→tk
Dqkf(t).

We say that f is qk-differentiable on Jk provided Dqkf(t) exists for all t ∈ Jk.

Definition 2.8. Let f : Jk → R be a continuous function. Then the qk-integral is defined by

t∫
tk

f(s) dqks = (1− qk)(t− tk)

∞∑
n=0

qnk f
(
qnk t+ (1− qnk )tk

)
(2.2)

for t ∈ Jk. Moreover, if a ∈ (tk, t), then the definite qk-integral is defined by

t∫
a

f(s) dqks=(1−qk)(t−tk)
∞∑
n=0

qnk f
(
qnk t+(1−qnk )tk

)
−(1−qk)(a−tk)

∞∑
n=0

qnk f
(
qnka+(1−qnk )tk

)
.

For more details on these two new notions, the interested reader is referred to the book [15].
Agarwal et al. [2] obtained the positive extremal solutions by the method of successive iterations

for the nonlinear impulsive qk-difference equations:

Dqku(t) = f(t, u(t)), 0 < qk < 1, t ∈ J ′,

u(tk) = Ik(u(tk)), k = 1, 2, . . . ,m, u(0) = λu(η) + d, η ∈ Jr, r ∈ Z,

where Dqk are qk-derivatives (k = 0, 1, 2, . . . ,m), f ∈ C(J × R,R+), Ik ∈ C(R,R+), J = [0, T ],
T > 0, 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , J ′ = J \ {t1, t2, . . . , tm}, Jr = (tr, T ],
0 ≤ λ < 1, d ≥ 0, 0 ≤ r ≤ m and △u(tk) = u(t+k ) − u(t−k ), u(t

+
k ) and u(t−k ) denote the right and

the left limits of u(t) at t = tk (k = 1, 2, · · · ,m), respectively.

3 BVP for fractional q-difference equations and inclusions

Definition 3.1. Let ν ≥ 0 and h be a function defined on [0, T ]. The fractional q-integral of
Riemann–Liouville type is given by (I0qh)(t) = h(t) and

(Iνq h)(t) =
1

Γq(ν)

t∫
0

(t− qs)(ν−1)h(s) dqs, ν > 0, t ∈ [0, T ].

Definition 3.2. The fractional q-derivative of Riemann–Liouville type of order ν ≥ 0 is defined by
(D0

qh)(t) = h(t) and (Dν
qh)(t) = (Dl

qI
l−ν
q h)(t), ν > 0, where l is the smallest integer greater than

or equal to ν.

In recent years, several existence and uniqueness results were obtained. In [1], by applying
Krasnoselskii’s fixed point theorem, Leray–Schauder nonlinear alternative and Banach’s contraction
principle, the authors studied the existence and uniqueness of solutions for the following q-anti-
periodic boundary value problem of sequential q-fractional integro-differential equations:

cDα
q (

cDγ
q + λ)x(t) = Af(t, x(t)) +BIρq g(t, x(t)), 0 ≤ t ≤ 1, 0 < q < 1,

x(0) = −x(1),
(
t(1−γ)Dqx(t)

)∣∣∣
t=0

= −Dqx(1),
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where cDα
q and cDγ

q denote the fractional q-derivative of the Caputo type, 0 < α, γ ≤ 1, Iρq ( · )
denotes Riemann–Liouville integral with 0 < ρ < 1, f , g are given continuous functions, λ ∈ R and
A, B are real constants.

In [12], the existence and uniqueness results were obtained for the following boundary value
problem of nonlinear fractional q-difference equations with nonlocal and sub-strip type boundary
conditions:

cDυ
q x(t) = f(t, x(t)), t ∈ [0, 1], 1 < υ ≤ 2, 0 < q < 1,

x(0) = x0 + g(x), x(ξ) = b

1∫
η

x(s) dqs, 0 < ξ < η < 1,

where cDυ
q denotes the Caputo fractional q-derivative of order υ, f : [0, 1] × R → R and g :

C([0, 1],R) → R are given continuous functions, and b is a real constant. In [6], the existence
of solutions for nonlinear fractional q-difference integral equations with two fractional orders and
nonlocal four-point boundary conditions were obtained, while the positive extremal solutions for
nonlinear fractional differential equations on a half-line were discussed in [23]. For further results,
see [9, 10,14,16,19–21].

Finally, we emphasize that the Definition 2.1 does not remain valid for impulse points tk, k ∈ Z
such that tk ∈ (qt, t). On the other hand, this situation does not arise for impulsive equations on
q-time scales as the domains consist of isolated points covering the case of consecutive points of t
and qt with tk ̸∈ (qt, t). Due to this reason, the subject of impulsive quantum difference equations
on dense domains could not be studied. In [15], the authors modified the classical quantum calculus
for obtaining the first and second order impulsive quantum difference equations on a dense domain
[0, T ] ⊂ R through the introduction of a new q-shifting operator defined by aΦq(m) = qm+(1−q)a,
m, a ∈ R. For details, see [15].
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