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1 Introduction

Computational Nanotechnology has become an indispensable tool not only in predicting but also
in engineering the properties of multi-functional nano-structured materials. The presence of nano-
heterogeneities in these materials affects or disturbs their elastic field at the local and the global
scale and thus greatly influences their mechanical properties. In this paper we shall study dynami-
cal behaviour of 2D dynamic coupled problem in multifunctional nano-heterogeneous piezoelectric
composites. More in detail, we shall present first modeling of two-dimensional anti-plane (SH) wave
propagation problem in piezoelectric anisotropic solids containing nano-holes or nano-inclusions.
Nano-heterogeneities are considered in two aspects as wave scatters provoking scattered and diffrac-
tion wave fields and also as stress concentrators creating local stress concentrations in the considered
solid.There are no numerical results for dynamic behavior of bounded piezoelectric domain with
heterogeneities under anti-plane load. Validation is done in [1] for infinite piezoelectric plane with
a hole, in [3] for isotropic bounded domain with holes and inclusions and in [2] for piezoelectric
plane with nano-hole or nano-inclusion.

In Section 2 we shall reduce the model under consideration to a system of integro-differntial
equations (IDE) and we shall discretize it by Cellular Nonlinear/Nanoscale Network (CNN) archi-
tecture. Simulations and validation will be provided. Section 3 deals with feedback stabilization of
the IDE CNN model together with simulations.

We shall state the model of piezoelectric solid with heterogeneities under time-harmonic anti-
plane load. LetG ∈ R2 is a bounded piezoelectric domain with a set of inhomogeneities I = ∪Ik ∈ G
(holes, inclusions, nano–holes, nano–inclusions) subjected to time–harmonic load on the boundary
∂G. Note that heterogeneities are of macro size if their diameter is greater than 10−6m, while
heterogeneities are of nano–size if their diameter is less than 10−7m.

The aim is to find the field in every point of M = G \ I, I and to its dynamic behaviour. Using
the methods of continuum mechanics the problem can be formulated in terms of boundary value
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problem for a system of 2-nd order differential equations, see [1, Chapter 2],∣∣∣∣∣∣∣
ρN

∂2u3
∂t2

= cN44∆uN3 + eN15∆uN4 ,

eN15∆uN3 − εN15∆uN4 = 0,

(1)

where x = (x1, x2), ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
is Laplace operator with respect to t, N = M for x ∈ M and

N = I for x ∈ I; uN3 is mechanical displacement, uN4 is electric potential, ρN is the mass density,
cN44 > 0 is the shear stiffness, eN15 ̸= 0 is the piezoelectric constant and εN11 > 0 is the dielectric
permittivity.

We shall consider the case, when I is a nano-hole or nano-inclusion and boundary conditions
on S are

tMj =
∂σS

lj

∂l
on S, or τ I3 + tM3 =

∂σS
l3

∂l
, τ I4 + tM4 =

∂σS
l4

∂l
, (2)

where σS
lj is generalized stress [1], j = 3, 4, l is the tangential vector. Then we shall study boundary

value problem (BVP) (1) with boundary conditions (2).

2 Integro-differential CNN model

BVP (1), (2) is reduced in [1] to integro-differential equation (IDE) using the Fourier transform
and then applying the Gauss theorem [6]. In this paper we shall study the general form of IDE
obtained in [1]. Let us consider the following system of IDE:

∂u(x)

∂τ
= D

∂2u

∂x2
− C1

∫
S

G(u(x)) dx, (3)

where C1 is a constant depending on the ρM , cM44 > 0, eM15 ̸= 0 and εM11 > 0, D is diffusion coefficient,
u = (u3, u4), function G(x) is a function of the displacement vectors u3,4 and the traction τ3,4.

It is known [5] that some autonomous CNN represent an excellent approximation to nonlinear
partial differential equations (PDEs). The intrinsic space distributed topology makes the CNN
able to produce real-time solutions of nonlinear PDEs. There are several ways to approximate the
Laplacian operator in discrete space by a CNN synaptic law with an appropriate A-template. In
our case the CNN model of IDE (3) is:

duij
dt

= DA1 ∗ uij − C1

∫
S

G(uij) dt, 1 ≤ i ≤ n, j = 3, 4, (4)

where A1 is 1-dimensional discretized Laplacian template [5] A1 : (1,−2, 1), ∗ is convolution
operator, n = M ×M is the number of cells of the CNN architecture.

We develop the following algorithm for studying the dynamical behavior of CNN model (4) via
describing function method [4]:

1. First, we apply double Fourier transform F (s, z) to IDE CNN model (4)

F (s, z) =
k=∞∑
k=−∞

z−k

∞∫
−∞

fk(t) exp(−st) dt

from continuous time t and discrete space k to continuous temporal frequency ω, and con-
tinuous spatial frequency Ω such that z = exp(IΩ), s = Iω, I is the imaginary identity and
therefore we obtain:

sU(s, z) = D
[
z−1U(s, z)− 2U(s, z) + zU(s, z)

]
− C1s

−1G(U(s, z)).
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2. We express U(s, z) as a function of G(U(s, z)):

U(s, z) =
C1

sD(z−1 − 2 + z)− s2
G(U)

and obtain the transfer function H(s, z):

H(s, z) =
C1

sD(z−1 − 2 + z)− s2
.

According to the describing function technique [4], the transfer function can be expressed in
terms of temporal frequency ω and spatial frequency Ω:

HΩ(ω) =
C1

IωD(2 cosΩ− 2) + ω2
.

3. We are looking for possible periodic solutions of our CNN model (4) in the form:

uij(t) = ξ(iΩ+ ωt), 1 ≤ i ≤ n, j = 3, 4,

for some function ξ : R → R and for some spatial frequency 0 ≤ Ω ≤ 2π and temporal
frequency ω = 2π

T , where T > 0 is the minimal period.

4. According to the describing function technique [4] the following constraints hold:

R(HΩ(ω)) =
Um

Ym
,

I(HΩ(ω)) = 0.

(5)

5. Thus (5) give us necessary set of equations for finding the unknowns Um, Ω and ω. As
we mentioned before we are looking for a periodic wave solution of (4), therefore Um will
determine approximate amplitude of the wave, and T = 2π

ω will determine the wave speed.
Now according to the describing function technique, if for a given value of Ω we can find the
unknowns (Um, ω), then we can predict the existence of a periodic solution of our CNN IDE
(4) with an amplitude Um and period of approximately T = 2π

ω .

Following the above algorithm the next theorem has been proved:

Theorem 1. CNN IDE (4) of the BVP (1), (2) with circular array of n = L×L cells has periodic
solutions uij(t) with a finite set of spatial frequencies Ω = 2πk

n , 0 ≤ k ≤ n−1 and a period T = 2π
ω .

Let us consider the square domain of piezoelectric solid G1G2G3G4 with a side a. For hetero-
geneities at nano–scale we have: the side of the square is a = 10−7m; material parameters inside
I for hole are 0; material parameters on S = ∂I for hole and for an inclusion are: cS44 = 0.1 cM44 ,
eS15 = 0.1 eM15 , ε

S
11 = 0.1 εM11 , ρ

S = ρM .

Then simulating our CNN IDE model (4) we obtain the following periodic wave solutions (see
Figure 1).

The simulations of IDE CNN model are obtained by simulation system MATCNN applying
4th- order Runge–Kutta integration. In order to minimize the computational complexity and to
maximize the significance of the mean square error only outputs of 4 cells are taken into account.
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Figure 1. Simulation of IDE CNN model (4) with 4 cells

3 Stabilizing feedback control for IDE CNN model

Let us extend the IDE CNN model (4) by adding to each cell the local linear feedback:

duij
dt

= D(ui−1j − 2uij + ui+1j)− C1

∫
S

G(uij) dt− kuij , (6)

where k is the feedback controls coefficient which is assumed to be equal for all cells. The problem
is to prove that this simple and available for the implementation feedback can stabilize the IDE
CNN model (4). In the following we present a proof of this statement and give sufficient condition
on the feedback coefficient values which provide stability of the CNN nonlinear model (6). The
following theorem holds:

Theorem 2. Let the parameters of IDE CNN system and feedback coefficient k (6) have positive
values. Then its linearized model is asymptotically stable for all k > 0.

Figure 2. Simulation of stabilized IDE CNN model (6)
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Proof. Define the quadratic Lyapunov function candidate L(z) = 1
2 z

T z. Then its derivative along

the linearized control IDE CNN is dL(z)
dt = 1

2 z
T (JT (k) + J(k))z = −zTQ(k)z. Therefore, dL(z)

dt < 0
implies a positive definiteness of Q(k). It can be shown that Q(k) positive definiteness implies
k > 0. For verification of the above statement the eigenvalues of J(k) were calculated related on
the values of feedback coefficient k. Stability of the linear system requires that the eigenvalues λi

j ,

i = 1, . . . , 4 satisfy the inequality max
i

Reλi
j < 0.

Simulations of the stabilized IDE CNN are in Figure 2.
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1 Introduction

The subject of q-calculus, also known as quantum calculus, rests on the concept of finite difference
re-scaling. The formal work on q-difference equations dates back to the first quarter of twentieth
century. The applications of q-calculus in several important disciplines like combinatorics, special
functions, quantum mechanics, etc. led to the recent development of the subject. q-calculus is
also regarded as a subfield of time scales calculus (unified setting for studying dynamic equations
on both discrete and continuous domains). In this short note, we present some recent results on
boundary value problems (BVP) of q-difference and fractional q-difference equations and inclusions.

2 BVP for q-difference equations and inclusions

We begin with some preliminary concepts of q-calculus.

Definition 2.1. Let f be a function defined on a q-geometric set I, i.e., qt ∈ I for all t ∈ I. For
0 < q < 1, we define the q-derivative as

Dqf(t) =
f(t)− f(qt)

(1− q)t
, t ∈ I \ {0}, Dqf(0) = lim

t→0
Dqf(t).

For t ≥ 0, we consider a set Jt = {tqn : n ∈ N ∪ {0}} ∪ {0} and define the definite q-integral of
a function f : Jt → R by

Iqf(t) =

t∫
0

f(s) dqs =

∞∑
n=0

t(1− q)qnf(tqn),
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provided that the series converges.
For a, b ∈ Jt, we have

b∫
a

f(s) dqs = Iqf(b)− Iqf(a) = (1− q)
∞∑
n=0

qn
[
bf(bqn)− af(aqn)

]
.

Consider the boundary value problem for a second order q−difference equation with non-sepa-
rated boundary conditions

D2
qx(t) = f(t, x(t)), t ∈ I, x(0) = ηx(T ), Dqx(0) = ηDqx(T ), (2.1)

where f ∈ C(I × R,R), I = [0, T ] ∩ {qn : n ∈ N} ∪ {0}, T is a fixed constant and η ̸= 1 is a fixed
real number. By using a variety of fixed point theorems such as Banach’s contraction principle,
Leray–Schauder nonlinear alternative, Schauder fixed point theorem and Krasnoselskii’s fixed point
theorem, several results are proved for the problem (2.1) in [5], which are listed below.

Theorem 2.2. Let f : I × R → R be a continuous function satisfying the condition

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀ t ∈ I, u, v ∈ R,

where L is a Lipschitz constant. Then the boundary value problem (2.1) has a unique solution,
provided

L

(
1

1 + q
+

|η(1 + ηq)|
(1 + q)(η − 1)2

+
∣∣∣ η

η − 1

∣∣∣)T 2 < 1.

Theorem 2.3. Assume that:

(H1) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈
L1([0, T ],R+) such that

|f(t, u)| ≤ p(t)ψ(∥u∥) for each (t, u) ∈ I × R;

(H2) there exists a number M > 0 such that

∥u∥
/(

T
(
1 +

|η|(1 + |1− η|)
(η − 1)2

)
ψ(M)∥p∥L1

)
> 1.

Then the BVP (2.1) has at least one solution.

Theorem 2.4. Assume that there exist constants

0 ≤ c < 1

/(
1

1 + q
+

|η(1 + ηq)|
(1 + q)(η − 1)2

+
∣∣∣ η

η − 1

∣∣∣)
and N > 0 such that |f(t, u)| ≤ c

T 2 |u| + N for all t ∈ I, u ∈ C(I). Then the BVP (2.1) has at
least one solution.

Theorem 2.5. Assume that there exists a constant M1 such that

|f(t, u)| ≤M1

/(
1

1 + q
+

|η(1 + ηq)|
(1 + q)(η − 1)2

+
∣∣∣ η

η − 1

∣∣∣)T 2, ∀ t ∈ I, u ∈ [−M1,M1].

Then the BVP (2.1) has at least one solution.
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Theorem 2.6. Assume that f : I×R → R is a continuous function and the following assumptions
hold:

(H3) |f(t, u)− f(t, v)| ≤ L|u− v|, ∀ t ∈ I, u, v ∈ R;

(H4) |f(t, u)| ≤ µ(t), ∀ (t, u) ∈ I × R, and µ ∈ C(I,R+).

If (
|η(1 + ηq)|

(1 + q)(η − 1)2
+

∣∣∣ η

η − 1

∣∣∣)T 2 < 1,

then the boundary value problem (2.1) has at least one solution on I.

In [4], the authors discussed the existence and nonexistence of solutions for nonlinear second
order q-integro-difference equation: D2

qu(t) = f(t, u(t)) + Iqg(t, u(t)), f, g ∈ C(I × R,R) supple-
mented with non-separated boundary conditions given in (2.1). Similar results were proved for
other classes of boundary value problems. The results for the second order q-difference equa-
tion D2

qx(t) = f(t, x(t)), t ∈ I, supplemented with non-separated boundary conditions α1x(0) −
β1Dqx(0) = γ1x(η1), α2x(1) − β2Dqx(1) = γ2x(η2) were proved in [13], with three-point integral

boundary conditions αx(η) + βDrx(η) = 0,
T∫
0

x(s) dps = 0 in [22], nonlocal and integral boundary

conditions

x(0) = x0 + g(x), x(1) = α

ν∫
µ

x(s) dqs,

and

x(ξ) = g(x), αDrx(η) + β

T∫
η

x(s) dps = 0

in [8] and [18], respectively. For results on inclusions, see [7] and [17].
Boundary value problems for nonlinear q-difference hybrid equations and inclusions were studied

in [11]. In [11] the authors have investigated the problem:

D2
q

( x(t)

f(t, x(t))

)
= g(t, x(t)), t ∈ Iq, x(0) = 0, x(1) = 0,

where f ∈ C(Iq × R,R \ {0}), g : C(Iq × R,R) are such that f(t, x(t)), g(t, x(t)) are continuous
at t = 0, 1, Iq = {qn : n ∈ N} ∪ {0, 1}, q ∈ (0, 1) is a fixed constant. An existence result was
established by using a fixed point theorem for the product of two operators under Lipschitz and
Carathéodory conditions.

Agarwal et al. [3] discussed the existence, uniqueness and existence of extremal solutions for
a nonlinear boundary value problem of q-difference equations with nonlocal q-integral boundary
condition given by

Dqu(t) = f
(
t, u(t), u(ϕ(t))

)
, u(0) = λ

η∫
0

g(s, u(s)) dqs+ µ, t ∈ Iq,

where f ∈ C(Iq × R × R,R), g ∈ C(Iq × R,R), ϕ ∈ C(Iq, Iq), η ≥ 0, λ, µ ∈ R, Iq = {qn : n ∈
N} ∪ {0, 1}, q ∈ (0, 1) is a fixed constant.

The notions of q-derivative and q-integral were extended on finite intervals. For a fixed k ∈
N∪{0}, let Jk := [tk, tk+1] ⊂ R be an interval and 0 < qk < 1 be a constant. We define qk-derivative
of a function f : Jk → R at a point t ∈ Jk as follows:
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Definition 2.7. Let f : Jk → R be a continuous function and let t ∈ Jk. Then we define the
qk-derivative of the function f as

Dqkf(t) =
f(t)− f(qkt+ (1− qk)tk)

(1− qk)(t− tk)
, t ̸= tk, Dqkf(tk) = lim

t→tk
Dqkf(t).

We say that f is qk-differentiable on Jk provided Dqkf(t) exists for all t ∈ Jk.

Definition 2.8. Let f : Jk → R be a continuous function. Then the qk-integral is defined by

t∫
tk

f(s) dqks = (1− qk)(t− tk)

∞∑
n=0

qnk f
(
qnk t+ (1− qnk )tk

)
(2.2)

for t ∈ Jk. Moreover, if a ∈ (tk, t), then the definite qk-integral is defined by

t∫
a

f(s) dqks=(1−qk)(t−tk)
∞∑
n=0

qnk f
(
qnk t+(1−qnk )tk

)
−(1−qk)(a−tk)

∞∑
n=0

qnk f
(
qnka+(1−qnk )tk

)
.

For more details on these two new notions, the interested reader is referred to the book [15].
Agarwal et al. [2] obtained the positive extremal solutions by the method of successive iterations

for the nonlinear impulsive qk-difference equations:

Dqku(t) = f(t, u(t)), 0 < qk < 1, t ∈ J ′,

u(tk) = Ik(u(tk)), k = 1, 2, . . . ,m, u(0) = λu(η) + d, η ∈ Jr, r ∈ Z,

where Dqk are qk-derivatives (k = 0, 1, 2, . . . ,m), f ∈ C(J × R,R+), Ik ∈ C(R,R+), J = [0, T ],
T > 0, 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , J ′ = J \ {t1, t2, . . . , tm}, Jr = (tr, T ],
0 ≤ λ < 1, d ≥ 0, 0 ≤ r ≤ m and △u(tk) = u(t+k ) − u(t−k ), u(t

+
k ) and u(t−k ) denote the right and

the left limits of u(t) at t = tk (k = 1, 2, · · · ,m), respectively.

3 BVP for fractional q-difference equations and inclusions

Definition 3.1. Let ν ≥ 0 and h be a function defined on [0, T ]. The fractional q-integral of
Riemann–Liouville type is given by (I0qh)(t) = h(t) and

(Iνq h)(t) =
1

Γq(ν)

t∫
0

(t− qs)(ν−1)h(s) dqs, ν > 0, t ∈ [0, T ].

Definition 3.2. The fractional q-derivative of Riemann–Liouville type of order ν ≥ 0 is defined by
(D0

qh)(t) = h(t) and (Dν
qh)(t) = (Dl

qI
l−ν
q h)(t), ν > 0, where l is the smallest integer greater than

or equal to ν.

In recent years, several existence and uniqueness results were obtained. In [1], by applying
Krasnoselskii’s fixed point theorem, Leray–Schauder nonlinear alternative and Banach’s contraction
principle, the authors studied the existence and uniqueness of solutions for the following q-anti-
periodic boundary value problem of sequential q-fractional integro-differential equations:

cDα
q (

cDγ
q + λ)x(t) = Af(t, x(t)) +BIρq g(t, x(t)), 0 ≤ t ≤ 1, 0 < q < 1,

x(0) = −x(1),
(
t(1−γ)Dqx(t)

)∣∣∣
t=0

= −Dqx(1),
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where cDα
q and cDγ

q denote the fractional q-derivative of the Caputo type, 0 < α, γ ≤ 1, Iρq ( · )
denotes Riemann–Liouville integral with 0 < ρ < 1, f , g are given continuous functions, λ ∈ R and
A, B are real constants.

In [12], the existence and uniqueness results were obtained for the following boundary value
problem of nonlinear fractional q-difference equations with nonlocal and sub-strip type boundary
conditions:

cDυ
q x(t) = f(t, x(t)), t ∈ [0, 1], 1 < υ ≤ 2, 0 < q < 1,

x(0) = x0 + g(x), x(ξ) = b

1∫
η

x(s) dqs, 0 < ξ < η < 1,

where cDυ
q denotes the Caputo fractional q-derivative of order υ, f : [0, 1] × R → R and g :

C([0, 1],R) → R are given continuous functions, and b is a real constant. In [6], the existence
of solutions for nonlinear fractional q-difference integral equations with two fractional orders and
nonlocal four-point boundary conditions were obtained, while the positive extremal solutions for
nonlinear fractional differential equations on a half-line were discussed in [23]. For further results,
see [9, 10,14,16,19–21].

Finally, we emphasize that the Definition 2.1 does not remain valid for impulse points tk, k ∈ Z
such that tk ∈ (qt, t). On the other hand, this situation does not arise for impulsive equations on
q-time scales as the domains consist of isolated points covering the case of consecutive points of t
and qt with tk ̸∈ (qt, t). Due to this reason, the subject of impulsive quantum difference equations
on dense domains could not be studied. In [15], the authors modified the classical quantum calculus
for obtaining the first and second order impulsive quantum difference equations on a dense domain
[0, T ] ⊂ R through the introduction of a new q-shifting operator defined by aΦq(m) = qm+(1−q)a,
m, a ∈ R. For details, see [15].
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Let I ⊂ R be an interval non-degenerate in the point, t0 ∈ R and

It0 = I \ {t0}.

Consider the linear system of generalized ordinary differential equations

dx = dA(t) · x+ df(t) for t ∈ It0 , (1)

where A = (aik)
n
i,k=1 ∈ BVloc(It0 ,Rn×n), f = (fk)

n
k=1 ∈ BVloc(It0 ,Rn).

Let H = diag(h1, . . . , hn) : It0 → Rn×n be a diagonal matrix-function with continuous diagonal
elements hk : It0 → ]0,+∞[ (k = 1, . . . , n).

We consider the problem of finding a solution x ∈ BVloc(It0 ,Rn) of the system (1), satisfying
the condition

lim
t→t0−

(H−1(t)x(t)) = 0 and lim
t→t0+

(H−1(t)x(t)) = 0. (2)

The analogous problem for systems of ordinary differential equations with singularities

dx

dt
= P (t)x+ q(t) for t ∈ I, (3)

where P ∈ Lloc(It0 ,Rn×n), q ∈ Lloc(It0 ,Rn), are investigated in [5–7].
The singularity of system (3) is considered in the sense that the matrix P and vector q functions,

in general, are not integrable at the point t0. In general, the solution of the problem (3), (2) is
not continuous at the point t0 and, therefore, it is not a solution in the classical sense. But its
restriction to every interval from It0 is a solution of the system (3). In connection with this we give
the example from [7].

Let α > 0 and ε ∈]0, α[. Then the problem

dx

dt
= −αx

t
+ ε|t|ε−1α, lim

t→0
α(tαx(t)) = 0

has the unique solution x(t) = |t|ε−α sgn t. This function is not a solution of the equation on the
set I = R, but its restrictions to ]−∞, 0[ and ]0,+∞[ are solutions of that one.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see, [1–4,8, 9].

We give sufficient conditions for the unique solvability of the problem (1), (2). The analogous
results for the Cauchy problem for systems of ordinary differential equations with singularities
belong to I. Kiguradze ([6, 7]).

In the paper, the use will be made of the following notation and definitions.
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R = ] − ∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open
intervals.

Rn×m is the space of all real n×mmatricesX = (xij)
n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

On×m (or O) is the zero n×m matrix.
If X = (xij)

n,m
i,j=1 ∈ Rn×m, then |X| = (|xij |)n,mi,j=1, [X]∓ = 1

2 (|X| ∓X).

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-
minant of X and the spectral radius of X; In is the identity n× n-matrix.

The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-

ponent is such.

If X : R → Rn×m is a matrix-function, then
b∨
a
(X) is the sum of total variations on [a, b]

of its components xij (i = 1, . . . , n; j = 1, . . . ,m); V (X)(t) = (v(xij)(t))
n,m
i,j=1 for t ∈ I, where

v(xij)(a) = 0, v(xij)(t) ≡
t∨
a
(xij), and a ∈ R is some fixed point; [X(t)]v+ ≡ 1

2(V (X)(t) + X(t)),

[X(t)]v− ≡ 1
2(V (X)(t) −X(t)); X(t−) and X(t+) are, respectively, the left and the right limits of

the matrix-function X : [a, b] → Rn×m at the point t (X(a−) = X(a), X(b+) = X(b)).
BV([a, b],Rn×m) is the set of all bounded variation matrix-functions X : [a, b] → Rn×m (i.e.,

such that
b∨
a
(X) < ∞).

BVloc(J ;D), where J ⊂ R is an interval and D ⊂ Rn×m, is the set of all X : J → D for which
the restriction to [a, b] belong to BV([a, b];D) for every closed interval [a, b] from J ;

BVloc(It0 ;D) is the set of all X : I → D for which the restriction to [a, b] belong to BV([a, b];D)
for every closed interval [a, b] from It0 ;

s1, s2 and sc : BVloc(J ;R) → BVloc(J ;R) are the operators defined by

s1(x)(a) = s2(x)(a) = 0, s0(x) = x(a);

s1(x)(t) = s1(x)(s) +
∑

s<τ≤t

d1x(τ), s2(x)(t) = s2(x)(s) +
∑

s≤τ<t

d2x(τ),

s0(x)(t) = s0(x)(s) + x(t)− x(s)−
2∑

j=1

(sj(x)(t)− sj(x)(s)) for s < t,

where a ∈ J is an arbitrarily fixed point.
If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s < t ≤ b, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect

to the measure µ0(s0(g)). So
t∫
s
x(τ) dg(τ) is the Kurzweil integral [8, 9]; We put

t∫
s∓

x(τ) dg(τ) = lim
δ→0+

t∫
s∓δ

x(τ) dg(τ).
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If X ∈ BVloc(J ;Rn×n), det(In+(−1)jdjX(t)) ̸= 0 for t ∈ I (j = 1, 2), and Y ∈ BVloc(J ;Rn×m),
then

A(X,Y )(a) = On×m,

A(X,Y )(t)−A(X,Y )(s) = Y (t)− Y (s) +
∑

s<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

s≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ) for s < t.

A vector-function x : It0 → Rn is said to be a solution of the system (1) if x ∈ BV([a, b],Rn)
for every closed interval [a, b] from It0 and

x(t) = x(s) +

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for a ≤ s < t ≤ b.

We assume that
det(In + (−1)jdjA(t)) ̸= 0 for t ∈ It0 (j = 1, 2).

The above inequalities guarantee the unique solvability of the Cauchy problem for the corresponding
nonsingular systems, i.e. for the case when A ∈ BVloc(I,Rn×n) and f ∈ BVloc(I,Rn).

Let A0 ∈ BVloc(It0 ,Rn×n). Then a matrix-function C0 : It0 × It0 → Rn×n is said to be the
Cauchy matrix of the generalized differential system

dx = dA0(t) · x, (4)

if, for every interval and J ⊂ I and τ ∈ J , the restriction of the matrix-function C0( · , τ) : It0 →
Rn×n to J is the fundamental matrix of the system (4), satisfying the condition C0(τ, τ) = In.
Therefore, C0 is the Cauchy matrix of (4) if and only if the restriction of C0 to the every interval
J × J is the Cauchy matrix of the system in the sense of definition given in [9].

We assume I−t0 = ] −∞, t0[∩I, I+t0 = ]t0,+∞[∩I and I−t0(δ) = [t0 − δ, t0[∩It0 , I+t0(δ) = ]t0, t0 +
δ] ∩ It0 , It0(δ) = I−t0(δ) ∪ I+t0(δ) for every δ > 0.

Theorem 1. Let there exist a matrix-function A0 ∈ BVloc(It0 ,Rn×n) and constant matrices
B0, B ∈ Rn×n

+ such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ It0 (j = 1, 2),

r(B) < 1, (5)

and the estimates

|C0(t, τ)| ≤ H(t)B0H
−1(τ) for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0|;∣∣∣∣

t∫
t0∓

|C0(t, τ)| dV (A(A0, A−A0)(τ)) ·H(τ)

∣∣∣∣ ≤ H(t)B for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively,

hold for some δ > 0, where C0 is the Cauchy matrix of the system (4). Let, moreover, respectively,

lim
t→t0∓

∥∥∥∥
t∫

t0∓

H−1(τ)C0(t, τ) dA(A0, f)(τ)

∥∥∥∥ = 0.

Then the problem (1), (2) has a unique solution.
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Theorem 2. Let there exist a matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that the condition (5) and[
(−1)jdjaii(t)

]
− < 1 for (−1)j(t− t0) > 0 (j = 1, 2; i = 1, . . . , n),

hold, and the estimates

|ci(t, τ)| ≤ b0
hi(t)

hi(τ)
for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0| (i = 1, . . . , n),

∣∣∣∣
t∫

t0∓

ci(t, τ)hi(τ) d
[
aii(τ) sgn(τ − t0)

]v
+

∣∣∣∣ ≤ bii(t)hi(t)

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i = 1, . . . , n);∣∣∣∣
t∫

t0∓

ci(t, τ)hk(τ) dV (A(a0ii, aik))(τ)

∣∣∣∣ ≤ bik(t)hi(t)

for t ∈ I−t0(δ) and t ∈ I+t0(δ), respectively (i ̸= k; i, k = 1, . . . , n)

hold for some b0 > 0 and δ > 0. Let, moreover, respectively,

lim
t→t0∓

t∫
t0∓

ci(t, τ)

hi(t)
dV (A(a0ii, fi))(τ) = 0 (i = 1, . . . , n),

where a0ii(t) ≡ −[aii(t) sgn(t− t0)]
v
− sgn(t− t0) (i = 1, . . . , n), and ci is the Cauchy function of the

equation dx = x da0ii(t) for i ∈ {1, . . . , n}. Then the problem (1), (2) has a unique solution.

Remark. The Cauchy functions ci(t, τ) (i = 1, . . . , n), mentioned in the theorem, for t, τ ∈ I−t0 and
t, τ ∈ I+t0 , have the form

ci(t, τ) =


exp

(
s0(a0ii)(t)− s0(a0ii)(τ)

) ∏
τ<s≤t

(1− d1a0ii(s))
−1

∏
τ≤s<t

(1 + d2a0ii(s)) for t > τ,

exp
(
s0(a0ii)(t)− s0(a0ii)(τ)

) ∏
t<s≤τ

(1− d1a0ii(s))
∏

t≤s<τ

(1 + d2a0ii(s))
−1 for t < τ.
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Let I ⊂ R be an interval non-degenerate in the point, t0 ∈ R and

It0 = I \ {t0}.

Consider the linear system of impulsive equations with fixed and finite points of impulses actions

dx

dt
= P (t)x+ q(t) for a.a. t ∈ It0 \ {τl}∞l=1, (1)

x(τl+)− x(τl−) = Gl x(τl) + gl (l = 1, 2, . . . ), (2)

where P ∈ Lloc(It0 ,Rn×n), q ∈ Lloc(It0 ,Rn), Gl ∈ Rn×n (l = 1, 2, . . . ), gl ∈ Rn (l = 1, 2, . . . ),
τl ∈ It0 (l = 1, 2, . . . ), τi ̸= τj if i ̸= j and lim

l→∞
τl = t0.

Let H = diag(h1, . . . , hn) : It0 → Rn×n be a diagonal matrix-functions with continuous diagonal
elements hk : It0 → ]0,+∞[ (k = 1, . . . , n).

We consider the problem of finding a solution x : It0 → Rn of the system (1), (2), satisfying the
condition

lim
t→t0

(
H−1(t)x(t)

)
= 0. (3)

The analogous problem for the systems (1) of ordinary differential equations with singularities
are investigated in [2–4].

The singularity of the system (1) is considered in the sense that the matrix P and vector q
functions, in general, are not integrable at the point t0. In general, the solution of the problem
(1), (3) is not continuous at the point t0 and, therefore, it is not a solution in the classical sense.
But its restriction to every interval from It0 is a solution of the system (1). In connection with this
we give the example from [4].

Let α > 0 and ε ∈ ]0, α[ . Then the problem

dx

dt
= −αx

t
+ ε|t|ε−1α,

lim
t→0

(tαx(t)) = 0

has the unique solution x(t) = |t|ε−α sgn t. This function is not a solution of the equation on the
set I = R, but its restrictions to ]−∞, 0[ and ]0,+∞[ are solutions of that equation.
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We give sufficient conditions for the unique solvability of the problem (1), (2); (3). The analogous
results belong to I. Kiguradze [3, 4] for the Cauchy problem for systems of ordinary differential
equations with singularities.

Some boundary value problems for linear impulsive systems with singularities are investigated
in [1] (see, also the references herein).

In the paper, the use will be made of the following notation and definitions.

N is the set of all natural numbers.

R = ] − ∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open
intervals.

Rn×m is the space of all real n×m matrices X = (xij)
n,m
i,j=1 with the norm

∥X∥ = max
j=1,...,m

n∑
i=1

|xij |.

On×m (or O) is the zero n×m matrix.

If X = (xij)
n,m
i,j=1 ∈ Rn×m, then |X| = (|xij |)n,mi,j=1.

Rn×m
+ = {(xij)n,mi,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)}.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-
minant of X and the spectral radius of X; In is the identity n× n-matrix.

The inequalities between the matrices are understood componentwise.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-
ponent is such.

If X : [a, b] → Rn×m is a matrix-function, then X(t−) and X(t+) are, respectively, the left
and the right limits of the matrix-function X : [a, b] → Rn×m at the point t (X(a−) = X(a),
X(b+) = X(b)).

C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-functions X :
[a, b] → D.

C̃loc(It0 \ {τl}∞l=1, D) is the set of all matrix-functions X : It0 → D whose restrictions to an

arbitrary closed interval [a, b] from It0 \ {τl}∞l=1 belong to C̃([a, b], D).

L([a, b];D) is the set of all integrable matrix-functions X : [a, b] → D.

Lloc(It0 ;D) is the set of all matrix-functions X : It0 → D whose restrictions to an arbitrary
closed interval [a, b] from It0 belong to L([a, b], D).

A vector-function x ∈ C̃loc(It0 \ {τl}∞l=1,Rn) is said to be a solution of the system (1), (2) if

x′(t) = P (t)x(t) + q(t) for a.a. t ∈ It0 \ {τl}∞l=1

and there exist one-sided limits x(τl−) and x(τl+) (l = 1, 2, . . . ) such that the equalities (2) hold.

We assume that

det(In +Gl) ̸= 0 (l = 1, 2, . . . ).

The above inequalities guarantee the unique solvability of the Cauchy problem for the corresponding
nonsingular systems, i.e. for the case when P ∈ Lloc(I,Rn×n) and q ∈ Lloc(I,Rn).

Let P0 ∈ Lloc(It0 ,Rn×n) and G0l ∈ Rn×n (l = 1, 2, . . . ). Then a matrix-function C0 : It0 × It0 →
Rn×n is said to be the Cauchy matrix of the homogeneous impulsive system

dx

dt
= P0(t)x, (4)

x(τl+)− x(τl−) = G0lx(τl) (l = 1, 2, . . . ), (5)
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if for every interval J ⊂ It0 and τ ∈ J the restriction of the matrix-function C0( · , τ) : It0 → Rn×n to
J is the fundamental matrix of the system (4), (5) satisfying the condition C0(τ, τ) = In. Therefore,
C0 is the Cauchy matrix of (4), (5) if and only if the restriction of C0 on J × J , for every interval
J ⊂ It0 , is the Cauchy matrix of the system in the sense of definition given in [5].

We assume It0(δ) = [t0 − δ, t0 + δ] ∩ It0 for every δ > 0.

Theorem. Let there exist a matrix-function P0 ∈ Lloc(It0 ,Rn×n) and constant matrices Gl ∈ Rn×n

(l = 1, 2, . . . ) and B0, B ∈ Rn×n
+ such that

det(In +G0l) ̸= 0 (l = 1, 2, . . . ), r(B) < 1,

and the estimates

|C0(t, τ)| ≤ H(t)B0H
−1(τ) for t ∈ It0(δ), (t− t0)(τ − t0) > 0, |τ − t0| ≤ |t− t0|

and

∣∣∣∣
t∫

t0

∣∣C0(t, τ)(P (τ)− P0(τ))H(τ)
∣∣ dτ ∣∣∣∣

+
∣∣∣ ∑
l∈Nt0,t

∣∣C0(t, τl)G0l(In +G0l)
−1(Gl −G0l)

∣∣∣∣∣∣ ≤ H(t)B for t ∈ It0(δ)

hold for some δ > 0, where C0 is the Cauchy matrix of the system (4), (5). Let, moreover,

lim
t→t0

∥∥∥∥
t∫

t0

H−1(τ)C0(t, τ)q(τ) dτ +
∑

l∈Nt0,t

H−1(τl)C0(t, τl)G0l(In +G0l)
−1gl

∥∥∥∥ = 0.

Then the problem (1), (2); (3) has the unique solution.
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We consider the following system of differential equations with impulsive perturbations [7, 9]

dφ

dt
= a(t, φ),

dx

dt
= P (t, φ)x+ f(t, φ), t ̸= τi,∆x

∣∣
t=τi

= Bi(φ)x+ Ii(φ), (1)

where t ∈ R, x ∈ Rn, φ ∈ ℑm, ℑm is an m-dimensional torus; a(t, φ), f(t, φ), P (t, φ) are continuous
(piecewise continuous with first-kind discontinuities at t = τi) with respect to t, continuous and 2π-
periodic with respect to φν , ν = 1,m, bounded for all t ∈ R, φ ∈ ℑm vector and matrix functions,
respectively. Functions Bi(φ) and Ii(φ) are uniformly bounded with respect to i ∈ Z matrices
and vectors, det(E + Bi(φ)) ̸= 0 for any φ ∈ ℑm. The sequence of the moments of impulsive
perturbations {τi} is such that τi → −∞ for i → −∞ and τi → +∞ for τi → +∞. We assume
that there exists θ > 0 such that for any i ∈ Z,

τi+1 − τi ≥ θ > 0. (2)

Function a(t, φ) satisfies the Lipschitz condition with respect to φ and

sup
t∈R

∥∥a(t, φ1)− a(t, φ2)
∥∥ ≤ l

∥∥φ1 − φ2

∥∥ (3)

holds uniformly with respect to t ∈ R. Additionally assume that functions f(t, φ) and Ii(φ) satisfy
the following condition

sup
t∈R

max
φ∈ℑm

∥f(t, φ)∥+ sup
i∈Z

max
φ∈ℑm

∥Ii(φ)∥ = M < ∞.

The problems of the existence of bounded solutions and integral sets for the system of the type
(1) were considered in [1,2]. The problems of the persistence of integral sets under the perturbations
of the right-hand side were considered in [3, 6]. In this paper, analogously to [4, 5, 8], we introduce
the notion of Green–Samoilenko function of the problem on integral sets of differential equations
with impulses and provide sufficient conditions for the existence of integral sets.

Consider the non-autonomous system of differential equations defined on the surface of the
torus ℑm

dφ

dt
= a(t, φ) (4)

and denote by φt(τ, φ) a solution of this system satisfying the initial condition φτ (τ, φ) = φ. From
the compactness of the phase space of system (4) and the assumptions regarding function a(t, φ),
for any initial condition φτ (τ, φ) = φ, τ ∈ R, φ ∈ ℑm the corresponding solution φt(τ, φ) exists
and can be prolonged to the entire real axis R.

Consider the following non-homogenous system of differential equations with impulsive pertur-
bations

dx

dt
= P (t, φt(τ, φ))x+ f(t, φt(τ, φ)), t ̸= τi,

∆x
∣∣
t=τi

= Bi(φτi(τ, φ))x+ Ii(φτi(τ, φ))
(5)
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and the corresponding homogeneous system

dx

dt
= P (t, φt(τ, φ))x, t ̸= τi,

∆x
∣∣
t=τi

= Bi(φτi(τ, φ))x,
(6)

and denote by Ωt
s(τ, φ) the fundamental matrix of (6). Due to continuous dependance of φt(τ, φ)

on parameters τ ∈ R and φ ∈ ℑm, the fundamental matrix Ωt
s(τ, φ) depends on these parameters

also continuously.

Lemma. For any t, s, τ, σ ∈ R and φ ∈ ℑm the following relation holds

Ωt
s(τ, φτ (σ, φ)) = Ωt

s(σ, φ).

Let C(t, φ) be continuous 2π-periodic with respect to each of the component φν , ν = 1,m,
piecewise continuous with respect to t ∈ R, with first-kind discontinuities at the points {τi} matrix
function. Denote

G(t, s, φ) =

{
Ωt
s(t, φ)C(s, φs(t, φ)), s ≤ t,

−Ωt
s(t, φ)

[
E − C(s, φs(t, φ))

]
, s > t

(7)

and call G(t, s, φ) Green–Samoilenko function of the system

dφ

dt
= a(t, φ),

dx

dt
= P (t, φ)x, t ̸= τi,

∆x
∣∣
t=τi

= Bi(φ)x,

if there exists K > 0 such that for all t, s ∈ R, φ ∈ ℑm

∞∫
−∞

∥G(t, s, φ)∥ ds+
+∞∑

i=∞−
∥G(t, τi + 0, φ)∥ ≤ K. (8)

Next, we recall the basic properties of Green–Samoilenko function G(t, s, φ). From its definition
it follows that Green–Samoilenko function is continuous for all t, s ∈ R, t ̸= s, φ ∈ ℑm, 2π-periodic
with respect to φν , ν = 1,m, and

G(s+ 0, s, φ)−G(s− 0, s, φ) = E.

Taking the above lemma into account, we get

G(t, s, φt(τ, φ)) =

{
Ωt
s(t, φ)C(s, φs(τ, φ)), s ≤ t,

−Ωt
s(t, φ)

[
E − C(s, φs(τ, φ))

]
, s > t.

(9)

For s = τ , we obtain

G(t, τ, φt(τ, φ)) =

{
Ωt
τ (t, φ)C(τ, φ), τ ≤ t,

−Ωt
τ (t, φ)[E − C(τ, φ)], τ > t.

Matrix G(t, τ, φt(τ, φ)) consists from solutions to the homogeneous system (6) for t ≥ τ and
t < τ , respectively.

Consider the relation

+∞∫
−∞

G(t, s, φ)f(s, φs(t, φ)) ds+

+∞∑
i=−∞

G(t, τi + 0, φ)Ii(φτi(t, φ)).
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From (2) and (8) we get

∥∥∥∥
+∞∫

−∞

G(t, s, φ)f(s, φs(t, φ)) ds+

+∞∑
i=−∞

G(t, τi + 0, φ)Ii(φτi(t, φ))

∥∥∥∥
≤ 2K

γ
sup
t∈R

max
φ∈ℑm

∥f(t, φ)∥+ 2K

1− e−γθ
sup
i∈Z

max
φ∈ℑm

∥Ii(φ)∥.

Finally denote

u(t, φ) =

+∞∫
−∞

G(t, s, φ)f(s, φs(t, φ)) ds+

+∞∑
i=−∞

G(t, τi + 0, φ)Ii(φτi(t, φ)). (10)

Theorem 1. Let functions a(t, φ), f(t, φ), P (t, φ) from system (1) be continuous with respect to
t, continuous and 2π-periodic with respect to φν , ν = 1,m, bounded for all t ∈ R, φ ∈ ℑm vector
and matrix functions, respectively. Let function a(t, φ) satisfy condition (3), functions Bi(φ) and
Ii(φ) be uniformly bounded with respect to i matrices and vectors, det(E + Bi(φ)) ̸= 0 for any
φ ∈ ℑm. Let for the sequence of impulsive perturbations {τi} estimate (2) hold. Let also there exist
Green–Samoilenko function G(t, s, φ). Then formula (10) defines an integral set of system (1) and

sup
t∈R

max
φ∈ℑm

∥u(t, φ)∥ ≤ 2K

γ
sup
t∈R

max
φ∈ℑm

∥f(t, φ)∥+ 2K

1− e−γθ
sup
i∈Z

max
φ∈ℑm

∥Ii(φ)∥. (11)

Now assume that the fundamental matrix Ωt
s(τ, φ) of system (6) satisfies the estimate

∥Ωt
s(τ, φ)∥ ≤ Ke−γ(t−s) (12)

for any t ≥ s ∈ R, τ ∈ R, φ ∈ ℑm and some K ≥ 1, γ > 0. In this case there exists Green–
Samoilenko function of the following form

G(t, s, φ) =

{
Ωt
s(t, φ), s < t,

0, s ≥ t.
(13)

The corresponding integral set of system (1) gets the representation

x = u(t, φ) =

t∫
−∞

G(t, s, φ)f(s, φs(t, φ)) ds+
∑
τi<t

G(t, τi + 0, φ)Ii(φτi(t, φ)), t ∈ R, φ ∈ ℑm. (14)

Theorem 2. Let system (1) satisfy the condition of Theorem 1. Let also the fundamental matrix
Ωt
s(τ, φ) of system (6) satisfy inequality (12). Then system (1) has an asymptotically stable integral

set (14) and this set satisfies the following estimate

sup
t∈R

max
φ∈ℑm

∥u(t, φ)∥ ≤ K0

[
sup
t∈R

max
φ∈ℑm

∥f(t, φ)∥+ sup
i∈Z

max
φ∈ℑm

∥Ii(φ)∥
]
,

where

K0 =
K

γ
+K sup

t∈R

∑
τi<t

e−γ(t−τi).
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1 Introduction

Consider the equation
y(n) = |y|k sgn y (1.1)

with k > 1. Hereafter, we put γ = k−1
n and m = n− 1.

Definition 1.1. A solution y(x) of equation (1.1) will be said to be n-positive if it is maximally
extended in both directions and eventually satisfies the inequalities

y(x) > 0, y′(x) > 0, . . . , y(m)(x) > 0.

Note that if the above inequalities are satisfied by a solution of (1.1) at some point x0, then
they are also satisfied at any point x > x0 in the domain of the solution. Moreover, such a solution,
if maximally extended, must be a so-called blow-up solution (having a vertical asymptote at the
right endpoint of its domain).

Immediate calculations show that equation (1.1) has n-positive solutions with exact power-law
behavior, namely,

y(x) = C(x∗ − x)−1/γ , where Ck−1 =

m∏
j=0

(
j +

1

γ

)
, (1.2)

defined on (−∞, x∗) with arbitrary x∗ ∈ R. For n = 1 all n-positive solutions of (1.1) are defined
by (1.2). For n ∈ {2, 3, 4} it is known that any n-positive solution of (1.1) and even of more general
equations is asymptotically equivalent, near the right endpoint of its domain, to the solution defined
by (1.2) with appropriate x∗ (see [5] for n = 2, and [1–3] for n ∈ {3, 4}).

The natural hypothesis generalizing this statement for all n > 4 appears to be wrong (see [6]
for sufficiently large n and [4] for n ∈ {12, 13, 14}).

However, a weaker version of this statement for higher-order equations can be proved.

2 Main result

Theorem 2.1. For any integer n > 4 there exists K > 1 such that for any real k ∈ (1,K),
any n-positive solution of equation (1.1) is asymptotically equivalent, near the right endpoint of its
domain, to a solution with exact power-law behavior.

To prove this result, an auxiliary dynamical system is investigated on the m-dimensional sphere.
To define it note that if a function y(x) is a solution of equation (1.1), the same is true for the
function

z(x) = Ay(Aγx+B) (2.1)
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with any constants A > 0 and B. Any non-trivial solution y(x) of equation (1.1) generates in
Rn \ {0} the curve given parametrically by

(y(x), y′(x), y′′(x), . . . , y(m)(x).

We can define an equivalence relation on Rn \ {0} such that all solutions obtained from y(x) by
(2.1) with A > 0 generate equivalent curves, i.e. curves passing through equivalent points (maybe
for different x). We assume the points (y0, y1, y2, . . . , ym) and (z0, z1, z2, . . . , zm) in Rn \ {0} to be
equivalent if and only if there exists a constant λ > 0 such that

zj = λn+j(k−1)yj , j ∈ {0, 1, . . . ,m}.

The quotient space obtained is homeomorphic to the m-dimensional sphere

Sm =
{
y ∈ Rn : y20 + y21 + y22 + · · ·+ y2m = 1

}
having exactly one representative of each equivalence class since the equation

λ2ny20 + λ2(n+2(k−1))y21 + · · ·+ λ2(n+m(k−1))y2m = 1

has exactly one positive root λ for any (y0, y1, y2, . . . , ym) ∈ Rn \{0}. Equivalent curves in Rn \{0}
generate the same curves in the quotient space. The last ones are trajectories of an appropriate
dynamical system, which can be described, in different charts covering the quotient space, by
different formulae using different independent variables. A unique common independent variable
can be obtained from those ones by using a partition of unity.

Within the chart that covers the points corresponding to positive values of solutions and has
the coordinate functions

uj = y(j)y−1−γj , j ∈ {1, . . . ,m}, (2.2)

the dynamical system can be written as

du1
dt

= u2 − (1 + γ)u21,

duj
dt

= uj+1 − (1 + γj)u1uj , j ∈ {2, . . . ,m− 1},

dum
dt

= 1− (1 + γm)u1um

(2.3)

with the independent variable

t =

x∫
x0

y(ξ)γ dξ.

The dynamical system described has some equilibrium points corresponding to the solutions of
equation (1.1) with exact power-law behavior. One of them, which corresponds to the n-positive
solutions with exact power-law behavior, can be found in terms of its uj coordinates denoted by
(a1, . . . , am): 

aj+1 = (1 + γj)a1aj = aj+1
1

j∏
l=1

(1 + γl), j ∈ {1, . . . ,m− 1},

a1 =
( m∏

l=1

(1 + γl)
)−1/n

.

(2.4)
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Instead of system (2.3) it is more convenient for our current purposes to use another one obtained
by the substitution τ = a1t, uj = ajvj , j ∈ {1, . . . ,m}:

dv1
dτ

= (1 + γ)(v2 − v21),

dvj
dτ

= (1 + γj)(vj+1 − v1vj), j ∈ {2, . . . ,m− 1},
dvm
dτ

= (1 + γm)(1− v1vm).

(2.5)

The above equilibrium point has in the new chart all coordinates equal to 1.

Lemma 2.1. There exist γ1 > 0 and r > 0 such that for any real γ ∈ [0, γ1], the Jacobian matrix
of system (2.5) at the point (1, . . . , 1) has m different eigenvalues with real parts less than −r.

Proof. First, consider the mentioned Jacobian m×m matrix for γ = 0:

−2 1 0 . . . 0 0
−1 −1 1 . . . 0 0
−1 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
−1 0 0 . . . −1 1
−1 0 0 . . . 0 −1

 .

We prove by mathematical induction that its characteristic polynomial is equal to

Pm(λ) =
(1 + λ)m+1 − 1

(−1)mλ
. (2.6)

For m = 1 this is proved immediately:

P1(λ) = −2− λ = −(1 + λ)2 − 1

λ
=

(1 + λ)1+1 − 1

(−1)1λ
.

If (2.6) is proved for some m, then Pm+1(λ) can be calculated by expanding along the last row
as follows:

Pm+1(λ) = (−1) · (−1)m + (−1− λ)Pm(λ)

= (−1)m+1 − (1 + λ) · (1 + λ)m+1 − 1

(−1)mλ
=

(1 + λ)m+2 − 1

(−1)m+1λ
.

Now (2.6) is proved for m+ 1, too.
The roots of the polynomial Pm(λ) are equal to

λj = −1 + cos
2πj

n
+ i sin

2πj

n
, j ∈ {1, . . . ,m},

with j = 0 excluded because of the denominator in (2.6). The real parts of the roots are less then
or equal to −2 sin2 π

n . Since all roots of the polynomial are different and therefore simple, they
depend continuously on the coefficients of the polynomial. Hence for sufficiently small γ > 0 the
Jacobian matrix of system (2.5) at the point (1, . . . , 1) has all eigenvalues with real part less than
− sin2 π

n .

Lemma 2.2. If γ = 0, then any trajectory of system (2.5) passing through a point with positive vj
coordinates tends to the equilibrium point (1, . . . , 1).



International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia 29

Proof. Trajectories of (2.5) passing through a point with positive vj coordinates correspond to
n-positive solutions of equation (1.1). Trajectories of (2.5) with γ = 0 correspond to solutions of
the linear equation y(n) = y, which are all known exactly. They are

y(x) = C0 e
x +

⌊m/2⌋∑
j=1

Cje
rjx sin(ωjx+ φj) + C̃e−x

with rj = cos 2πj
n < 1, ωj = sin 2πj

n , and arbitrary constants Cj , φj , C̃, though the last one must
equal 0 whenever n is odd. Such a solution is n-positive if and only if the constant C0 is greater
than 0. But in this case, all vj coordinates of the related trajectory, which are equal to y(j)/y
whenever γ = 0, tend to 1.

Up to the moment, we actually considered, for each γ > 0, its own dynamical system defined on
its own quotient space homeomorphic to the m-dimensional sphere. In what follows, we need one
sphere with a γ-parameterized dynamical system having an equilibrium point common for all γ in
consideration. Thus, the points (y0, y1, . . . , ym) ∈ R \ {0} obtained while treating solutions of (1.1)
with different γ will generate the same point on the sphere Sm if their corresponding coordinates
have the same sign and the tuples(

|y| :
∣∣∣ y′
a1

∣∣∣ 1
1+γ

: . . . :
∣∣∣y(j)
aj

∣∣∣ 1
1+γj

: . . . :
∣∣∣y(m)

am

∣∣∣ 1
1+γm

)
,

if considered as sets of projective coordinates, define the same point in the projective space RPm.
In particular, for points corresponding to n-positive solutions this means that they have the same
vj coordinates in the related charts. Hereafter, the domain consisting of all points with positive
vj coordinates is denoted by Sm

+ . The only equilibrium point in Sm
+ , which has all vj coordinates

equal to 1, is denoted by v∗.

Lemma 2.3. There exist γ2 > 0 and an open neighborhood U of the point v∗ such that for any
positive γ < γ2, any trajectory of the global dynamical system passing through the closure U tends
to v∗. If such a trajectory does not coincide with v∗, then it passes transversally, at some time,
through the boundary ∂U .

Proof. Now, once more, we choose other local coordinates to describe the dynamical system on
Sm
+ . First, we use a translation continuous in γ to put the equilibrium point to 0. Then a linear

complex transformation also continuous in γ is used to make the linear part of the right-hand side
to be a diagonal matrix. If the new complex coordinates are wj , then our dynamical system can
be written as

dwj

dτ
= λj(γ)wj + qj(w, γ), j ∈ {1, . . . ,m}, (2.7)

with some functions qj(w, γ) quadratic in w and continuous in γ. There exists a constant Q > 0
such that |qj(w, γ)|2 ≤ Q|w|2 for all j ∈ {1, . . . ,m}, all w ∈ Cm, and all positive γ ≤ γ1, where

|w|2 =
m∑
j=1

|wj |2 and the constant γ1 is taken from Lemma 2.1.

Now consider the quadratic function |w|2 and note that

d|w|2

dτ
= 2

m∑
j=1

Re
(
λj(γ)|wj |2 + qj(w, γ)wj

)
< 2|w|2

(
− r +Q|w|

)
with the constant r > 0 from Lemma 2.1.
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Hence d log |w|2
dτ < −r if |w| < − r

2Q . Now, the equilibrium point v∗ has the neighborhood U

defined by the last inequality. For any trajectory passing through U we have log |w|2 → −∞ as
t → ∞, which means that all such trajectories tend to v∗. Since the function log |w|2 is defined

for all points of U \ {v∗}, the above estimate of d log |w|2
dτ proves the last statement of the current

lemma.

To complete the proof of the Theorem 2.1, consider the set difference of the closure Sm
+ and

the neighborhood U from Lemma 2.3. This compact set will be denoted by B. Further, consider
the function f defined on B and equal, for each point b ∈ B, to the time needed for the trajectory
of the dynamical system with γ = 0 to reach ∂U starting from b. This time is well-defined due to
Lemma 2.2.

By the implicit function theorem, f is a C1 function. Its derivative along the trajectories with
γ = 0 is equal to −1. Since the dynamical system depends continuously on γ, and B is compact,
there exists γ3 > 0 such that for all γ ∈ [0, γ3), the derivative of f along all trajectories with such γ
is less than to −1

2 . This means that any trajectory with such γ passing through B must reach ∂U .
Hence, due to Lemma 2.3, any trajectory with γ ∈ [0,min{γ2, γ3}) starting from any point b ∈ S∗

+

must tend to the equilibrium point v∗, which corresponds to the n-positive solutions of equation
(1.1) with exact power-law behavior (1.2). Putting K = 1 + nmin{γ2, γ3} we complete the proof
of Theorem 2.1.
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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t > 0, (1)

of dimension n > 2 with uniformly bounded (sup{∥A(t)∥ : t > 0} < +∞) and piecewise continuous
on the semi axle t > 0 coefficient matrix. We denote by X (A) the set of all nonzero solutions to
the system (1), and by XA( · , · ) – its Cauchy matrix. Let Mn be the metric space of the systems
(1) with the metric of uniform convergence of their coefficients on the semi axle. The lower β[x]

and the upper β[x] Bohl exponents of a solution x( · ) ∈ X (A) are defined, respectively, by the
formulas [3, pp. 171, 172], [5]

β[x] = lim
t−τ→+∞

1

t− τ
ln

∥x(t)∥
∥x(τ)∥

and β[x] = lim
t−τ→+∞

1

t− τ
ln

∥x(t)∥
∥x(τ)∥

,

and the quantities

ω0(A) = lim
t−τ→+∞

1

t− τ
ln ∥X−1

A (t, τ)∥−1 and Ω0(A) = lim
t−τ→+∞

1

t− τ
ln ∥XA(t, τ)∥ (2)

are called, respectively, the lower and the upper general exponents (they are also known as singular
exponents) of the system (1) [3, p. 172].

The following obvious inequalities can’t be in general case replaced by equalities [1]:

ω0(A) 6 inf
x∈X (A)

β[x] and sup
x∈X (A)

β[x] 6 Ω0(A);

in particular, it is possible, that the exponents ω0(A) and Ω0(A) can not be implemented on any
solution of the system (1).

R. E. Vinograd proved [5] the following equalities

ω0(A) = lim
ε→+0

inf
∥Q∥6ε

inf
x∈X (A+Q)

β[x] and Ω0(A) = lim
ε→+0

sup
∥Q∥6ε

sup
x∈X (A+Q)

β[x], (3)

i.e., in other words, the lower (the upper) general exponent of the system (1) is the exact lower
(upper) bound of the lower (the upper) Bohl exponents of the solutions x( · ) ∈ X (A) under arbitrary
small perturbations of coefficient matrix of the system (1).
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From the geometric point of view the lower ω0(A) and the upper Ω0(A) general exponents
of the system (1) are asymptotically accurate when t − τ → +∞, respectively, lower bound of
the minor semi axis and upper bound of the major semi axis on a logarithmic scale of family of

ellipsoids Et,τ
def
= {ξ ∈ Rn : ∥X−1

A (t, τ)ξ∥ = 1} (spectral matrix norm), which are generated by
linear mappings XA(t, τ), t > τ > 0. From this point of view it seems natural to consider along
with the quantities (2) the quantities

ω0(A) = lim
t−τ→+∞

1

t− τ
ln ∥X−1

A (t, τ)∥−1 and Ω0(A) = lim
t−τ→+∞

1

t− τ
ln ∥XA(t, τ)∥, (4)

which give asymptotically accurate when t−τ → +∞, respectively, upper bound of the minor semi
axis and lower bound of the major semi axis on a logarithmic scale of family of ellipsoids Et,τ , and
find out whether the values (4) are connected by equalities similar to (3) with the Bohl exponents
of solutions to the pertubed systems.

The introduced exponents ω0(A) and Ω0(A) are called, respectively, the junior upper and the
senior lower Bohl exponents of the system (1) (according to this terminology the exponents ω0(A)
and Ω0(A) are called the junior lower and the senior upper Bohl exponents of the system (1)).
The quantities (2) and (4) complement each other and give an asymptotically accurate two-sided
estimates of variation of the norms ∥XA(t, τ)∥ and ∥X−1

A (t, τ)∥ when t− τ → +∞. The exponents
(4) were introduced in the review article by the authors [2], the motivation of their consideration
was described above. In the paper [2] the authors, being based only on the formulas (3) and the
mentioned above analogy of the quantities (2) and (4), gave without proof, due to the style of the
mentioned paper, the following, similar to (3), formulas, which connect the exponents (4) of the
system (1) and the Bohl exponents of perturbed systems

ω0(A) = lim
ε→+0

inf
∥Q∥6ε

inf
x∈X (A+Q)

β(x) and Ω0(A) = lim
ε→+0

sup
∥Q∥6ε

sup
x∈X (A+Q)

β[x] (5)

considering that the proof of these equalities is completely analogous to the proof of the equalities
(3) from paper [5], and even attributing it to the paper [5]. It appears that in general case the
equalities (5) don’t take place, as the following theorem shows.

Theorem 1. The inequalities

ω0(A) > lim
ε→+0

inf
∥Q∥6ε

inf
x∈X (A+Q)

β[x] and Ω0(A) 6 lim
ε→+0

sup
∥Q∥6ε

sup
x∈X (A+Q)

β[x] (6)

are valid, and for every natural n > 2 there exist such systems (1) for which each of these inequalities
is strict.

Let us denote by ω0
∗(A) and Ω∗

0(A) the right sides of the inequalities (6) respectively, in other
words the exponent ω0

∗(A) is the exact lower bound of the upper Bohl exponents, and the exponent
Ω∗
0(A) is the exact upper bound of the lower Bohl exponents of the solutions x( · ) ∈ X (A) under

arbitrary small perturbations of coefficient matrix of the system (1). The exact expressions for the
quantities ω0

∗(A) and Ω∗
0(A) using the Cauchy matrix of the system (1) are given in the following

theorem.

Theorem 2. The equalities

ω0
∗(A) = lim

T→+∞
lim

k−m→+∞

1

(k −m)T

k∑
i=m+1

ln ∥X−1
A (iT, (i− 1)T )∥−1,

Ω∗
0(A) = lim

T→+∞
lim

k−m→+∞

1

(k −m)T

k∑
i=m+1

ln ∥XA(iT, (i− 1)T )∥,

where k,m ∈ N, are valid.
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The fact that the right sides of these equalities are correctly defined (i.e. that the outer limits
in the right sides of these equalities exist), is established in the proof of Theorem 2.

The mentioned above theorem by R. E. Vinograd [5] (see the relations (2) and (3)) and The-
orem 2 give the formulas for calculating, using the Cauchy matrix of the system (1), of the exact
extreme bounds of variation (mobility) of the upper and the lower Bohl exponents of the solu-
tions under small perturbations of its coefficient matrix. Consider how these exact bounds Ω0(A),
ω0
∗(A) and Ω∗

0(A), ω0(A), as well as the quantities Ω0(A) and ω0(A), can vary themselves under
small perturbations of the coefficient matrix of the system (1). Let us recall that a real-valued
function, defined on a metric space Mn, is called upwards stable (downwards stable), if it is upper
(respectively, lower) semicontinuous function on this space.

The exponent Ω0( · ) is upwards stable, and the exponent ω0( · ) is downwards stable [3, p. 180],
but they are both unstable in the opposite directions, if n > 2 [4]. The exponents Ω∗

0(A) and ω0
∗(A)

possess the same properties, as the following theorems show, but neither Ω0(A) nor ω
0(A) do.

Theorem 3. The exponent Ω∗
0( · ) is upwards stable, and the exponent ω0

∗( · ) is downwards stable.

Theorem 4. If n > 2, the exponent Ω∗
0( · ) is downwards unstable, and the exponent ω0

∗( · ) is
upwards unstable, i.e. for n > 2 there exist such systems A ∈ Mn, for which the inequalities

lim
ε→+0

inf
∥Q∥6ε

Ω∗
0(A+Q) < Ω∗

0(A) and lim
ε→+0

sup
∥Q∥6ε

ω0
∗(A+Q) > ω0

∗(A)

hold, respectively.

Theorem 5. Each of the exponents Ω0(A) and ω0(A) is neither upwards, nor downwards stable
under small perturbations of the coefficient matrix.
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[3] Yu. L. Daletskǐı and M. G. Krěın, Stability of solutions of differential equations in Banach
space. (Russian) Nonlinear Analysis and its Applications Series. Izdat. “Nauka”, Moscow,
1970.

[4] V. M. Millionschikov, On unstability of singular exponents and nonsymmetry of relation of
almost reducibility for linear systems of differential equations. (Russian)Differentsial’nye Urav-
neniya 5 (1969), no. 4, 749–750.

[5] R. E. Vinograd, Simultaneous attainability of central Lyapunov and Bohl exponents for ODE
linear systems. Proc. Amer. Math. Soc. 88 (1983), no. 4, 595–601.



34 International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia

On the Baire Classes of the Sergeev Lower Frequency
of Zeros, Signs, and Roots of Linear Differential Equations

E. A. Barabanov and A. S. Vaidzelevich

Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, Belarus

E-mails: bar@im.bas-net.by; voidelevich@gmail.com

For a given positive integer n, by Ẽn we denote the set of linear homogeneous nth-order differ-
ential equations

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)ẏ + an(t)y = 0, t ∈ R+

def
= [0,+∞), (1)

with continuous coefficients ai( · ) : R+ → R, i = 1, n. We identify the equation (1) and the row
a = a( · ) = (a1( · ), . . . , an( · )) of its coefficients and hence denote the equation (1) by a as well. By
S(a) we denote the solution set of the equation a, and by S∗(a) we denote the set of its nonzero
solutions, i.e. S∗(a) = S(a) \ {0}.

Let y( · ) be a real-valued function defined on some set D ⊂ R. A point t ∈ D is called a
sign change point of a function y( · ) if, in any neighborhood of that point, the function y( · ) takes
values of opposite signs. If y( · ) is a continuous function, then a sign change point is its zero. If
the function y( · ) is defined in some neighborhood of its zero t0, then the zero t0 is referred to as a
root of multiplicity k of the function y( · ) if at the point t0 its first k − 1 derivatives are zero and
the kth derivative is nonzero.

Next, by κ we denote a symbol that takes values in the set of three elements {0,−,+}. For
a function y( · ) : R+ → R and a number t > 0, by νκ(y( · ); t) we denote the following quantities
for the function y( · ) on the half-open interval [0, t) depending on the value of κ : the number of
zeros if κ = 0, the number of sign changes if κ = −, and the sum of root multiplicities if κ = +.
If t0 = 0 is a zero of the function y( · ), then, for the computation of its multiplicity, all desired
derivatives are considered to be right-sided. If the number of zeros or the number of sign changes or
roots of the function y( · ) on the half-open interval [0, t) is infinite, then the corresponding values
are considered to be equal to +∞. It is easy to see that νκ(y( · ); t) is a finite integer number for
every symbol κ ∈ {0,−,+}, nonzero solution y( · ) of the equation (1), and t > 0. Sergeev [7]– [9]
introduced the following notion.

Definition. For any nonzero solution y( · ) ∈ S∗(a) of the system a the quantities

ν̂ κ[y]
def
= lim

t→+∞

π

t
ν κ(y( · ); t) and ν̌ κ[y]

def
= lim

t→+∞

π

t
ν κ(y( · ); t) (2)

are called the upper and lower characteristic frequencies, respectively, of zeros if κ = 0, signs if
κ = −, and roots if κ = +.

Generally, the value of the quantities ν̌ κ[y] and/or ν̂ κ[y] can be equal to +∞. By R we denote
the extended numerical axis (R = R ⊔ {−∞,+∞}) considered in the natural (ordinal) topology,
and by R+ we denote its nonnegative semiaxis.

For any a ∈ Ẽn, the asymptotic characteristics (2) define the mappings

ν̂ κ[ · ] : S∗(a) → R+ and ν̌ κ[ · ] : S∗(a) → R+, κ ∈ {0,−,+}, (3)
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acting by the rules y 7−→ ν̂ κ[y] and y 7−→ ν̌ κ[y], respectively. Instead of the mappings (3),
it is more convenient to consider the functions ν̂ κ( · ) and ν̌ κ( · ), κ ∈ {0,−,+}, respectively,
which are defined as follows. Since, between the vector space S(a) of solutions of an equation
a ∈ Ẽn and the vector space Rn, there is a natural isomorphism ι : S(a) → Rn acting by the rule
y( · ) 7−→ (y(0), ẏ(0), . . . , y(n−1)(0))⊤, it follows that the mappings (3) define the functions

ν̂ κ( · ) def
= ν̂ κ[ · ] ◦ ι−1 : Rn

∗ → R+ and ν̌ κ( · ) def
= ν̌ κ[ · ] ◦ ι−1 : Rn

∗ → R+, κ ∈ {0,−,+}, (4)

where Rn
∗

def
= Rn \ {0}. Conversely, since ι is a bijection, one can see that the functions (4) define

the mappings (3). The functions (4) have the following advantage in comparison with the mappings
(3): the domains of those functions coincide for all equations from the set Ẽn.

Since the functions (4) (and the mappings (3)) are constant on any one-dimensional linear
subspace with the excluded zero, it follows that, instead of the functions ν̂ κ( · ) and ν̌ κ( · ), κ ∈
{0,−,+}, one can consider their restrictions to the unit (n − 1)-dimensional sphere Sn−1 in Rn

with center the origin. The function ν̂ κ( · ) (respectively, the function ν̌ κ( · )) with κ = 0,−,+ is
referred [3], [4] to as the Sergeev upper (respectively, lower) frequency of zeros, signs, and roots
of the equation (1), respectively. The image ν̂ κ(S∗(a)) (respectively, the image ν̌ κ(S∗(a))) of the
function ν̂ κ( · ) (respectively, the function ν̌ κ( · )) is referred to as the upper (respectively, lower)
frequency spectra of zeros if κ = 0, signs if κ = −, and roots if κ = +.

The descriptions of the Baire classes and the spectra of the Sergeev upper frequency of zeros,
signs, and roots of the equation (1) were provided in [2]. In this paper we present results on the
Baire classes and structure of the spectra of the Sergeev lower frequency of zeros, signs, and roots
of the equation (1).

To formulate our results let us briefly give some necessary notations and definitions. Let f( · )
be a real- or R-valued function defined on some set M. For each number r ∈ R and for a function
f( · ), the Lebesgue sets [f > r] and [f > r] are defined as the sets [f > r] = {t ∈ M : f(t) > r}
and [f > r] = {t ∈ M : f(t) > r}. The sets [f < r] and [f 6 r] have a similar meaning (the
complements of the corresponding Lebesgue sets in M), and [f = r] is a level set of the function
f( · ). As usual, here we assume that −∞ < r < +∞ for any r ∈ R.

If M is a topological space, then its five first Borel classes of sets are known to be defined as
follows [5, p. 192], [1, p. 108]. The zero class consists of closed and open sets (their classes are
denoted by F and G, respectively). The first class consists of sets of the type Gδ and the type Fσ

(Gδ-sets and Fσ-sets) those are sets, which can be represented as countable intersections of open
sets and countable unions of closed sets, respectively. The second class consists of sets of the type
Fσδ and the type Gδσ (Fσδ-sets and Gδσ-sets) those are sets, which can be represented as countable
intersections of Fσ-sets and countable unions of Gδ-sets, respectively. Analogically, one can define
sets of the type Gδσδ and the type Fσδσ, which form the third Borel class, and sets of the type
Fσδσδ and the type Gδσδσ of the fourth Borel class.

Let M and N be some systems of subsets in M. We say [5, pp. 223, 224] that a function
f( · ) : M → R or f( · ) : M → R belongs to the class (M, ∗ ), or f( · ) is a function of the class
(M, ∗ ) if its Lebesgue set satisfies the condition [f > r] ∈ M for any r ∈ R. If [f > r] ∈ N for any
r ∈ R, then we say that the function f( · ) belongs to the class ( ∗ , N), or f( · ) is a function of the
class ( ∗ , N). If a function f( · ) belongs to each of the classes (M, ∗ ) and ( ∗ , N), then we say that
it belongs to the class (M,N), or it is a function of the class (M,N). We say ( [5, pp. 248, 249];
for R-valued functions see [6, p. 383]) that the function f( · ) : M → R or f( · ) : M → R belongs
to the first Baire class B1 if f( · ) ∈ (Fσ, Gδ), to the second Baire class B2 if f( · ) ∈ (Gδσ, Fσδ), and
to the third Baire class B3 if f( · ) ∈ (Fσδσ, Gδσδ).

A set A ∈ R is called a Suslin set [5, p. 213], [6, p. 489] of the number line R if it is a continuous
image of irrational numbers I with the subspace topology. The class of Suslin sets contains the
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class of Borel sets as a proper subclass, and at the same time it is a proper subclass of the class of
Lebesgue measurable sets. A set A ∈ R is called a Suslin set of the extended real number line if it
can be represented as an union of a Suslin set of R and some subset (including the empty subset)
of two-element set {−∞,+∞}.

Theorem. For any equation a ∈ Ẽn its lower Sergeev frequency of zeros and signs belong to the
class (Gδσ,

∗ ), and the lower frequency of roots belongs to the class (Fσ,
∗ ).

It is quite interesting to compare this statement with the descriptions of the Baire classes of
the Sergeev upper frequency of zeros, signs, and roots of the equation (1). Let us recall that for
any equation a ∈ Ẽn its upper Sergeev frequency of zeros and roots belong [3] to the class ( ∗ , Fσδ),
and the lower frequency of signs belong to the class ( ∗ , Gδ, ).

Since the image of any Baire function is [5, p. 255] a Suslin set, from the theorem it follows

Corollary. For any equation a ∈ Ẽn the lower frequency spectra ν̌ 0(S∗(a)), ν̌ −(S∗(a)), and
ν̌ +(S∗(a)) of zeros, signs, and roots are Suslin sets of the nonnegative semi-axis R+.
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1

Denote by Mn the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t > 0, (1)

where n > 2, with the piecewise continuous and uniformly bounded on the time half-line t > 0
coefficients matrix A( · ) : [0,+∞) → EndRn. Denote by XA( · ) the linear space of solutions of
system (1). Its subspaces we call further lineals to distinguish them from linear subspaces in Rn.
The angle between lineals U( · ) and V ( · ) of the space XA( · ) we call the function γ(t) of the
variable t > 0, which is defined by the equation γ(t) = ∠(U(t), V (t)), where ∠(U(t), V (t)) is the
angle between subspaces U(t) V (t) of the space Rn.

It is known [2, p. 236], [3, p. 10], system (1) inMn is called an exponentially dichotomous system
or a system with exponentially dichotomy on the time half-line if there exist positive constants c1,
c2 and ν1, ν2 and a decomposition of the linear space XA( · ) of its solutions into the direct sum
XA( · ) = L−

A( · )⊕ L+
A( · ) of lineals, so that its solutions x( · ) belonging to these lineals satisfy the

following two conditions:

1) if x( · ) ∈ L−
A( · ), then ∥x(t)∥ 6 c1 exp{−ν1(t− s)} ∥x(s)∥ for arbitrary t > s > 0;

2) if x( · ) ∈ L+
A( · ), then ∥x(t)∥ > c2 exp{ ν2(t− s)} ∥x(s)∥ for arbitrary t > s > 0.

In this definition the choice of norm in Rn does not play any role, because in a finite linear space
any two norms are equivalent. The class of exponentially dichotomous n-dimensional systems is
denoted by En.

Condition of exponential dichotomy of system (1) means, in particular, that in any time segment
the norm of any solution in L−

A( · ) uniformly decreases exponentially, and the norm of any solution
in L+

A( · ) uniformly increases exponentially. If the system is exponentially dichotomous, its lineal
L−
A( · ), called a stable lineal, is uniquely determined (it consists of all solutions, decreasing to zero

at infinity), and any of lineals, complementary lineal L−
A( · ) to the space XA( · ) of solutions, may

be taken as a lineal L+
A( · ), called unstable lineal. Although in the above definition the case of

zero dimension of one of subspaces is not excluded, i.e. one of the equalities L−
A( · ) = {0} or

L+
A( · ) = {0} is possible, further we consider that each of the lineals L−

A( · ) and L+
A( · ) is nonzero.

We say that the lineals of solutions U( · ) and V ( · ) of system (1) are separated if the angle
between them is separated from zero: inf{γ(t) : t > 0} > 0. It is well known [2, p. 237] that the
stable lineal L−

A( · ) of an exponentially dichotomous system is separated from any of its unstable
lineal L+

A( · ), i.e. for any unstable lineal L+
A( · ) there is the inequality

inf
{
∠(L−

A(t), L
+
A(t)) : t > 0

}
> 0. (2)
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This property of finite-dimensional exponentially dichotomous systems is essential and must be
included [2] in the definition of exponential dichotomy, when we extend the concept of exponential
dichotomy of the finite-dimensional case to the case of Banach spaces, to preserve basic properties
of finite-dimensional exponentially dichotomous system.

Nevertheless, the following theorem shows that the property of separateness from zero of the
angle between stable and unstable lineals of exponentially dichotomous systems is not characteristic
for such systems. More precisely, the angle between stable and unstable subspaces of exponentially
dichotomous system is the same as can generally be the angle between separated subspaces of
solutions of an arbitrary system (1) that is not exponentially dichotomous.

Theorem 1. Let a system in Mn have separated lineals of solutions U( · ) and V ( · ). Then there
exists a system A ∈ En such that for its stable L−

A( · ) and unstable L+
A( · ) lineals for all t > 0 the

equalities hold

L−
A(t) = U(t) and L+

A(t) = V (t).

The following statement characterizes more fully the property of the angle between stable and
unstable lineals of exponentially dichotomous systems and complements the above statement [2,
p. 237] on the separateness of stable and unstable lineals of exponentially dichotomous systems.

Theorem 2. For any system A ∈ En there exists a constant cA ∈ (0, π/2) such that for any of its
unstable lineal L+

A( · ) for all sufficiently large t > 0 the inequality ∠ {L−
A(t), L

+
A(t)} > cA is true,

i.e. there is a constant cA ∈ (0, π/2) such that the inequality

lim
τ→+∞

inf
t>τ

∠
{
L−
A(t), L

+
A(t)

}
> cA (3)

holds for any unstable lineal L+
A( · ).

Obviously, inequality (3) enhances inequality (2). Inequality (3), if we denote by UA the aggre-
gate of unstable lineals of system A ∈ En, can be written as

inf
L+
A( · )∈UA

lim
τ→+∞

inf
t>τ

∠
{
L−
A(t), L

+
A(t)

}
> cA.

2

In [1], it is introduced a generalization of the concept of exponentially dichotomous linear differential
systems defined in a finite space, that consists in the refusal from the requirement of the uniformness
of estimates for the norms of solutions under constants-multipliers in definition of an exponentially
dichotomous system. In [1], such systems are referred to as weak exponentially dichotomous. In
other words, system (1) in Mn is called a weak exponentially dichotomous system or a system
with a weak exponential dichotomy on the half-line, if there exist positive constants ν 1, ν 2 and a
decomposition of the linear space XA( · ) of its solutions into the direct sum XA( · ) = L−

A( · )⊕L+
A( · )

of lineals so that its solutions x( · ) belonging to these lineals satisfy the following two conditions:

1′) if x( · ) ∈ L−
A( · ), then ∥x(t)∥ 6 c1(x) exp{−ν1(t− s)} ∥x(s)∥ for arbitrary t > s > 0;

2′) if x( · ) ∈ L+
A( · ), then ∥x(t)∥ > c2(x) exp{ ν2(t− s)} ∥x(s)∥ for arbitrary t > s > 0,

where c1(x) and c2(x) are positive constants which, in general, depend on the choice of the solution
x( · ).

As can be seen, if we could choose, in the definition of a weak exponentially dichotomous system,
the constants c1(x) and c2(x) which are the same for all solutions x( · ) ∈ L−

A( · ) and x( · ) ∈ L+
A( · )
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respectively, then we get the definition of an exponentially dichotomous system. The class of n-
dimensional weakly exponentially dichotomous systems is denoted by WEn. In [1], it is shown
that for any n > 2, there is a proper inclusion En ⊂ WEn. Just as for exponentially dichotomous
systems, lineals L−

A( · ) and L+
A( · ) are called stable and unstable lineals of a system A ∈ WEn, and,

just as in the case of exponentially dichotomous systems, for any system A ∈ WEn its stable lineal
L−
A( · ) is uniquely determined (it consists of all solutions decreasing to zero at infinity), and as a

lineal L+
A( · ) may be taken any algebraic complement L−

A( · ) to the linear space XA( · ) of solutions.
We can ask how significantly the properties of systems of the classes En and WEn can differ.

In particular, is it true that the unstable and stable lineals of a weak exponentially dichotomous
system are separated? If the system A ∈ WE2, then, as is easy to show, it is either an exponentially
dichotomous or its stable or unstable lineal is zero. That is why weak exponentially dichotomous
system with unseparated angle between stable and unstable lineals of solutions should have the
dimension of not less than 3. It turns out that for weak exponentially dichotomous system of
dimension n > 3 incorrect is not only the property stated in Theorem 2 but also weaker property
(2) of separateness of the angle between stable and unstable lineals of solutions as shown by

Theorem 3. For any natural number n > 3 there exists the system A ∈ WEn and such an unstable
lineal L+

A( · ) of solutions that the angle between it and the stable lineal L−
A( · ) is not separated from

zero, i.e. inf{∠(L−
A(t), L

+
A(t)) : t > 0} = 0.

Apparently, Theorem 3 can be enhanced: for any n > 3 there exist such systems in the WEn\En
that the angle between their stable and any unstable lineals is not separated from zero.
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Consider the differential system

ẋ = X(t, x), t ∈ R, x = (x1, . . . , xn)
⊤ ∈ Rn, (1)

with continuous in all the variables and continuously differentiable right part over x. Let φ(t; τ, x)
denote the general solution in the form of Cauchy system (1), that is φ(t; τ, x) – the solution of
(1) with the initial condition φ(τ ; τ, x) = x. Let Ix be maximum symmetrical with respect to zero
interval of existence of solution φ(t; 0, x). Let D(X) := {(t, φ(t; 0, x)) ∈ Rn+1 : t ∈ Ix, x ∈ Rn}.
From the theorem on continuous dependence of solutions on the initial value and the definition of
D(X) it follows that D(X) is the open domain in R × Rn which contains the hyperplane t = 0.
Reflecting function of system (1) is called [3], [4, p. 11], [5, p. 62] the vector function F : D(X) → Rn,
acting according to the rule (t, x) 7−→ φ(−t; t, x). In other words, for any solution x(t) of this

system, which exists on a symmetric interval (−ξ, ξ), the identity F (t, x(t))
t≡ x(−t) is valid for

all t ∈ (−ξ, ξ). This property can be taken [4, p. 16] for the definition of a reflecting function.
From the definition of the reflecting function and the differentiability theorem on the initial value
it follows that the reflecting function F (t, x) of system (1) has partial derivatives Ft and Fx in the
region D(X).

Fundamentally important result of the theory of reflecting function is the following criterion
[3], [4, pp. 11, 12], [5, pp. 63, 64]: the vector function F = F (t, x) : D(X) → Rn is a reflecting
function of system (1) if and only if it satisfies the initial condition F (0, x) ≡ x and the system of
equations in the partial derivatives

Ft + FxX(t, x) +X(−t, F ) = 0. (2)

Equation (2) is called [4, p. 12], [5, p. 63] basic equation (the ratio) for the reflecting function.
Methods have been developed which in some cases make it possible to find the reflecting function
of system (1) without finding its solutions. Moreover, if we know only some of the properties of the
reflecting function of the system, it is possible to investigate the behavior of its solutions without
resorting to the construction of reflecting function [4–9].

Two systems are equivalent in the sense of the coincidence of reflecting functions [5, p. 75],
if their reflecting functions are equal in a domain containing the hyperplane t = 0. Since the
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solutions of equivalent systems have a number of similar properties, the task of constructing classes
of equivalent systems, and the choice of simple (for example, integrated into the final form) systems-
representatives of these classes will be important and relevant.

In this article, the linear differential systems defined for all t ∈ R are discussed, and for them
the domain D(X) determination of reflecting function coincides with the extended phase space
R×Rn, then for such systems it is natural to study the conditions of coincidence of their reflecting
functions in all extended phase space. Therefore, further as the equivalence of linear systems in
the sense of the coincidence of their reflecting functions the coincidence of the reflecting functions
of these systems throughout the extended phase space is understood.

In this article, the quasi-periodic two-frequency linear differential systems are discussed such
that their homogeneous and nonhomogeneous parts are periodic with incommensurable periods,
and the conditions of existence of the periodic reflecting functions in such systems are clarified.

Theorem 1. For the linear nonhomogeneous differential system

ẋ = A(t)x+ f(t), t ∈ R, x ∈ Rn (3)

with continuous n × n-matrix A(t) and vector-function f(t), to have the same reflecting function
as the system

ẋ = f(t), (4)

necessary and sufficient conditions are:

1) matrix-valued function A(t) is odd;

2) there is the identity

A(t)

−t∫
t

f(s) ds = 0 for all t ∈ R. (5)

At the same time, reflecting function F (t, x) of these systems, is the vector-function

F (t, x) = x+

−t∫
t

f(s) ds. (6)

Proof. Sufficiency. The general solution in the form of the Cauchy system (4) is given by φ(t; τ, x) =

x+
t∫
τ
f(s) ds. As a consequence of this presentation by the definition of the reflecting function we

easily find that reflecting function F (t, x) of system (4) is given by equation (6).
We will show that under the conditions 1) and 2) function (6) is the reflecting function of system

(3). It’s enough to make sure that function (6) satisfies the fundamental ratio (2) for reflecting
function of system (3). Substituting in it function (6), after obvious equivalent transformations we
obtain the identity:

A(t)x+A(−t)x+A(−t)

−t∫
t

f(t) dt
t,x
≡ 0. (7)

Since under the conditions 1) and 2) of the theorem identity (7) is obviously true, then function
(6) is the reflecting function of system (3). The sufficiency is proved.

Necessity. Let systems (3) and (4) are equivalent in the sense of coincidence of the reflecting
functions. As it is shown above, system (4) has a reflecting function (6). Since function (6) is also
the reflecting function of system (3), then for system (3) and this function the main identity (2)
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is satisfied. Hence we obtain identity (7). This identity is satisfied for all t and x. Assuming in it
x = 0 and replacing −t onto t, one obtains the condition 2). Thus, the identity must be satisfied

(A(t) +A(−t))x
t,x
≡ 0. (8)

Identity (8) means that the linear operator A(t) + A(−t) is null, that is A(t) = −A(−t) for all
t ∈ R.

Thus, the function A(t) – odd, and as proved above, satisfies the condition 2). The necessity,
and thus the theorem is proved.

Corollary 1. If matrix A(t) is nonsingular for all t ∈ R, then systems (3) and (4) have the same
reflecting function if and only if the matrix-valued function A( · ) and the vector function f( · ) are
odd. In this case, reflecting function of systems (3) and (4) will be the function F (t, x) = x.

If the set of those t ∈ R, in which matrix A(t) is non-singular, not coincides with the R, then
condition 2) of the theorem does not necessarily mean oddness of the vector-function f( · ) which
is confirmed by the following example.

Example 1. Consider the system

ẋ = A(t)x+ f(t), t ∈ R, x ∈ R2,

in which matrix of coefficients A(t) is odd and has zero determinant for all t ∈ R. Let

A(t) =

(
a1(t) a2(t)
a3(t) a4(t)

)
, f(t) =

(
f1(t)
f2(t)

)
.

We will assume that a21(t) + a22(t) ̸= 0 for any t ∈ R. According to Theorem 1, the given system
has the same reflecting function as the system ẋ = f(t) if and only if identity (5) is satisfied. From
this identity we obtain

a1(t)

−t∫
t

f1(s) ds ≡ −a2(t)

−t∫
t

f2(s) ds, a3(t)

−t∫
t

f1(s) ds ≡ −a4(t)

−t∫
t

f2(s) ds. (9)

We will find all vector-functions f(t) = (f1(t), f2(t))
⊤, for which these identities are satisfied. Since

detA(t) = 0 for all t ∈ R and the first row of the matrix A(t) is nonzero then its second row
is proportional to the first one, and then, for the validity of these identities it is necessary and
sufficient the first of them to be valid.

Since the vector (a1(t), a2(t))
⊤ is nonzero, then the first identity in (9) is performed, if and only

if for some function h(t) satisfies the identities

−t∫
t

f1(s) ds ≡ −a2(t)h(t),

−t∫
t

f2(s) ds ≡ a1(t)h(t). (10)

In order identities (10) to be carried out, it is necessary the function h(t) to be even (as left sides
in (10) and functions a1(t), a2(t) are odd) and that the functions a1(t)h(t) and a2(t)h(t) have been
continuously differentiable (as left sides in (10) – continuously differentiable functions).

We will show that these conditions are sufficient for the existence of functions f1(t), f2(t),
which satisfy (10). Fix some even function h(t), for which the right sides in (10) – continuously
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differentiable functions. Denote −a2(t)h(t) through g1(t). Then the first identity in (10) takes the

form
−t∫
t

f1(s) ds ≡ g1(t). Differentiating it on t, we obtain

f1(t) + f1(−t) ≡ −ġ1(t). (11)

The function ġ1(t) is even, as a derivative of an odd function, and it is continuous. We will seek
solution of the functional equation (11) in the form of

f1(t) = − ġ1(t)

2
+ r1(t), (12)

where r1(t) is an unknown continuous function. Replacing in (11) the function f1(t) by the given
representation, we obtain the identity r1(t) + r1(−t) ≡ 0 in view of parity of ġ1(t), that is r1(t)
– an odd function. Conversely, it is easy to see that the function of the form (12) with an odd
continuous function r1(t) satisfies the first identity in (10). Indeed,

−t∫
t

f1(s)ds ≡
−t∫
t

(− ġ1(s)

2
+ r1(s))ds = g1(t) +

−t∫
t

r1(s)ds = g1(t) = −a2(t)h(t).

Similarly, if we denote the function a1(t)h(t) via g2(t), a solution of the second functional equation
in (10) we find in the form of

f2(t) = − ġ2(t)

2
+ r2(t), (13)

where g2(t) ≡ a1(t)h(t), and r2(t) – arbitrary odd function. Thus, the solution of the problem
on the description of the set of vector-functions f(t) = (f1(t), f2(t))

⊤, t ∈ R, satisfy (9) and it is
reduced to the problem of the description of the set of even functions h(t), t ∈ R, for which both
functions a1(t)h(t) and a2(t)h(t) would be continuously differentiable.

As we see, the vector function f(t) = (f1(t), f2(t))
⊤, the components of which are built up, and

given by equalities (12), (13), generally speaking, is not odd, whatever the elements of a degenerate
odd matrix A(t) would be , the first row of which for all t ∈ R is nonzero (a21(t) + a22(t) ̸= 0 for all
t ∈ R).

Remark 1. Considered example gives a partial solution for the following problem, formulated by
E. A. Barabanov: for a linear homogeneous differential system ẋ = A(t)x in terms of its coefficient
matrix A(t) to describe all those its nonhomogeneous perturbations f(t), at which the reflecting
functions of systems ẏ = A(t)y + f(t) and ż = f(t) coincide.

Corollary 2. Let the matrix A(t) have period ω1, and the vector function f(t) – period ω2. For
system (3) to have an ω2-periodic on t reflecting function (6) it is necessary and sufficient the
fulfillment of conditions 1) and 2) of Theorem 1 and the equality

ω2∫
0

f(s) ds = 0. (14)

Remark 2. In the case 3 when numbers ω1 and ω2 are incommensurable, Corollary 2 gives sufficient
condition for the existence of ω2-periodic on t reflecting function in a quasi-periodic system (3).
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We consider the generalized Rosenau equation

∂u

∂t
+

∂u

∂x
+ λ

∂(u)m

∂x
+ µ

∂5u

∂x4∂t
= 0, (x, t) ∈ Q, (1)

together with the initial and boundary conditions

u(x, 0) = φ(x), x ∈ [a, b], u(a, t) = u(b, t) =
∂2u(a, t)

∂x2
=

∂2u(b, t)

∂x2
= 0, t ∈ [0, T ]. (2)

Here λ and µ are positive constants, m ≥ 2 is a positive integer, and Q = (a, b)× (0, T ).
In this article, two-level scheme is constructed to find the values of the unknown function on

the first level, besides the term ∂(u)m/∂x is approximated by the offered in [1] way. For the upper
levels, as in [2], the known approximation are used for derivatives.

The domain Q is divided into rectangular grid by the points (xi, tj) = (a + ih, jτ), i =
0, 1, 2, . . . , n, j = 0, 1, . . . , J , where h = (b − a)/n and τ = T/J denote the spatial and tempo-
ral mesh sizes, respectively.

The value of mesh function U at the node (xi, tj) is denoted by U j
i , that is U

j
i = U(xi, tj).

We define the difference quotients (forward, backward, and central, respectively) in x and t
directions as follows:

(U j
i )x :=

U j
i+1 − U j

i

h
, (U j

i )x :=
U j
i − U j

i−1

h
, (U j

i )◦x :=
1

2

(
(U j

i )x + (U j
i )x

)
,

(U j
i )t :=

U j+1
i − U j

i

τ
, (U j

i )t :=
U j
i − U j−1

i

τ
, (U j

i )◦t
:=

1

2

(
(U j

i )t + (U j
i )t

)
.

We approximate the problem (1), (2) by the difference scheme

(U j
i )◦t

+
1

2
(U j+1

i + U j−1
i )◦

x
+

λm

2(m+ 1)
ΛU j

i + µ(U j
i )xxxx

◦
t
= 0, (3)

i = 1, 2, . . . , n− 1, j = 1, 2, . . . , J − 1,

(U0
i )t +

1

2
(U1

i + U0
i )◦x +

λm

2(m+ 1)
ΛU0

i + µ(U0
i )xxxxt = 0, i = 1, 2, . . . , n− 1, (4)

U0
i = φ(xi), U j

0 = U j
n = (U j

0 )xx = (U j
n)xx = 0 i = 0, 1, . . . , n, j = 0, 1, . . . , n, (5)

where

ΛU j
i := (U j

i )
m−1(U j+1

i + U j−1
i )◦

x
+

(
(U j

i )
m−1(U j+1

i + U j−1
i )

)
◦
x
, j = 1, 2, . . . , J − 1,

ΛU0
i := (U0

i )
m−1(U1

i + U0
i )◦x +

(
(U0

i )
m−1(U1

i + U0
i )
)
◦
x
, i = 1, 2, . . . , n− 1.

The obtained algebraic equations are linear with respect to the values of unknown function for
each new level.
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An a priori estimate of a solution of the difference scheme (3)–(5) is obtained with the help of
energy inequality method, from which follows a uniquely solvability of the scheme.

In the equality of the obtained discrete conservation law the initial energy depends explicitly
only on initial data.

Stability and second order convergence of difference scheme is proved without any restriction
on discretization parameters τ , h.
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The following di�erential equation

y(n) = α0p(t) exp
(
R
(
| ln |y(n−1)||

)) n−1∏
i=0

φi(y
(i)) (1)

is considered. In (1) α0 ∈ {−1, 1}, p : [a, ω[ 1 → ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi →
]0,+∞[ (i = 0, . . . , n) are continuous functions, R : ]0,+∞[→ ]0,+∞[ is continuously di�erentiable
function, Yi ∈ {0,±∞}, ∆Yi is either the interval [y

0
i , Yi[

2, or the interval ]Yi, y
0
i ]. We suppose also

that R is a regularly varying on in�nity function of index µ, 0 < µ < 1, every φi(z) is a regularly

varying as z → Yi (z ∈ ∆Yi) of index σi and
n−1∑
i=0

σi ̸= 1.

We call the measurable function φ : ∆Y → ]0,+∞[ a regularly varying as z → Y of index σ if
for every λ > 0 we have

lim
z→Y
z∈∆Y

φ(λz)

φ(z)
= λσ,

where Y ∈ {0,±∞}, ∆Y is some one-sided neighbourhood of Y . If σ = 0, such function is called a
slowly varying.

It follows from the results of monograph [5] that regularly varying functions have the following
properties.

M1: Function φ(z) is regularly varying of index σ as z → Y if and only if it admits the represen-
tation

φ(z) = zσθ(z),

where θ(z) is a slowly varying function as z → Y .

M2: If function L : ∆Y 0 → ]0,+∞[ is slowly varying as z → Y0, the function φ : ∆Y → ∆Y 0

is regularly varying as z → Y , then the function L(φ) : ∆Y → ]0,+∞[ is slowly varying as
z → Y .

M3: If function φ : ∆Y → ]0,+∞[ satis�es the condition

lim
z→Y
z∈∆

zφ′(z)

φ(z)
= σ ∈ R,

then φ is regularly varying as z → Y of index σ.

1If ω > 0, we take a > 0.
2If Yi = +∞ (Yi = −∞), we take y0

i > 0 (y0
i < 0).
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We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satis�es the
condition S if for any continuous di�erentiable function L : ∆Yi → ]0;+∞[ such that

lim
z→Yi
z∈∆Yi

zL′(z)

L(z)
= 0,

the following condition takes place

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

We call de�ned on [t0, ω[⊂ [a, ω[ solution y of the equation (1) the Pω(Y0, Y1, . . . , Yn−1, λ0)-
solution, where −∞ ≤ λ0 ≤ +∞, if the following conditions take place

y(i) : [t0, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, . . . , n− 1), lim
t↑ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0.

In regular cases λ0
n−1 ∈ R\{0, 12 ,

2
3 , . . . ,

n−2
n−1}, the Pω(Y0, Y1, . . . , Yn−1, λ0)-solutions of the equa-

tion (1) have been established in [3]. Such Pω(Y0, Y1, . . . , Yn−1, λ0)-solutions are regularly varying
functions as t ↑ ω of indexes di�erent from {0, 1, . . . , n− 1}.

The cases λ0 ∈ {0, 12 ,
2
3 , . . . ,

n−2
n−1} are singular. Such solutions are regularly varying functions as

t ↑ ω of indexes {0, 1, . . . , n − 1}, so such solutions or some of their derivatives are slowly varying
functions as t ↑ ω. Therefore for investigation of such solutions we must put additional conditions
on functions φ0,. . . , φn−1 and on the function p. The case λ0 = 0 is of the most di�cult ones. It is
presented in this work. The case was investigated before [1,4] only when R(z) ≡ 1 and the function
φn−1(z)|z|−σn−1 satis�es the condition S. For equations of type (1), that contain, for example,
functions like exp(| ln |y||µ) (0 < µ < 1), the asymptotic representations of Pω(Y0, Y1, . . . , Yn−1, 0)-
solutions were not established before. Let us notice that function exp(R(| ln |z||)) does not satisfy
the condition S.

Now we need the following subsidiary notations.

γ0 = 1−
n−1∑
j=0

σj , C =
1

1− σn−1
, η =

n−3∏
j=0

((n− i− 2)!)σi , γ =

n−3∑
i=0

(i+ 2− n)σi,

θi(z) = φi(z)|z|−σi (i = 0, . . . , n− 1),

Q(t) = −πω(t)
∣∣∣(1− σn−1)

η
|πω(t)|−γI0(t)θn−1

(
y0n−1|I0(t)|

1
1−σn−1

)∣∣∣ 1
1−σn−1 sign y0n−1,

I0(t) =

t∫
A0

ω

p(τ) dτ, I1(t) =

t∫
A1

ω

Q(τ)

πω(τ)
dτ,

A0
ω =



a, if

ω∫
a

p(τ) dτ = +∞,

ω, if

ω∫
a

p(τ) dτ < +∞,

A1
ω =



a, if

ω∫
a

∣∣∣ Q(τ)

πω(τ)
| dτ = +∞,

ω, if

ω∫
a

∣∣∣ Q(τ)

πω(τ)

∣∣∣ dτ < +∞.

The following conclusions take place.

Theorem 1. Let in equation (1) σn−1 ̸= 1, the function θn−1 satisfy the condition S and

lim
t↑ω

R′(| ln |I(t)||)I1(t)I ′0(t)
I0(t)I ′1(t)

= 0.
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We suppose also that there exists the �nite or in�nite limit

lim
t↑ω

πω(t)p(t)

I0(t)
. (2)

Then the following conditions are necessary and su�cient for the existence of Pω(Y0, Y1, . . . , Yn−1, 0)-
solutions of equation (1),

lim
t↑ω

I ′1(t)I0(t)

p(t)I1(t)
= 0, lim

t↑ω
y0n−1|I0(t)|

1
1−σn−1 = Yn−1,

lim
t↑ω

y0n−2|I1(t)|
1−σn−1

γ0 = Yn−2, lim
t↑ω

y0i |πω(t)|n−i−2 = Yi,

α0y
0
n−1(1− σn−1)I0(t) > 0, (1− σn−1)γ0y

0
n−2I1(t) < 0,

y0i y
0
i+1πω(t)(n− i− 2) > 0 as t ∈ [a, ω[ .

Here i = 0, . . . , n− 3.

For any such solution the following asymptotic representations take place as t ↑ ω

y(n−1)(t)

exp(R(| ln |y(n−1)(t)||))
n−1∏
j=0

φj(y(j)(t))

= α0(1− σn−1)I0(t)[1 + o(1)], (3)

y(n−1)(t)

y(n−2)(t)
=

I ′1(t)(1− σn−1)

γ0I1(t)
[1 + o(1)],

y(i)(t)

y(n−2)(t)
=

[πω(t)]
n−i−2

(n− i− 2)!
[1 + o(1)], (4)

i = 0, . . . , n− 3.

Theorem 2. Let in equation (1) σn−1 ̸= 1, the function θn−1 satisfy the condition S and

lim
t↑ω

I0(t)Q
′(t)

R′(| ln |I(t)||)Q(t)I ′0(t)
= 0.

We suppose also that there exists the �nite or in�nite limit (2). Then the following conditions are

necessary and su�cient for the existence of Pω(Y0, Y1, . . . , Yn−1, 0)-solutions of equation (1),

lim
t↑ω

I0(t)

p(t)R′(| ln |I0(t)||)
= 0, lim

t↑ω
y0n−1|I0(t)|

1
1−σn−1 = Yn−1,

lim
t↑ω

y0n−2

∣∣∣ Q(t)

R′(| ln |I0(t)||)
|
1−σn−1

γ0 = Yn−2, lim
t↑ω

y0i |πω(t)|n−i−2 = Yi,

α0y
0
n−1(1− σn−1)I0(t) > 0, (1− σn−1)γ0Q(t)y0n−2y

0
n−1 > 0,

y0i y
0
i+1πω(t)(n− i− 2) > 0 as t ∈ [a, ω[ .

Here i = 0, . . . , n− 3.

For any such solution the representation (3), the second representation in (4) and the following

asymptotic representation

y(n−1)(t)

y(n−2)(t)
=

I ′1(t)

γ0R′(| 1−σn−1

ln |I0(t)| |)
[1 + o(1)]

take place as t ↑ ω.
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The multi-point and nonlocal boundary value problems for ordinary and functional differential
equations have been studied by many authors in recent years, see [1–20] and references therein.
Nonlocal boundary value problems arise in many applications and can be used for modeling [2, 9,
11,18].

In the resonance and non-resonance cases, many authors (see, for instance, [2, 3, 5, 6, 10–12, 14,
15,18,20]) consider, firstly, the boundary value problem for a linear ordinary differential equation.
They established the existence of a unique solution, investigate the properties of the Green function,
then apply the results to non-linear equations.

Motivated by the above work, in this paper, we consider a four-point boundary value problem
for linear second order functional differential equation at resonance. We obtain sharp sufficient
conditions for the existence and uniqueness of solutions. So, the results of many previous works on
multi-point boundary value problems can be extended in the case of this four-point problem.

Let us define some sets and functions:

Ω ≡
{
(b, c) : 0 ≤ b ≤ c ≤ 1

}
, Ω1 ≡

{
(b, c) ∈ Ω : c ≥ 3b− 1, c ≥ b+ 1

3

}
,

Ω2 ≡
{
(b, c) ∈ Ω : c <

b+ 1

3

}
, Ω3 ≡ {(b, c) ∈ Ω : c < 3b− 1}

(it is clear that Ω1 ∪ Ω2 ∪ Ω3 = Ω),

d2(b, c) ≡
√

(3b− 1− c)(1 + c− b), d3(b, c) ≡
√

(1 + b− 3c)(1 + c− b),

ω2(b, c) ≡
[b− d2(b, c)

2
,
b+ d2(b, c)

2

]
, ω3(b, c) ≡

[1 + c− d3(b, c)

2
,
1 + c+ d3(b, c)

2

]
,

h2(b, c, t) ≡
2

t2

( b(1 + c− b)

((1 + c)/2− t)2
− 1

)
, t ∈ ω2,

h3(b, c, t) ≡
2

(1− t)2

((1− c)(1 + c− b)

(t− b/2)2
− 1

)
, t ∈ ω3.

Let

M(b, c) ≡


32

(1 + c− b)2
if (b, c) ∈ Ω1;

min
t∈ω2(b,c)

h2(b, c, t) if (b, c) ∈ Ω2;

min
t∈ω3(b,c)

h3(b, c, t) if (b, c) ∈ Ω3.

Definition. A linear operator T from the space of all continuous real functions C[0, 1] into the
space of all integrable functions L[0, 1] is called positive if it maps every nonnegative continuous
function into an almost everywhere nonnegative integrable function.
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Theorem 1. Let 0 < b ≤ c < 1, p ∈ L[0, 1] be a non-negative function, h : [0, 1] → [0, 1] be a
measurable function.

Then the boundary value problem{
ẍ(t) = p(t)x(h(t)) + f(t), t ∈ [0, 1],

x(0) = x(b), x(c) = x(1),
(1)

has a unique solution for every f ∈ L[0, 1] if

vrai sup
t∈[0,1]

p(t) ≤ M(b, c), p ̸≡ 0, p ̸≡ M(b, c).

Remark. The constant M(b, c) is the best one. If p(t) ≡ P > M(b, c), then there exists a
measurable function h : [0, 1] → [0, 1] such that problem (1) has no a unique solution.

Theorem 1 can be transferred to a more general case.

Theorem 2. Let 0 < b ≤ c < 1, T : C[0, 1] → L[0, 1] be a linear positive operator.
Then the boundary value problem{

ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

x(0) = x(b), x(c) = x(1),
(2)

has a unique solution for every f ∈ L[0, 1] if

vrai sup
t∈[0,1]

(T1)(t) ≤ M, T1 ̸≡ 0, T1 ̸≡ M.

We can get some simple corollaries about the solvability of problem (2) for different b and c
satisfying the condition 0 < b ≤ c < 1. The cases b = 0 or c = 1 correspond to the boundary value
conditions ẋ(0) = 0 and ẋ(1) = 0. These cases can be dealt by the similar way.

Corollary 1. Let T : C[0, 1] → L[0, 1] be a linear positive operator.
Then the boundary value problem{

ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

x(0) = x
(
1
2

)
= x(1),

has a unique solution for every f ∈ L[0, 1] if

vrai sup
t∈[0,1]

(T1)(t) ≤ 32, T1 ̸≡ 0, T1 ̸≡ 32.

Corollary 2. Let b ∈ (0, 1/2), T : C[0, 1] → L[0, 1] be a linear positive operator.
Then the boundary value problem{

ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

x(0) = x(b), x(1− b) = x(1),

has a unique solution for every f ∈ L[0, 1] if

vrai sup
t∈[0,1]

(T1)(t) ≤ 8

(1− b)2
, T1 ̸≡ 0, T1 ̸≡ 8

(1− b)2
.
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Corollary 3. Let T : C[0, 1] → L[0, 1] be a linear positive operator.
Then the boundary value problem{

ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

ẋ(0) = 0, x(0) = x(1) (or ẋ(1) = 0, x(0) = x(1)),

has a unique solution for every f ∈ L[0, 1] if

vrai sup
t∈[0,1]

(T1)(t) ≤ 11 + 5
√
5, T1 ̸≡ 0, T1 ̸≡ 11 + 5

√
5.

Corollary 4. Let T : C[0, 1] → L[0, 1] be a linear positive operator.
Then the boundary value problem{

ẍ(t) = (Tx)(t) + f(t), t ∈ [0, 1],

ẋ(0) = 0, ẋ(1) = 0,

has a unique solution for every f ∈ L[0, 1] if

vrai sup
t∈[0,1]

(T1)(t) ≤ 8, T1 ̸≡ 0, T1 ̸≡ 8.

The constants in Theorem 2 and all corollaries are sharp.
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For a given n ∈ N let us denote by Mn the set of linear systems of the form

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1)

where A is a piecewise continuous matrix function (which we identify with the respective system)

and by M̂n the subset of Mn comprising systems with bounded coefficients.
The set Mn is endowed with the uniform and compact-open topologies defined respectively by

the metrics

ρU (A,B) = sup
t∈R+

min
{
∥A(t)−B(t)∥, 1

}
, ρC(A,B) = sup

t∈R+

min
{
∥A(t)−B(t)∥, 2−t

}
,

with ∥ · ∥ being a matrix norm (e.g., the spectral one). The resulting topological spaces will be
denoted by Mn

U and Mn
C . Similar notation will be used for their subspaces.

As early as 1928, O. Perron [9] (see also [4, 1.4]) discovered that for n ≥ 2 the largest Lyapunov

exponent is not upper semi-continuous as a functional on the space M̂n
U . He also suggested sufficient

conditions for a system (1) to be a point of continuity of all the Lyapunov exponents in the uniform
topology, which is commonly used in the study of the effect of perturbations on one or the other
property of a system.

Further development of the theory of linear systems has led to introduction of a whole range
of asymptotic behaviour characteristics, many of which proved to be discontinuous with respect to
the uniform topology.

In a seminal work [7] V. M. Millionshchikov proposed using the Baire classification of functions to
describe the dependence of those characteristics on the system coefficients. Motivated by parametric
families of systems, V. M. Millionshchikov actively studied the compact-open topology on Mn and
systematically tried to get rid of the assumption that the coefficients of (1) are bounded.

Let us introduce a piece of useful notation. Let M be a metric space and F be a set of functions
f : M → R. Define for each countable ordinal α the set [F ]α by transfinite induction as follows:

1) [F ]0 = F ;

2) [F ]α is the set of functions f : M → R representable in the form

f(x) = lim
k→∞

fk(x), x ∈ M,

where functions fk, k ∈ N, belong to the sets [F ]ξ with ξ < α.

Definition 1 ([5, § 31.IX]). Let M be a metric space and α be a countable ordinal. The α-th
Baire class Fα(M) is defined by Fα(M) = [C(M)]α, C(M) being the set of continuous functions
f : M → R. The class F0

α(M) = Fα(M) \
∪
ξ<α

Fξ(M) is called the α-th exact Baire class. For

convenience, let us denote by F0
ω1
(M) the set of functions which do not belong to any of the classes

Fα(M), α ∈ [0, ω1) (here and subsequently, ω1 is the first uncountable ordinal).
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V. M. Millionshchikov proved [8] that the Lyapunov exponents belong to the class F2(Mn
C) ⊂

F2(Mn
U ). Later M. I. Rakhimberdiev [10] proved that for n ≥ 2 they do not belong to the class

F1(M̂n
U ) ⊃ F1(M̂n

C). Therefore, for n ≥ 2 the Lyapunov exponents (and their restrictions to M̂n)

belong to the second exact Baire classes on both spaces Mn
C and Mn

U (M̂n
C and M̂n

U , respectively).
Investigations in this vein have been continued by V. M. Millionshchikov himself, his students

and followers. It was established by efforts of several authors [2, 11] that the minorants of the

Lyapunov exponents belong to the class F3(M̂n
C), and A. N. Vetokhin proved [14] that they do not

belong to the class F2(M̂n
C). Thus they belong to the third exact class on the space M̂n

C (at the

same time, they are known to belong to the first exact class on the space M̂n
U ).

The natural question arises: for which α, β, γ, δ ∈ [0, ω1] there exists an asymptotic invariant [1]

from F0
γ(Mn

U ) ∩ F0
δ(Mn

C) such that its restriction to M̂n belongs to F0
α(M̂n

U ) ∩ F0
β(M̂n

C)?
Let us make the notion of asymptotic invariant more precise for the purposes of this paper (see

the discussion of this notion in [6, § 2]).

Definition 2 ([3, Chapter IV, § 2]). Systems A,B ∈ Mn are said to be weakly Lyapunov equivalent
if they possess fundamental matrices X(·) and Y (·) such that

sup
t∈R+

(
∥X(t)Y −1(t)∥+ ∥Y (t)X−1(t)∥

)
< ∞.

A functional taking equal values at any weakly Lyapunov equivalent systems is called a weak
Lyapunov invariant.

Proposition 1 ([13]). Classes F0
1(Mn

C) and F0
1(M̂n

C) do not contain any weak Lyapunov invariants.

Let us note that the index of the exact Baire class of a function on a space is not less than that
of its restriction to a subspace and also that the index of the exact Baire class of a function on Mn

C

is not less than that on Mn
U (since the uniform topology is finer).

The following theorem states that a quadruple of the indices of the exact Baire classes with
respect to the compact-open and uniform topologies containing a weak Lyapunov invariant and its
restriction to M̂n is subject to no restrictions except the natural ones mentioned above and those
implied by Proposition 1.

Theorem 1. Let ordinals α, β, γ, δ ∈ [0, ω1] be given. Then a weak Lyapunov invariant satisfying
the conditions

1) φ ∈ F0
γ(Mn

U ) ∩ F0
δ(Mn

C);

2) φ
∣∣
M̂n ∈ F0

α(M̂n
U ) ∩ F0

β(M̂n
C),

exists if and only if
α ≤ min{β, γ}, max{β, γ} ≤ δ, β ̸= 1, δ ̸= 1.

Definition 3 ([12]). Let M ⊂ Mn. We say that a functional φ : M → R has a compact support if
there exists T > 0 such that φ(A) = φ(B) whenever A,B ∈ M coincide on the interval [0, T ]. The
set of all functionals on M with compact support is denoted by C(M).

Remark 1. In the abstract [12] functionals with compact support are called boundedly dependent.

Suppose that a functional defined on a subspace of Mn
C is the repeated pointwise limit of a

sequence of continuous ones. As noted in [12], the desire to compute the values of those based only
on information on the system on finite time intervals naturally leads to the requirement that their
supports be compact.
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Definition 4. Let M ⊂ Mn
C . Define the α-th formula class Cα(M) by (cf. [12])

Cα(M) = [F0(M) ∩ C(M)]α, α ∈ [0, ω1).

Proposition 2 ([12]). Let M ⊂ Mn
C . Then Cα(M) ⊂ Fα(M) ⊂ Cα+1(M) for all α ∈ [0, ω1).

Moreover, for M = Mn
C and α = 0 the first inclusion is strict.

Let a functional defined on a subspace of Mn
C be the repeated limit of a sequence of continuous

ones. The next theorem states that the latter could be chosen to have compact support.

Theorem 2. Let M ⊂ Mn
C . Then Cα(M) = Fα(M) for all α ∈ [1, ω1).

The case α = 0 is totally different as the next theorem shows.

Theorem 3. Let M ⊂ Mn
C . Then C0(M) = F0(M) if and only if there exists T > 0 such that

A = B whenever A,B ∈ M coincide on the interval [0, T ].

It appears that, generally speaking, one cannot decrease the number of limits in a formula
for a weak Lyapunov invariant by allowing the prelimit functionals with compact support to be
discontinuous.

Theorem 4. Let M ⊃ {A ∈ Mn : sup
t≥0

∥A(t)∥ ≤ 1} be endowed with the compact-open topology.

Then for all α ∈ [1, ω1) there exists a weak Lyapunov invariant φ ∈ Fα+1(M) \ [C(M)]α.

For α = 1 the statement of the above theorem can be strengthened: no nontrivial weak Lya-
punov invariant is the limit of a sequence of functionals with compact support.

Theorem 5. If M ∈ {M̂n
C ,Mn

C}, then [C(M)]1 does not contain weak Lyapunov invariants except
constants.
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The aim of the work is to �nd necessary and su�cient conditions of existence of su�ciently wide
special class of solutions of second order di�erential equations with regularly and rapidly varying
nonlinearities and to obtain asymptotic representations for such solutions and their derivatives of
the �rst order.

Second order di�erential equations with power and exponential nonlinearities play an important
role in development of the qualitative theory of di�erential equations. Such equations also have a lot
of applications in practice. It happens, for example, when we study the distribution of electrostatic
potential in a cylindrical volume of plasma of products of burning.

The corresponding equation may be reduced to the following one:

y′′ = α0p(t)e
σy|y′|λ.

In the work of V. M. Evtuhov and N. G. Drik [3], some results on asymptotic behavior of solutions
of such equations have been obtained.

Exponential nonlinearities form a special class of rapidly varying nonlinearities. The consid-
eration of the last ones is necessary for some models. All this makes the topic of our research
actual.

Our investigations need establishment of the next class of functions.
We call the measurable function φ : ∆Y → ]0,+∞[ a regularly varying as y → Y , z ∈ ∆Y of

index σ [1] if for every λ > 0 we have

lim
y→Y
y∈∆Y

φ(λy)

φ(y)
= λσ.

Here Y ∈ {0,±∞}, ∆Y is some one-sided neighbourhood of Y . If σ = 0, such function is called
slowly varying.

The function φ : [s,+∞[→ ]0,+∞[ (s > 0) is called a rapidly varying function [1] of the +∞
order on in�nity if this function is measurable and

lim
y→∞

φ(λy)

φ(y)
=


0 at 0 < λ < 1,

1 if λ = 1,

+∞ at λ > 1.

It is called a rapidly varying function of the −∞ order on in�nity if

lim
y→∞

φ(λy)

φ(y)
=


+∞ if 0 < λ < 1,

1 at λ = 1,

0 if λ > 1.
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The function φ(y) is called a rapidly varying function of zero order if φ( 1y ) is a rapidly varying
function of +∞ order. An exponential function is a special case of the last ones.

The di�erential equation

y′′ = α0p(t)φ(y),

with a rapidly varying function φ, was investigated in the work of V. M. Evtuhov and V. M. Khar-
kov [4]. But in the mentioned work the introduced class of solutions of the equation depends on the
function φ. This is not convenient for practice.

The more general class of equations of such type is established in this work.

Let us consider the di�erential equation

y′′ = α0p(t)φ0(y)φ1(y
′), (1)

where α0 ∈ {−1; 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ (i ∈ {0, 1}) �
are continuous functions, Yi ∈ {0,±∞}, ∆Yi � is one-sided neighborhood of Yi.

Furthermore, we assume that function φ1 is a regularly varying function as y → Y1 (y ∈ ∆Y1)
of the order σ1, and function φ0 is twice continuously di�erentiable and satis�es the following limit
relations

lim
y→Y0
y∈∆Y0

φ0(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ0(y)φ
′′
0(y)

(φ′
0(y))

2
= 1. (2)

From conditions (2) it can be proved that φ0 and its derivatives of the �rst order are rapidly
varying function as y → Y0 (y ∈ ∆Y0).

The main aim of our research is the development of methods of establishing asymptotic repre-
sentations of solutions of such di�erential equations in order to receive a new class of mentioned
equations.

We use a lot of methods of mathematical analysis, linear algebra, analytic geometry, theory of
homogeneous di�erential equations in our work. Some special methods of investigation of equations
of the mentioned type, being developed by the superiors, are also used.

We call solution y of the equation (1) de�ned on [t0, ω[⊂ [a, ω[ , the Pω(Y0, Y1, λ0)-solution,
where −∞ ≤ λ0 ≤ +∞, if the following conditions take place

y(i) : [t, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.

In this work we consider Pω(Y0, Y1, λ0)-solutions of the equation (1) in case λ0 = 0. Because
of the properties of these solutions (see, eg., [2]) all of them are slowly varying functions as t ↑ ω.
Therefore the case λ0 = 0 is one of the most di�cult for research. The problem of investigation
Pω(Y0, Y1, 0)-solutions for equations with rapidly varying functions is di�cult by the fact that com-
position of rapidly and regularly varying functions may be as rapidly, as regularly, as slowly varying
function as the argument tents to the singular point.

We have obtained the necessary and su�cient conditions for the existence of Pω(Y0, Y1, 0)-
solutions of equation (1) and �nd asymptotic representations of these solutions and their derivatives
of the �rst order.



International Workshop QUALITDE � 2016, December 24 � 26, 2016, Tbilisi, Georgia 61

Now we need the following notations

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞,
θ1(y) = φ1(y)|y|−σ1 ,

I(t) = sign(y01)×
t∫

B0
ω

∣∣∣∣πω(τ)p(τ)θ1( y01
|πω(τ)|

)∣∣∣∣ 1
1−σ1

dτ,

B0
ω =



b if

ω∫
b

∣∣∣∣πω(τ)p(τ)θ1( y01
|πω(τ)|

)∣∣∣∣ 1
1−σ1

dτ = +∞,

ω if

ω∫
b

∣∣∣∣πω(τ)p(τ)θ1( y01
|πω(τ)|

)∣∣∣∣ 1
1−σ1

dτ < +∞,

Φ0(y) =

y∫
A0

ω

|φ0(s)|
1

σ1−1 ds, A0
ω =



y00 if

Y0∫
y00

|φ0(y)|
1

σ1−1 dy = +∞,

Y0 if

Y0∫
y00

|φ0(y)|
1

σ1−1 dy < +∞,

signφ0(y) = f1 as y ∈ ∆Y0 , Z1 = lim
y→Y0
y∈∆Y0

Φ(y).

The inferior limits of the integrals are chosen in such forms that the corresponding integrals
tend either to 0 or to ∞ as t ↑ ω and y → Y0, y ∈ ∆Y0 , correspondingly.

Note some necessary de�nitions.

De�nition 1. Let Y ∈ {0,±∞}, ∆Y � is some one-sided neighborhood of Y . The continuously
di�erentiable function L : ∆Y → ]0,+∞[ is called normaliyed slowly varying function [5] as y → Y
(y ∈ ∆Y ) if

lim
y→Y1
y∈∆Yi

yL′(y)

L(y)
= 0.

De�nition 2. We say that a slowly varying as y → Y (y ∈ ∆Y ) function θ : ∆Y → ]0,+∞[
satis�es the condition S if for any normaliyed slowly varying function L : ∆Yi → ]0,+∞[ the
following condition takes place

θ(yL(y)) = θ(y)(1 + o(1)) as y → Y (y ∈ ∆Y ).

Remark 1. The following statement is true

Φ(y) = (σ1 − 1)
φ

σ1
σ1−1

0 (y)

φ′
0(y)

[1 + o(1)] as y → Y0 (y ∈ ∆Y0).

From this as y ∈ ∆Y0 , we have

sign(φ′
0(y)Φ(y)) = sign(σ1 − 1).
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Remark 2. Because of conditions (2) on the function φ0, we have that z1 ∈ {0,+∞} and

lim
y→Y0
y∈∆Y0

Φ′′(y) · Φ(y)
(Φ′(y))2

= 1.

The following conclusions take place for equation (1).

Theorem 1. Let σ1 ̸= 1. Then for the existence of Pω(Y0, Y1, 0)-solutions of the equation (1) such
that the following �nite or in�nite limit exists

lim
t↑ω

πω(t)y
′′(t)

y′(t)
,

it's necessary the following conditions

f1I(t)(σ1 − 1) > 0, α0πω(t)y
0
1 < 0 as t ∈ [a, ω[ , (3)

lim
t↑ω

y01
|πω(t)|

= Y1, lim
t↑ω

I(t) = Z1, lim
t↑ω

I ′(t)πω(t)

Φ′(Φ−1(I(t)))Φ−1(I(t))
= 0 (4)

to be ful�lled.

If the function θ1 satis�es the condition S, the following �nite or in�nite limit exists lim
t↑ω

πω(t)I′(t)
I(t) ,

the function
πω(t)·I′(t)

I(t) is a normalized slowly varying function as t ↑ ω, the function (Φ
′(y)

Φ(y) ) is a

regularly varying function of the order γ0 as y → Y0 (y ∈ ∆Y0), (γ0 + 1) < 0 as Y0 = 0, and
(γ0 + 1) > 0 in another case, and

lim
t↑ω

∣∣∣πω(t)I ′(t)
I(t)

∣∣∣ < +∞

or

πω(t) · I(t) · I ′(t)(1− σ1) > 0, when t ∈ [a, ω[ ,

then (3), (4) are su�cient conditions for the existence of such solutions for the equation (1). For

every Pω(Y0, Y1, 0)-solution the following asymptotic representations take place as t ↑ ω

Φ(y(t)) = I(t)[1 + o(1)],
y′(t)Φ′(y(t))

Φ(y(t))
=

I ′(t)

I(t)
[1 + o(1)].

References

[1] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation. Encyclopedia of Mathe-

matics and its Applications, 27. Cambridge University Press, Cambridge, 1987.

[2] V. M. Evtukhov, Àñèìïòîòè÷åñêèå ïðåäñòàâëåíèÿ ðåøåíèé íåàâòîíîìíûõ îáûêíîâåííûõ
äèôôåðåíöèàëüíûõ óðàâíåíèé. Äèñ. äîêò. ôèç.-ìàò. íàóê : 01.01.02, Êèåâ, 1998, 295 c.

[3] V. M. Evtukhov and N. G. Drik, Asymptotic behavior of solutions of a second-order nonlinear
di�erential equation. Georgian Math. J. 3 (1996), no. 2, 101�120.

[4] V. M. Evtukhov and V. M. Khar'kov, Asymptotic representations of solutions of second-order
essentially nonlinear di�erential equations. (Russian) Di�er. Uravn. 43 (2007), no. 10, 1311�
1323.

[5] E. Seneta, Regularly varying functions. Lecture Notes in Mathematics, Vol. 508. Springer-
Verlag, Berlin�New York, 1976.



International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia 63

The Dirichlet Problem for a Class of Anisotropic
Mean Curvature Equations

Chiara Corsato
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1 Introduction

We are concerned with the study of the existence, uniqueness, regularity and boundary behaviour
of the solutions of the quasilinear elliptic problem−div

( ∇u√
1 + |∇u|2

)
= −au +

b√
1 + |∇u|2

in Ω,

u = 0 on ∂Ω,

(1.1)

where a > 0, b > 0 are given constants and Ω is a bounded domain in RN having a Lipschitz
boundary ∂Ω.

Problem (1.1) has been recently introduced in order to describe the geometry of the human
cornea. We refer to [13–17] for the derivation of the model, further discussions on the subject and an
additional bibliography. It should however be pointed out that in [13,14,16,17] a simplified version
of (1.1) has been investigated, where the curvature operator, div(∇u/

√
1 + |∇u|2), is replaced by

its linearization around 0, div(∇u) = ∆u, and, furthermore, Ω is supposed to be either an interval
in R, or a disk in R2. In [2, 3] we have instead considered the complete model (1.1) and we have
proved the existence of a unique classical solution for any choice of the positive parameters a, b,
but still assuming that Ω is an interval in R, or a ball in RN . Some numerical experiments for
approximating the solution of the 1-dimensional problem have also been performed in [2,15]. Later
on, in [4], we tackled the quite challenging problem in arbitrary Lipschitz domains and we proved,
for all a, b > 0, the existence and the uniqueness of a generalized solution, which is regular in
the interior and attains the Dirichlet boundary data under an additional condition that relates the
values of the parameters with the geometry of the domain. The necessity of considering generalized
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solutions in this context is dictated by the possible occurrence of solutions which are singular at
the boundary, namely solutions that are regular in the interior, but do not attain the Dirichlet
condition at some points of the boundary, where in addition the normal derivative blows up. We
refer to the survey paper [5] for a thorough discussion of this matter. The following notions of
solution for problem (1.1), partially inspired by [6, 7, 9–12,19], are therefore introduced.

Definition 1.1. A function u ∈ W 1,1(Ω) is a generalized solution of (1.1) if the following conditions
hold:

• div
( ∇u√

1 + |∇u|2
)
∈ LN (Ω);

• u satisfies the equation in (1.1) a.e. in Ω;

• for HN−1-a.e. x ∈ ∂Ω,

– either u(x) = 0,

– or u(x) > 0 and
[ ∇u√

1 + |∇u|2
, ν

]
(x) = −1,

– or u(x) < 0 and
[ ∇u√

1 + |∇u|2
, ν

]
(x) = 1,

where HN−1 denotes the (N−1)-dimensional Hausdorff measure and [ ∇u√
1+|∇u|2

, ν] ∈ L∞(∂Ω)

is the weakly defined trace on ∂Ω of the component of ∇u√
1+|∇u|2

with respect to the unit outer

normal ν to Ω (cf. [1]).

A generalized solution u of (1.1) is classical if u ∈ C2(Ω) ∩ C0(Ω) and u(x) = 0 on ∂Ω.

A generalized solution u of (1.1) is singular if it is not classical.

The concept of generalized solution expressed by Definition 1.1 looks rather natural in the frame
of (1.1) and can heuristically be interpreted as follows: the solution u is not required to satisfy the
homogeneous Dirichlet boundary condition at all points of ∂Ω, but at any point of ∂Ω where the
zero boundary value is not attained the unit upper normal N (u) to the graph of u equals either the
unit outer normal (ν, 0), or the unit inner normal (−ν, 0), according to the sign of u; in this case,
roughly speaking, the graph of the solution might be smoothly continued by vertical segments up
to the zero level. This kind of boundary behaviour of solutions of the N -dimensional prescribed
mean curvature equation has already been observed and discussed in [6, 7, 10, 12]. With reference
to Definition 1.1 we can state various existence, uniqueness and regularity results, which are the
contents of the next sections.

2 Radially symmetric solutions

Since the equation in (1.1) is invariant under orthogonal transformations, it is natural to look for
radially symmetric solution whenever the domain is either a ball, or a spherical shell. However the
solvability patterns in the two cases are quite different.

Classical solutions on balls

Let B = B(x0, R) be the open ball in RN of center x0 and radius R.
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Theorem 2.1. For every a > 0, b > 0, there exists a unique generalized solution u of (1.1),
with Ω = B, which is radially symmetric and classical, with u ∈ C2(B). Moreover, there exists a
function v ∈ C2([0, R]), with u(x) = v(|x− x0|) for all x ∈ B, such that

• 0 < v(t) < b/a for all t ∈ [0, R[ ;

• v′(t) < 0 for all t ∈ ]0, R];

• v′′(t) < 0 for all t ∈ [0, R].

Singular solutions on thick shells

Let S = Sr,R(x0) = {x ∈ RN | r < |x− x0| < R} be the spherical shell centered at x0 and having
radii r, R, with 0 < r < R.

Theorem 2.2. For any given N ≥ 2, a > 0 and r > 0, there exist R∗ > 0 and b∗ > 0 such that,
for all R > R∗ and b > b∗, there is a unique generalized solution u of (1.1), with Ω = S, which is
radially symmetric, singular and satisfies

u ∈ C2(S ∪ ∂B), u(x) = 0 if |x− x0| = R,

u(x) > 0 if
[ ∇u√

1 + |∇u|2
, ν

]
(x) = −1 if |x− x0| = r.

Classical solutions on thin shells

It is worth observing that the conclusions of Theorem 2.2 fail if R is not bounded away from r.

Theorem 2.3. For any given N ≥ 2, a > 0, b > 0 and r > 0, there exists R∗ > 0 such that,
for all R ∈ ]r,R∗[ , there is a unique generalized solution u of (1.1), with Ω = S, which is radially
symmetric and classical, with u ∈ C2(S).

3 Small classical solutions on arbitrary domains

If Ω is an arbitrary bounded regular domain in RN , the existence of a maximal connected two-
dimensional branch of classical solutions, which emanates from the line of trivial solutions, can be
established.

Theorem 3.1. Let Ω be a bounded domain in RN , having a boundary ∂Ω of class C2,α for some
α ∈ ]0, 1[ . Then, there exists a set

S =
∪
a>0

(
{a} × [0, b∞(a)[

)
⊆ R+

0 × R+

such that, for any (a, b) ∈ S ∩ (R+
0 × R+

0 ), problem (1.1) has a unique generalized solution u =
u(a, b) ∈ C2,α(Ω), which is classical, asymptotically stable, smoothly depends on the parameters
(a, b) in the topology of C2,α(Ω), and satisfies, for every a > 0,

lim
b→0

∥u(a, b)∥C2,α = 0

and, in case b∞(a) < +∞,
lim sup
b→b∞(a)

∥∇u(a, b)∥∞ = +∞.
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4 Generalized solutions on arbitrary domains

The proof of the existence of generalized solutions is conceptually delicate and technically elaborate.
It requires the study, in the space of bounded variation functions, of a suitable action functional,
involving an anisotropic area term, whose minimizers give raise, via a change of variables, to the
generalized solutions. The interior regularity of these bounded variation minimizers is obtained
by combining a delicate approximation scheme with a “local” existence result basically due to
Serrin [18] and the classical gradient estimates of Ladyzhenskaya and Ural’tseva [8].

Theorem 4.1. Let Ω be a bounded domain in RN , with N ≥ 2, having a Lipschitz boundary ∂Ω.
Then, for every a > 0, b > 0, there exists a unique generalized solution u of problem (1.1), which
also satisfies:

• u ∈ C∞(Ω);

• the set of points x0 ∈ ∂Ω, where u is continuous and satisfies u(x0) = 0, is non-empty;

• 0 < u(x) < b/a for all x ∈ Ω;

• u minimizes in W 1,1(Ω) ∩ L∞(Ω) the functional∫
Ω

e−bz
√

1 + |∇z|2 dx− a

b

∫
Ω

e−bz
(
z +

1

b

)
dx +

1

b

∫
∂Ω

|e−bz − 1| dHN−1.

Remarks. The second conclusion of Theorem 4.1 can be further specified as follows: u is continuous
at x0 and satisfies u(x0) = 0 at any point x0 ∈ ∂Ω where an exterior sphere condition holds with
radius r ≥ (N − 1) b/a (i.e., there exists a point y ∈ RN such that the open ball B(y, r) of center y
and radius r satisfies B(y, r)∩Ω = ∅ and x0 ∈ B(y, r)∩∂Ω). Clearly, an exterior sphere condition,
with arbitrary radius, holds at all points x0 ∈ ∂Ω belonging to the boundary of the convex hull of
Ω. The last conclusion of Theorem 4.1 also shows that all generalized solutions of (1.1) enjoy some
form of stability.

5 Classical versus singular solutions

Combining the previous results yields a rather complete picture of the structure of the solution set
of problem (1.1).

Theorem 5.1. Let Ω be a bounded domain in RN , with N ≥ 2, having a boundary ∂Ω of class
C2,α for some α ∈ ]0, 1[ . Then, for every a > 0, either for all b > 0 problem (1.1) has a unique
generalized solution, which is classical, or there exists b∗ = b∗(a) ∈ ]0,+∞[ such that

• if b ∈ ]0, b∗], then problem (1.1) has a unique generalized solution u, which is classical;

• if b ∈ ]b∗,+∞[ , then problem (1.1) has a unique generalized solution u, which is singular.

In addition, the following conclusions hold:

• the map a 7−→ b∗(a) is non-decreasing, with inf
a>0

b∗(a) > 0;

• the map (a, b) 7−→ u(a, b) is continuous from R+
0 × R+ to L∞(Ω);

• for any a > 0, the map b 7−→ u(a, b) is increasing in the sense that if b1 < b2, then u(a, b1) <
u(a, b2) in Ω;

• for any b > 0, the map a 7−→ u(a, b) is decreasing in the sense that if a1 < a2, then u(a1, b) >
u(a2, b) in Ω.
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Oscillation and Nonoscillation Results for
Half-Linear Equations with Deviated Argument
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This is an enlarged abstract of the joint work with Alois Kufner and Komil Kuliev [?]. We
introduce oscillatory and nonoscillatory criteria for half-linear equations with deviated argument
and dedicate it to the 100 birthday anniversary of Professor A. Bitsadze. Our method relies on the
weighted Hardy inequality.

Let us consider the half-linear equation with deviated argument(
r(t)|u′(t)|p−2u′(t)

)′
+ c(t)|u(τ(t))|p−2u(τ(t)) = 0, t ∈ (0,∞), (1)

where p > 1, c : [0,∞) → (0,∞) is continuous, c ∈ L1(0,∞), r : [0,∞) → (0,∞) is continu-
ously differentiable, τ : [0,∞) → R is continuously differentiable and increasing function satisfying
lim
t→∞

τ(t) = ∞.

Assume that (1) has at least one nonzero global solution defined on the entire interval (0,∞).
We say that a global solution of (1) is nonoscillatory (at ∞) if there exists T > 0 such that
u(t) ̸= 0 for all t > T . Otherwise, it is called oscillatory, i.e., there exists a sequence {tn}∞n=1 such
that lim

n→∞
tn = ∞ and u(tn) = 0 for all n ∈ N. We let p′ = p

p−1 .

Theorem 1 (nonoscillatory criterion). Let

lim sup
t→∞

( t∫
0

r1−p′(s) ds

)( ∞∫
t

c(s) ds

) 1
p−1

<
(p− 1)

p p′
(2)

and

lim sup
t→∞

( τ(t)∫
0

r1−p′(s) ds

)( ∞∫
t

c(s) ds

) 1
p−1

<
(p− 1)

p p′
. (3)

Then every global solution of (1) is nonoscillatory.

Theorem 2 (oscillatory criterion). Let one of the following three cases occur:

(i) There exists T > 0 such that for all t ≥ T we have τ(t) ≥ t and

lim sup
t→∞

[( t∫
0

r1−p′(s) ds

)( ∞∫
t

c(s) ds

) 1
p−1

+

( τ(t)∫
t

r1−p′(s) ds

)( ∞∫
τ(t)

c(s) ds

) 1
p−1

]
> 1.

(ii) There exists T > 0 such that for all t ≥ T we have τ(t) ≤ t and

lim sup
t→∞

( τ(t)∫
0

r1−p′(s) ds

)( ∞∫
t

c(s) ds

) 1
p−1

> 1.
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(iii) For any T > 0 the function τ(t)− t changes sign in (T,∞) and either

lim inf
t→∞
t>τ(t)

( τ(t)∫
0

r1−p′(s) ds

)( ∞∫
t

c(s) ds

) 1
p−1

> 1

or

lim inf
t→∞
t<τ(t)

[( t∫
0

r1−p′(s) ds

)( ∞∫
t

c(s) ds

) 1
p−1

+

( τ(t)∫
t

r1−p′(s) ds

)( ∞∫
τ(t)

c(s) ds

) 1
p−1

]
> 1.

Then every global solution of (1) is oscillatory.

A typical example of τ = τ(t) is a linear function

τ(t) = t− τ, τ ≥ 0 is fixed.

Then (1) is half-linear equation with the delay given by fixed parameter τ ≥ 0. For this, rather
special case, (2) implies (3), and only the case (ii) of Theorem 2 occurs. Hence we have the following
corollary concerning the equation(

r(t)|u′(t)|p−2u′(t)
)′
+ c(t)|u(t− τ)|p−2u(t− τ) = 0, t ∈ (0,∞). (4)

Corollary 3 (equation with delay). Let (2) hold. Then every global solution of (4) with the delay
τ ≥ 0 is nonoscillatory. On the other hand, let

lim sup
t→∞

( t−τ∫
0

r1−p′(s) ds

)( ∞∫
t

c(s) ds

) 1
p−1

> 1.

Then every global solution of (4) with the delay τ ≥ 0 is oscillatory.

Remark 4. Let us note that nonoscillatory criteria are rare in the literature even for the linear
equations with the delay. Oscillatory criteria for solutions of half-linear equations with the delay
are presented in recent papers [3]–[?], [8] and [?]. The methodology in these articles is based on
the so-called Riccati technique and the assumptions are different than those of ours. In particular,
if τ(t) = t in (1), we have the “classical” half-linear equation considered e.g. in [1, Chapter
3]. Then oscillatory criterion in Corollary 3 (with τ = 0) recovers [1, Theorem 3.1.2]. On the
other hand, nonoscillatory criterion in Corollary 3 (with τ = 0) recovers [1, Theorem 3.1.3]. The
approach in [1, Chapter 1] is based also on the Riccati technique. In contrast with works on half-
linear equations with the delay mentioned above, we present both oscillatory and nonoscillatory
criteria and our method relies on the weighted Hardy inequality. Similar approach to that of ours
was used in [9] to prove oscillation and nonoscillation results for solutions of higher order half-
linear equations, but without the deviated argument. For the completeness, we refer also to the
papers [?], [?] and [12] which deal with the half-linear equations with the deviated argument in the
case r(t) = 1.
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1 Introduction

Consider the second-order Emden–Fowler type differential equation

y′′ − p(x, y, y′)|y|k sgn y = 0, k > 0, k ̸= 1, (1)

where the function p(x, u, v) defined on R×R2 is positive, continuous in x, Lipschitz continuous in
u, v.

Asymptotic classification of all solutions to equation (1) in the case p = p(x) was described by
I. T. Kiguradze and T. A. Chanturia in [13]. Asymptotic classification of non-extensible solutions to
similar third- and fourth-order differential equations was obtained by I. V. Astashova (see [1,3–5]).
Asymptotic classification of solutions to equation (1) for the bounded function p(x, u, v) is contained
in [8, 9].

Sufficient conditions providing lim
x→a

|y′(x)| = +∞, a ∈ R, were obtained in [13]. However, the

question of separating two cases

lim
x→a

|y(x)| = +∞ and lim
x→a

|y(x)| < +∞ (2)

remained open. The answer on this question for p(x, u, v) = p̃(x)|v|λ, λ ̸= 1 was considered in [11].
Asymptotic behavior of non-extensible solutions to equation (1) for unbounded function p(x, u, v)

is investigated in [6, 7, 10]. By using methods described in [1, 2], conditions on function p(x, u, v)
and initial data providing the existence of a vertical asymptote to related solution (i.e. the first
case of (2)) are obtained. Other conditions on p(x, u, v) and initial data sufficient for the second
case of (2) are considered. Solutions satisfying the second condition of (2) are called black hole
solutions (see [12]).

2 Asymptotic classification of solutions to Emden–Fowler type
differential equations with bounded negative potential

Let us use the notation

α =
2

k − 1
, C(p̃) =

(α(α+ 1)

p̃

) 1
k−1

=
( p̃(k − 1)2

2(k + 1)

) 1
1−k

.

Definition 2.1. A solution y(x) to (1) is called positive Kneser solution on (x0; +∞) if it satisfies
the conditions y(x) > 0, y′(x) < 0 at x > x0.
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Definition 2.2. A solution y(x) to (1) is called negative Kneser solution on (x0; +∞) if it satisfies
the conditions y(x) < 0, y′(x) > 0 at x > x0.

Definition 2.3. A solution y(x) to (1) is called positive Kneser solution on (−∞;x0) if it satisfies
the conditions y(x) > 0, y′(x) > 0 at x < x0.

Definition 2.4. A solution y(x) to (1) is called negative Kneser solution on (−∞;x0) if it satisfies
the conditions y(x) < 0, y′(x) < 0 at x < x0.

Theorem 2.1. Suppose k > 1. Let the function p(x, u, v) be continuous in x, Lipschitz continuous
in u, v and satisfying inequalities

0 < m ≤ p(x, u, v) ≤ M < +∞. (3)

Let there also exist the following limits of p(x, u, v):

1) P+ as x → +∞, u → 0, v → 0,

2) P− as x → −∞, u → 0, v → 0,

and for any c ∈ R,

3) P+
c as x → c, u → +∞, v → ±∞,

4) P−
c as x → c, u → −∞, v → ±∞.

Then all non-extensible solutions to (1) are divided into the following nine types according to
their asymptotic behavior:

0. Defined on the whole axis trivial solution y0(x) ≡ 0.

1–2. Defined on (b,+∞) positive and negative Kneser solutions with power asymptotic behavior
near domain boundaries:

y1(x)=C(P+
b )(x− b)−α(1 + o(1)), x→b+ 0, y1(x)=C(P+)x

−α(1 + o(1)t), x→+∞,

y2(x)=−C(P−
b )(x−b)−α(1+o(1)t), x→b+0, y2(x)=−C(P+)x

−α(1+o(1)), x→+∞.

3–4. Defined on (−∞, a) positive and negative Kneser solutions with power asymptotic behavior
near domain boundaries:

y3(x)=C(P+
a )(a− x)−α(1 + o(1)), x→a− 0, y3(x)=C(P−)|x|−α(1 + o(1)), x→−∞,

y4(x)=−C(P−
a )(a−x)−α(1+o(1)), x→a−0, y4(x)=−C(P−)|x|−α(1+o(1)), x→−∞.

5–6. Defined on (a, b) positive and negative solutions with power asymptotic behavior near domain
boundaries:

y5(x)=C(P+
a )(x−a)−α(1+o(1)), x→a+0, y5(x)=C(P+

b )(b−x)−α(1+o(1)), x→b−0,

y6(x)=−C(P−
a )(x−a)−α(1+o(1)), x→a+0, y6(x)=−C(P−

b )(b−x)−α(1+o(1)), x→b−0.

7–8. Defined on (a, b) solutions with different signs and power asymptotic behavior near domain
boundaries:

y7(x)=C(P+
a )(x−a)−α(1+o(1)), x→a+0, y7(x)=−C(P−

b )(b−x)−α(1+o(1)), x→b−0,

y8(x)=−C(P−
a )(x−a)−α(1+o(1)), x→a+0, y8(x)=C(P+

b )(b−x)−α(1+o(1)), x→b−0.
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Definition 2.5 (see [5]). A solution y : (a, b) → R with −∞ ≤ a < b ≤ +∞ to any ordinary
differential equation is called a MU-solution if the following conditions hold:

(i) the equation has no solution equal to y on some subinterval of (a, b) and not equal to y at
some point of (a, b);

(ii) either there is no solution defined on another interval containing (a, b) and equal to y on (a, b)
or there exist at least two such solutions not equal to each other at points arbitrary close to
the boundary of (a, b).

Theorem 2.2. Suppose 0 < k < 1. Let the function p(x, u, v) be continuous in x, Lipschitz con-
tinuous in u, v and satisfying inequalities (3). Let there also exist the following limits of p(x, u, v):

1) P++ as x → +∞, u → +∞, v → +∞;

2) P+− as x → +∞, u → −∞, v → −∞;

3) P−+ as x → −∞, u → +∞, v → −∞;

4) P−− as x → −∞, u → −∞, v → +∞,

and for any c ∈ R denote Pc = p(c, 0, 0).

Then all MU–solutions to equation (1) are divided into the following eight types according to
their asymptotic behavior:

1–2. Defined on semi-axis (b,+∞) positive and negative solutions tending to zero with their deriv-
atives as x → b+ 0 with power asymptotic behavior near domain boundaries:

y1(x)=C(Pb)(x− b)−α(1 + o(1)), x→b+ 0, y1(x)=C(P++)x
−α(1 + o(1)), x→+∞,

y2(x)=−C(Pb)(x− b)−α(1+o(1)), x→b+ 0, y2(x)=−C(P+−)x
−α(1+o(1)), x→+∞.

3–4. Defined on semi-axis (−∞, a) positive and negative solutions tending to zero with their deriv-
atives as x → a− 0 with power asymptotic behavior near domain boundaries:

y3(x)=C(Pa)(a− x)−α(1+o(1)), x→a− 0, y3(x)=C(P−+)|x|−α(1+o(1)), x→−∞,

y4(x)=−C(Pa)(a−x)−α(1+o(1)), x→a−0, y4(x)=−C(P−−)|x|−α(1+o(1)), x→−∞.

5–6. Defined on the whole axis solutions with same signs and power asymptotic behavior near
domain boundaries:

y5(x) = C(P++)x
−α(1 + o(1)), x → +∞, y5(x) = C(P−+)|x|−α(1 + o(1)), x → −∞,

y6(x)=−C(P+−)x
−α(1+o(1)), x→+∞, y6(x)=−C(P−−)|x|−α(1+o(1)), x→−∞.

7–8. Defined on the whole axis solutions with different signs and power asymptotic behavior near
domain boundaries:

y7(x) = C(P++)x
−α(1 + o(1)), x → +∞, y7(x) = −C(P−−)|x|−α(1 + o(1)), x → −∞,

y8(x) = −C(P+−)x
−α(1 + o(1)), x → +∞, y8(x) = C(P−+)|x|−α(1 + o(1)), x → −∞.
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3 Asymptotic behavior of solutions to Emden–Fowler type
differential equations with unbounded negative potential

Lemma 3.1. Suppose k > 1. Let p(x, u, v) be continuous in x, Lipschitz continuous in u, v, and
bounded below by a positive constant. Let y(x) be a nontrivial non-extensible solution to equation
(1) satisfying the condition y(x0)y

′(x0) ≥ 0 or y(x0)y
′(x0) ≤ 0 at some point x0. Then there exists

x∗ ∈ (x0,+∞) or respectively x∗ ∈ (−∞, x0), such that

lim
x→x∗−0

|y′(x)| = +∞ or respectively lim
x→x∗+0

|y′(x)| = +∞. (4)

Lemma 3.2. Suppose 0 < k < 1. Let p(x, u, v)/|v| be continuous in x, Lipschitz continuous in u, v,
for v ̸= 0 and bounded below by a positive constant. Let y(x) be a nontrivial non-extensible solution
to equation (1) satisfying the condition y(x0)y

′(x0) ≥ 0 or y(x0)y
′(x0) ≤ 0 but not y(x0) = y′(x0) =

0 at some point x0. Then there exists x∗ ∈ (x0,+∞) or respectively x∗ ∈ (−∞, x0) providing (4).

Using the substitutions x 7−→ −x, y(x) 7−→ −y(x) we obtain an equation of the same type as
(1). That is why we investigate asymptotic behavior of non-extensible positive solutions to equation
(1) near the right domain boundary only.

Theorem 3.1. Suppose there exist constants u0 > 0, v0 > 0 such that for u > u0, v > v0 the
function p = p(x, u, v) has the representation p = h(u)g(v), where the functions h(u), g(v) are
continuous and bounded below by a positive constant, and for 0 < k < 1 function p additionally
satisfies the conditions of Lemma 3.2. Then for any non-extensible solution y(x) to equation (1)
with initial data y(x0) ≥ u0, y

′(x0) ≥ v0 and the first property of (2) the line x = x∗ is a vertical
asymptote if and only if

+∞∫
v0

v

g(v)
dv = +∞. (5)

Theorem 3.2. Suppose for k > 1 or 0 < k < 1 the function p(x, u, v) satisfies the conditions of
Lemma 3.1 or respectively Lemma 3.2. Let there exist constants u0 > 0, v0 > 0 such that for u > u0,
v > v0 the inequality p(x, u, v) ≤ f(x, u)g(v) holds, where the function f(x, u) is continuous, the
function g(v) is continuous, bounded below by a positive constant and satisfies the condition

+∞∫
v0

dv

g(v)
= +∞. (6)

Then for any non-extensible solution y(x) to equation (1) with initial data satisfying inequalities
y(x0) ≥ u0, y

′(x0) ≥ v0 and with the first property of (2) the line x = x∗ is a vertical asymptote.

Theorem 3.3. Suppose for k > 1 or 0 < k < 1 the function p(x, u, v) satisfies the conditions
of Lemma 3.1 or respectively Lemma 3.2. Let there exist constants u0 > 0, v0 > 0 such that for
u > u0, v > v0 the inequality p(x, u, v) ≤ g(v) holds, where the function g(v) is continuous and
satisfies the condition (6). Then for any non-extensible solution y(x) to equation (1) with initial
data y(x0) ≥ u0, y

′(x0) ≥ v0 and the first property of (2) the line x = x∗ is a vertical asymptote.

Theorem 3.4. Suppose for k > 1 or 0 < k < 1 the function p(x, u, v) satisfies the conditions of
Lemma 3.1 or respectively Lemma 3.2. Let there exist constants u0 > 0, v0 > 0 such that for u > u0,
v > v0 the inequality p(x, u, v) ≥ g(v) holds, where the function g(v) is continuous, bounded below
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by a positive constant and doesn’t satisfy the condition (5). Then for any non-extensible solution
y(x) to equation (1) with initial data y(x0) ≥ u0, y

′(x0) ≥ v0 and the first property of (2) we have

0 < lim
x→x∗−0

y(x) < +∞, x∗ − x0 <
1

yk(x0)

+∞∫
y′(x0)

dv

g(v)
.

Theorem 3.5. Suppose k > 0, k ̸= 1. Let the function p(x, u, v) be continuous in x, Lipschitz
continuous in u, v. Let there exist constants u0 > 0, v0 > 0 such that for u > u0, v > v0 the
inequality p(x, u, v) ≤ C|v|−α holds. Then any non-extensible solution y(x) to equation (1) with
initial data y(x0) ≥ u0, y

′(x0) ≥ v0 can be extended to (x0,+∞) and

lim
x→+∞

y(x) = lim
x→+∞

y(x) = +∞.
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We consider the differential equation

y′′′ = α0p(t)yL(y), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞, L : ∆Y0 →
]0,+∞[ is a continuous function slowly varying as y → Y0, Y0 is equal to either 0 or ±∞, and ∆Y0

is a one-sided neighborhood of Y0.

In the case where L(y) ≡ 1, Eq. (1) is a linear third-order differential equation. The asymptotic
behavior of its solutions as t → +∞ (the case ω = +∞) is investigated in details (see, for example,
the monograph [2, Ch. I, § 6, pp. 175–194]).

In the paper [1], the conditions for the existence and asymptotic representations as t ↑ ω of
all possible types of Pω(Y0, λ0)-solutions were established for the second-order differential equation
with the same kind of right-hand side.

Definition. We say that a solution y of Eq. (1) is a Pω(Y0, λ0)-solution, where −∞ ≤ λ0 ≤ +∞,
if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the conditions

y : [t0, ω[→ ∆Y0 , lim
t↑ω

y(t) = Y0,

lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞
(k = 1, 2), lim

t↑ω

[y′′(t)]2

y′′′(t)y′(t)
= λ0.

Further, without loss of generality, we assume that

∆Y0(b) =

{
[b, Y0[ , if ∆Y0 – left neighborhood Y0,

]Y0, b], if ∆Y0 – right neighborhood Y0,

where a number b ∈ ∆Y0 is chosen such that the inequalities

|b| < 1 when Y0 = 0, b > 1 (b < −1) when Y0 = +∞ (Y0 = −∞),

are fulfilled and introduce numbers by setting

µ0 = sign b, µ1 =

{
1, if ∆Y0 – left neighborhood Y0,

−1, if ∆Y0 – right neighborhood Y0,

respectively, defining the signs of the Pω(Y0, λ0)-solution and its first derivative at some left neigh-
borhood ω.



78 International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia

Besides, we introduce the following auxiliary functions

Φ1(y) =

y∫
B1

ds

sL(s)
, Φ2(y) =

y∫
B2

ds

sL
1
3 (s)

,

I1(t) =

t∫
A1

p(τ) dτ, I2(t) =
α0(λ0 − 1)2

λ0

t∫
A2

π2
ω(τ)p(τ) dτ, I3(t) =

α0(2λ0 − 1)
2
3

λ
1
3
0

t∫
A3

p
1
3 (τ) dτ,

where each of the limits of integration Bi ∈ {Y0; b} (i = 1, 2) (Ai ∈ {ω; a} (i = 1, 2, 3)) is chosen so
that the corresponding integral tends either to zero or to ±∞ at y → Y0 (respectively, at t ↑ ω), as
well as the numbers

µ∗
i =

{
1, if Bi = b,

−1, if Bi = Y0
(i = 1, 2).

Since the functions Φi (i = 1, 2) are strictly monotone on the interval ∆Y0 and the area of their
values are intervals

∆Zi =

{
[ci, Zi[ , if µ0 > 0,

]Zi, ci], if µ0 < 0,
where ci = Φi(b), Zi = lim

y→Y0

Φi(y) (i = 1, 2),

so there exist continuously differentiable and strictly monotone inverse functions for them Φ−1
i :

∆Zi → ∆Y0 , for which lim
z→Zi

Φ−1
i (z) = Y0 (i = 1, 2).

By the properties of slowly varying functions (see [3]), there exists a continuously differentiable
function L1 : ∆Y0 → ]0,+∞[ slowly varying as y → Y0 such that

lim
y→Y0
y∈∆Y0

L(y)

L1(y)
= 1 and lim

y→Y0
y∈∆Y0

yL′
1(y)

L1(y)
= 0. (2)

We also say that a function L slowly varying as y → Y0 satisfies the S1 if the function L(µ0 exp z)
is a regularly varying function when z → Z0 of any index γ, where Z0 = +∞ in the case when
Y0 = ±∞, and Z0 = −∞ in the case when Y0 = 0, so it can be represented in the form

L(µ0 exp z) = |z|γL0(z),

where L0 is continuous in the neighborhood of Z0 and slowly varying function as z → Z0.

Theorem 1. Let the function L(Φ−1
1 (z)) be regularly varying as z → Z1 of index γ and λ0 ∈

R \ {0, 1}. Then for the existence of Pω(Y0, λ0)-solutions of the equation (1) it is necessary and, if

(2λ2
0 + 2λ0 − 1)

[
(2λ2

0 + 2λ0 − 1)(γ + 1) + λ0

]
̸= 0,

it is sufficient that following conditions

lim
t↑ω

πω(t)p(t)

I1(t)
= −2,

λ2
0

(λ0 − 1)2
lim
t↑ω

I2(t) = Z1, lim
t↑ω

π3
ω(t)p(t)L

(
Φ−1
1 (I2(t))

)
=

α0λ0(2λ0 − 1)

(λ0 − 1)3
,

and inequalities

α0λ0µ0µ1 > 0, µ0µ1µ
∗
1I2(t) > 0 as t ∈ [a, ω[
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are satisfied. Moreover, each of these solutions admit the following asymptotic representations

Φ1(y(t)) = I2(t)[1 + o(1)] as t ↑ ω,

y′(t)

y(t)
=

α0(λ0 − 1)2

λ0
π2
ω(t)p(t)L

(
Φ−1
1 (I2(t))

)
[1 + o(1)] as t ↑ ω,

y′′(t)

y′(t)
=

λ0

(λ0 − 1)πω(t)
[1 + o(1)] as t ↑ ω.

Theorem 2. Let the function L(Φ−1
2 (z)) be regularly varying as z → Z2 of index γ and λ0 ∈

R \ {0; 12 ; 1}. Then for the existence of Pω(Y0, λ0)-solutions of the equation (1) it is necessary
and, if

(2λ2
0 + 2λ0 − 1)

[
2λ2

0 + 2λ0 − 1 +
γ

3
(2λ2

0 − λ0 − 1)
]
̸= 0,

it is sufficient that following conditions

lim
t↑ω

πω(t)p
1
3 (t)L

1
3
(
Φ−1
2 (I3(t))

)
=

α0[λ0(2λ0 − 1)]
1
3

λ0 − 1
,

|λ0|
1
3

(2λ0 − 1)
2
3

lim
t↑ω

I3(t) = Z2

and inequalities
α0λ0µ0µ1 > 0, µ0µ1µ

∗
2I3(t) > 0 as t ∈ ]a, ω[

are satisfied. Moreover, each of these solutions admit the following asymptotic representations

Φ2(y(t)) = I3(t)[1 + o(1)] as t ↑ ω,

y(k)(t)

y(k−1)(t)
=

(3− k)λ0 + k − 2

(λ0 − 1)πω(t)
[1 + o(1)] as t ↑ ω (k = 1, 2),

Theorem 3. Let the function L(Φ−1
2 (z)) be regularly varying as z → Z2 of index γ. Then for

the existence of Pω(Y0, 1)-solutions of the equation (1) it is necessary and, if function p : [a, ω[→
]0,+∞[ – is continuously differentiable and there is the finite or equal ±∞

lim
t↑ω

(p
1
3 (t)L

1
3
1 (Φ

−1
2 (

λ
1
3
0

(2λ0−1)
2
3
I3(t))))

′

p
2
3 (t)L

2
3
1 (Φ

−1
2 (

λ
1
3
0

(2λ0−1)
2
3
I3(t)))

,

where L1 : ∆Y0 → ]0,+∞[ is continuously differentiable and slowly varying function as y → Y0 with
properties (2), it is sufficient, that

lim
t↑ω

πω(t)p
1
3 (t)L

1
3

(
Φ−1
2

( λ
1
3
0

(2λ0 − 1)
2
3

I3(t)
))

= ∞,
λ

1
3
0

(2λ0 − 1)
2
3

lim
t↑ω

I3(t) = Z2

and the following inequalities

α0µ0µ1 > 0, α0λ0µ
∗
2I3(t) > 0 as t ∈ ]a, ω[

are satisfied. Moreover, each of these solutions admit the following asymptotic representations

Φ2(y(t)) =
λ

1
3
0

(2λ0 − 1)
2
3

I3(t)[1 + o(1)] as t ↑ ω,

y(k)(t)

y(k−1)(t)
= α0p

1
3 (t)L

1
3

(
Φ−1
2

( λ
1
3
0

(2λ0 − 1)
2
3

I3(t)
))

[1 + o(1)] as t ↑ ω (k = 1, 2).
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Theorem 4. Let L satisfy the S1. Then for the existence of Pω(Y0,±∞)-solutions of the equation
(1) it is necessary and sufficient that

µ0µ1πω(t) > 0 when t ∈ ]a, ω[ , µ0 lim
t↑ω

|πω(t)| = Y0, (3)

lim
t↑ω

p(t)π3
ω(t)L(µ0π

2
ω(t)) = 0,

ω∫
a1

p(τ)π2
ω(τ)L(µ0π

2
ω(τ)) dτ = +∞, (4)

where a1 ∈ [a, ω[ such that µ0π
2
ω(t) ∈ ∆Y0 when t ∈ [a1, ω[ . Moreover, each of solutions admits the

following asymptotic representations

ln |y(t)| = 2 ln |πω(t)|+
α0

2

t∫
a1

p(τ)π2
ω(τ)L(µ0π

2
ω(τ)) dτ [1 + o(1)] as t ↑ ω, (5)

y(k)(t)

y(k−1)(t)
=

3− k

πω(t)
[1 + o(1)] as t ↑ ω (k = 1, 2). (6)

Theorem 5. Let L satisfies the S1. Then for the existence of Pω(Y0, 0)-solutions of the equation

(1) for which there is the finite or equal to ±∞, lim
t↑ω

πω(t)y′′′(t)
y′′(t) , it is necessary and sufficient that

µ0µ1πω(t) > 0 when t ∈ ]a, ω[ , µ0 lim
t↑ω

|πω(t)| = Y0, lim
t↑ω

πω(t)p(t)

I1(t)
= −2, (7)

lim
t↑ω

p(t)π3
ω(t)L

(
µ0|πω(t)|

)
= 0,

ω∫
a1

p(τ)π2
ω(τ)L

(
µ0|πω(τ)|

)
dτ = +∞, (8)

where a1 ∈ [a, ω[ such that µ0|πω(t)| ∈ ∆Y0 when t ∈ [a1, ω[ . Moreover, each of solutions admits
the following asymptotic representations

ln |y(t)| = ln |πω(t)| − α0

t∫
a1

p(τ)π2
ω(τ)L

(
µ0|πω(τ)|

)
dτ [1 + o(1)] as t ↑ ω, (9)

y′(t)

y(t)
=

1 + o(1)

πω(t)
,

y′′(t)

y′(t)
= −α0p(t)π

2
ω(t)L

(
µ0|πω(t)|

)
[1 + o(1)] as t ↑ ω. (10)
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1 Introduction

In this paper, a problem is considered whose origin was the Lagrange problem. It is a problem on
finding the form of the firmest column of given volume. The Lagrange problem was the source for
different extremal eigenvalue problems. One of them is the eigenvalue problem for second-order
differential equations with an integral condition on the potential.

The Dirichlet problem for the equation y′′ + λQ(x)y = 0 with non-negative summable on [0, 1]

function Q(x) satisfying
1∫
0

Qγ(x) dx = 1, as γ ∈ R, γ ̸= 0, was considered in [1]. The Dirichlet

problem for the equation y′′−Q(x)y+λy = 0 with a real integrable on (0, 1) by Lebesgue function
Q was considered in [8] for γ > 1.

In this paper, the problems of that kind are considered under different integral conditions, in
particular, if the integral condition contains a weight function. The purpose of research is to give
methods of finding the sharp estimates for the first eigenvalue of Sturm–Liouville problems with
Dirichlet boundary conditions for those values of the integral condition parameters for which the
estimates are finite, and to prove attainability of those estimates.

Consider the Sturm–Liouville problem

y′′ + σQ(x)y + λy = 0, x ∈ (0, 1), (1)

y(0) = y(1) = 0, (2)

where σ = ±1, and Q belongs to the set Tα,β,γ of all real–valued locally integrable functions on
(0, 1) with non–negative values such that the following integral condition holds

1∫
0

xα(1− x)βQγ(x) dx = 1, α, β, γ ∈ R, γ ̸= 0. (3)

A function y is a solution to problem (1), (2) if it is absolutely continuous on the segment [0, 1],
satisfies (2), its derivative y′ is absolutely continuous on any segment [ρ, 1− ρ], where 0 < ρ < 1

2 ,
and equality (1) holds almost everywhere in the interval (0, 1).

A function y ∈ H1
0 (0, 1) is called a weak solution to equation (1) if for any function ψ ∈ C∞

0 (0, 1)
the following equality

1∫
0

(y′ψ′ + σQ(x)yψ) dx = λ

1∫
0

yψ dx
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holds.

We give estimates for

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q), Mα,β,γ = sup
Q∈Tα,β,γ

λ1(Q).

For any function Q ∈ Tα,β,γ by HQ we denote the closure of the set C∞
0 (0, 1) in the norm

∥y∥HQ
=

( 1∫
0

y′
2
dx+

1∫
0

Q(x)y2 dx

) 1
2

.

For any function Q ∈ Tα,β,γ it is proved (see, for example, [5, 6]) that

λ1(Q) = inf
y∈HQ\{0}

R[Q, y], where R[Q, y] =

1∫
0

(y′2 − σQ(x)y2) dx

1∫
0

y2 dx

.

Previous results are published in [2–7]. Results of this type can be useful to give methods of
finding the sharp estimates for eigenvalues in cases of non-differentiable functionals.

2 Main results

2.1 Estimates for σ = −1

By Friedrichs’ inequality for any function Q ∈ Tα,β,γ we obtain

inf
y∈HQ\{0}

1∫
0

y′2 dx+
1∫
0

Q(x)y2 dx

1∫
0

y2 dx

> inf
y∈HQ\{0}

1∫
0

y′2 dx

1∫
0

y2 dx

> inf
y∈H1

0 (0,1)\{0}

1∫
0

y′2 dx

1∫
0

y2 dx

= π2.

Consequently, for any α, β, γ ∈ R, γ ̸= 0, we have

mα,β,γ = inf
Q∈Tα,β,γ

inf
y∈HQ\{0}

R[Q, y] > π2.

If γ > 0, then it is proved that mα,β,γ = π2 (see, for example, [5, 6]).

Put γ < 0. For any positive function Q ∈ Tα,β,γ by the Hölder inequality we have

1∫
0

Q(x)y2 dx >
( 1∫

0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 ] dx

) γ−1
γ

. (4)

Consider the subspace Bα,β,γ of functions in the space H1
0 (0, 1) such that

∥y∥2Bα,β,γ
=

1∫
0

y′
2
dx+

( 1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

< +∞.
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By inequality (4) we have HQ ⊂ Bα,β,γ ⊂ H1
0 (0, 1). Put m = inf

y∈Bα,β,γ\{0}
G[y], where

G[y] =

1∫
0

y′2 dx+
( 1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx

) γ−1
γ

1∫
0

y2 dx

.

Since
inf

y∈HQ\{0}
R[Q, y] > inf

y∈HQ\{0}
G[y] > inf

y∈Bα,β,γ\{0}
G[y] = m,

it follows that

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q) > inf
y∈HQ\{0}

G[y] > inf
y∈Bα,β,γ\{0}

G[y] = m.

The following two theorems prove that mα,β,γ = m.
Consider the set

Γ =

{
y ∈ Bα,β,γ |

1∫
0

x
α

1−γ (1− x)
β

1−γ |y|
2γ
γ−1 dx = 1

}
.

Theorem 2.1. If γ < 0, then there exists a non-negative function u ∈ Γ such that G[u] = m,
moreover, for γ < −1 u is a weak solution to the equation

u′′ +mu = x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1 .

Theorem 2.2. Suppose that γ < 0 and the function u satisfies the conditions of Theorem 2.1.
Then there exists a sequence Qn(x) ∈ Tα,β,γ such that R[Qn, u] → G[u] = m as n → ∞ and
mα,β,γ = m.

Remark 2.1. In the case of γ < 0, inequalities for mα,β,γ = m can be found, for example, in [5,6].

Theorem 2.3 (see [2, 6, 7]). For Mα,β,γ the following estimates hold:

1. If γ < 0 or 0 < γ < 1, then we have Mα,β,γ = ∞.

2. If γ > 1, then we have Mα,β,γ <∞, moreover:

1) If γ > 1, then there is a function Q∗ ∈ Tα,β,γ and a positive on (0, 1) function u ∈ HQ∗

such that R[Q∗, u] = G[u] = m and Mα,β,γ = m > π2. The function u satisfies the
equation

u′′ +mu = x
α

1−γ (1− x)
β

1−γ u
γ+1
γ−1

and the condition
1∫

0

x
α

1−γ (1− x)
β

1−γ u
2γ
γ−1 dx = 1.

In the case of γ > 1, α = β = 0, m is the solution of the system of the equations

H∫
0

du√
mH2 −mu2 − 2

pH
p + 2

pu
p
=

1

2
,

H∫
0

up√
mH2 −mu2 − 2

pH
p + 2

pu
p
du =

1

2
,
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where H = max
x∈[0,1]

u(x), p = 2γ
γ−1 s.

2) If γ > 1 and α, β > γ, then we have Mα,β,γ 6 R[ 1
y21
, y1], where y1(x) = x

α
2γ (1− x)

β
2γ .

3) If β 6 γ < α and y2(x) = x
α
2γ sinπ(1− x), then we have

Mα,β,γ 6

1∫
0

y′2
2 dx+ π2( γ−1

3γ−β−1)
γ−1
γ

1∫
0

y22 dx

for γ > 1,

Mα,β,γ 6

1∫
0

y′2
2 dx+ π2

1∫
0

y22 dx

for γ = 1.

If α 6 γ < β and y3(x) = (1− x)
β
2γ sinπx, then we have

Mα,β,γ 6

1∫
0

y′3
2 dx+ π2

( γ−1
3γ−β−1

) γ−1
γ

1∫
0

y23 dx

for γ > 1,

Mα,β,γ 6

1∫
0

y′3
2 dx+ π2

1∫
0

y23 dx

for γ = 1.

4) If γ > 1, then

(a) for α > γ, β 6 0 and y2(x) = x
α
2γ sinπ(1− x) we have Mα,β,γ 6 R[ 1

y22
, y2];

(b) for β > γ, α 6 0 and y3(x) = (1− x)
β
2γ sinπx we have Mα,β,γ 6 R[ 1

y23
, y3].

5) If γ = 1 > α > 0 > β or γ = 1 > β > 0 > α, then Mα,β,γ 6 2π2.

6) If γ = 1 > α, β > 0, then Mα,β,γ 6 3π2.

7) If γ = 1, α, β 6 0, then Mα,β,γ 6 5
4 π

2. If γ = 1, α = β = 0, then there exist functions
Q∗(x) ∈ T0,0,1 and u ∈ H1

0 (0, 1) such that

M0,0,1 = R[Q∗, u] =
π2

2
+ 1 +

π

2

√
π2 + 4 .

Remark 2.2. In the case of γ > 1, inequalities for Mα,β,γ = m can be found, for example, in [6,7].
In the case of γ = 1, attainability of sharp estimates for Mα,β,1 were proved in [10].

2.2 Estimates for σ = 1

Theorem 2.4. 1. For any α, β, γ ∈ R, γ ̸= 0, we have Mα,β,γ 6 π2.
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2. If γ > 1, then M0,0,γ = π2 and there exist functions Q∗(x) ∈ T0,0,γ and u ∈ H1
0 (0, 1) such

that m0,0,γ = R[Q∗, u] > π2

2 .

3. If γ = 1, then M0,0,1 = π2, m0,0,1 = λ∗, where λ∗ ∈ (0, π2) is the solution to the equation

2
√
λ = tg(

√
λ
2 ). Here m0,0,1 is attained at Q(x) = δ(x− 1

2).

4. If 1
2 6 γ < 1, then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ = π2.

5. If 1
3 6 γ < 1/2, then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ 6 π2.

6. If 0 < γ < 1
3 , then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ < π2.

7. If γ < 0, then for any α, β, γ ∈ R, γ ̸= 0, we have mα,β,γ = −∞, M0,0,γ < π2, and there exist
functions Q∗(x) ∈ T0,0,γ and u ∈ H1

0 (0, 1) such that M0,0,γ = R[Q∗, u].

Remark 2.3. The result M0,0,γ < π2 for 0 < γ < 1/2 was obtained in [9].
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1 Introduction and preliminaries

We consider a system of differential equations defined in the direct product of a torus Tm, m ∈ N
and an Euclidean space Rn, n ∈ N,

dφ

dt
= a(φ),

dx

dt
= A(φ)x+ f(φ), (1.1)

where (φ1, . . . , φm)ᵀ ∈ Tm, (x1, . . . , xn)
ᵀ ∈ Rn, a ∈ C1(Tm) is an m-dimensional vector function,

A, f ∈ C(Tm) are n×n square matrix and n-dimensional vector function respectively; Cr(Tm) stands
for the space of continuously differentiable up to the order r 2π-periodic with respect to each of
the variables φj , j = 1, . . . ,m functions defined on the surface of the torus Tm. The problem of the
existence and construction of invariant toroidal manifold

x = u(φ) ∈ C(Tm), φ ∈ Tm

of the system (1.1) for any inhomogeneity f(φ) ∈ C(Tm) can be solved using a notion of Green–
Samoilenko function [7]. The existence of such a function is sufficient for the existence of non-trivial
invariant torus for system (1.1). In particular, Green–Samoilenko function exists if for any φ ∈ Tm
the system

dx

dt
= A(φt(φ))x (1.2)

is exponential dichotomous on the entire real axis R = (∞,+∞). This means that there exist a
projection matrix C(φ) = C2(φ) and constants K ≥ 1, α > 0 that do not depend on φ, τ such
that the following inequalities ∥∥Ωt

0(φ)C(φ)Ω0
τ (φ)

∥∥ ≤ Ke−α(t−τ), t ≥ τ,∥∥Ωt
0(φ)(I − C(φ))Ω0

τ (φ)
∥∥ ≤ Ke−α(τ−t), τ ≥ t

(1.3)

are satisfied for any t, τ ∈ R. Here Ωt
τ (φ) is (n× n)-dimensional fundamental matrix of the system

(1.2) such that Ωτ
τ (φ) ≡ In; φt(φ) is a solution of the initial value problem dφ

dt = a(φ), φ0(φ) = φ.
In recent papers [3,5,6] some particular classes of system (1.1) were distinguished for which the

corresponding homogenous equations possess Green–Samoilenko function. These are the systems
whose matrix A(φ) becomes Hurwitz matrix for φ-s from the non-wandering set of dynamical
system dφ

dt = a(φ). We recall here the definition of non-wandering set.
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Definition 1.1. A point φ is called wandering if there exist its neighbourhood U(φ) and a positive
number T > 0 such that

U(φ) ∩ φt(U(φ)) = 0 for t ≥ T.

Let W be a set of all wandering points of dynamical system and Ω = Tm \ W be a set of
non-wandering points. From the compactness of a torus it follows that the set Ω is nonempty and
compact.

Analogously to [5, 6], in this paper we also consider the case when matrix A(φ) is a constant
matrix in non-wandering set Ω: A(φ)|φ∈Ω = Ã. However we do not require the real parts of all

eigenvalues of matrix Ã to be negative in order to guarantee the existence of invariant toroidal
manifold for system (1.1).

2 Main results

To state the main result of the paper we recall that system (1.2) possesses exponential dichotomy
property on semiaxes R+ and R− if there exist projection matrices C+(φ) = C2

+(φ) and C−(φ) =
C2
−(φ) and constants K1,K2 ≥ 1, α1, α2 > 0 that do not depend on φ, τ such that for any φ ∈ Tm

the following inequalities∥∥Ωt
0(φ)C+(φ)Ω

0
τ (φ)

∥∥ ≤ K1e
−α1(t−τ), t ≥ τ,∥∥Ωt

0(φ)(I − C+(φ))Ω
0
τ (φ)

∥∥ ≤ K1e
−α1(τ−t), τ ≥ t, ∀ t, τ ∈ R+,∥∥Ωt

0(φ)C−(φ)Ω
0
τ (φ)

∥∥ ≤ K2e
−α2(t−τ), t ≥ τ,∥∥Ωt

0(φ)(I − C−(φ))Ω
0
τ (φ)

∥∥ ≤ K2e
−α2(τ−t), τ ≥ t, ∀ t, τ ∈ R−

(2.1)

are satisfied.

Theorem 2.1. Let matrix A(φ) from (1.1) be constant in non-wandering set Ω:

A(φ)|φ∈Ω = Ã,

and the corresponding linear system dx
dt = Ãx be exponential dichotomous on R. Then for any φ ∈

Tm the corresponding homogenous system dx
dt = A(φt(φ))x is exponential dichotomous on semiaxes

R+ and R−, e.g. there exist projection matrices C+(φ) and C−(φ) such that the inequalities (2.1)
are satisfied and

C±(φt(φ)) = Ωt
0(φ)C±(φ)Ω

0
t (φ), C2

±(φ) = C±(φ).

For example, the conditions of Theorem 2.1 are satisfied in the case when the real parts of all
eigenvalues of constant matrix Ã are nonzero.

Denote by D(φ) = C+(φ) − (I − C−(φ)) an (n × n)-dimensional matrix. Let D+(φ) be its
Moore–Penrose pseudoinverse [2], and PN(D)(φ) and PN(D∗)(φ) be (n×n)-orthoprojector matrices

P 2
N(D)(φ) = PN(D)(φ) = P ∗

N(D)(φ),

P 2
N(D∗)(φ) = PN(D∗)(φ) = P ∗

N(D∗)(φ)

that project Rn onto the kernel N(D) = kerD(φ) and co-kernel N(D∗) = kerD∗(φ) of the matrix
D(φ):

PN(D∗)(φ) = I −D(φ)D+(φ), PN(D)(φ) = I −D+(φ)D(φ).

Theorem 2.1 states that exponential dichotomy on R property of a ”limit system” dx
dt = Ãx im-

plies the exponential dichotomy on semiaxes R+, R− for the system dx
dt = A(φt(φ))x. Combination

of this result with [1, 4] immediately leads to the following corollaries.
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Corollary 2.1. Let matrix A(φ) from (1.1) be constant in non-wandering set Ω:

A(φ)
∣∣
φ∈Ω = Ã,

and the corresponding linear system dx
dt = Ãx be exponential dichotomous on R. Then system (1.1)

has an invariant toroidal manifold if and only if the inhomogeneity f(φ) ∈ C(Tm) satisfies the
following constraint

PN(D∗)(φ)

+∞∫
−∞

C−(φ)Ω
0
τ (φ)f(φτ (φ)) dτ = 0.

Corollary 2.2. Let matrix A(φ) from (1.1) be constant in non-wandering set Ω:

A(φ)
∣∣
φ∈Ω = Ã,

and the corresponding linear system dx
dt = Ãx be exponential dichotomous on R. If additionally

for any φ ∈ Tm matrices Ã and (A(φ) − Ã) commute then system (1.1) has an invariant toroidal
manifold for any inhomogeneity f(φ) ∈ C(Tm).

3 Conclusions and discussion

New results that are presented in this paper allow to investigate qualitative behavior of solutions
of a class of nonlinear systems that have a simple structure of limit sets and recurrent trajectories.
Additionally they can be used to prove the persistence of a stable invariant toroidal manifold under
the perturbation of the right-hand side of (1.1) in the case when this perturbation is sufficiently
small only in non-wandering set Ω, but not on the whole surface of the torus Tm.
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The differential equation

y′′ = α0p(t)φ0(y)φ1(y
′)f(y, y′) (1)

is considered, where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[
are continuous functions, f : ∆Y0 ×∆Y1 → ]0,+∞[ is a continuously differentiable function, Yi ∈
{0,±∞} (i = 0, 1), ∆Yi is a one-sided neighborhood of Yi. We suppose also that each of the functions
φi(z) (i = 0, 1) is a regularly varying function as z → Yi (z ∈ ∆Yi) of order σi, σ0 + σ1 ̸= 1, σ1 ̸= 0
and the function f satisfies the condition

lim
vk→Yk
vk∈∆Yk

vk · ∂f
∂vk

(v0, v1)

f(v0, v1)
= 0 uniformly in vj ∈ ∆Yj , j ̸= k, k, j = 0, 1.

A lot of works (see, e.g., [1, 3]) were devoted to the establishing of asymptotic representation
of solutions of equations of the form (1), in which f ≡ 1. In this research the right part of (1)
was either in explicit form or asymptotically represented as the product of features, each of which
depends only on t, or only on y, or only on y′. Let us notice that it played an important role in the
research. Therefore, the general case of equation (1) can contain nonlinearities of another types,
for example, e|γ ln |y|+µ ln |y′||α , 0 < α < 1, γ, µ ∈ R.

Definition. The solution y of equation (1) is called Pω(Y0, Y1, λ0) solution if it is defined on
[t0, ω[⊂ [a, ω[ and

lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y(t)y′′(t)
= λ0.

The Pω(Y0, Y1, λ0)-solutions of equation (1) are regularly varying functions as t ↑ ω of index
λ0

λ0−1 if λ0 ∈ R \ {0, 1}. The asymptotic properties and necessary and sufficient conditions of the
existence of such solutions are obtained (see, [2]).

The cases λ0 ∈ {0, 1} and λ0 = ∞ are special. Pω(Y0, Y1, 1)-solutions of equation (1) are rapidly
varying functions as t ↑ ω. The cases λ0 = 0 and λ0 = ∞ are most difficult for establishing because
in these cases such solutions or their derivatives are slowly varying functions as t ↑ ω. Some results
about asymptotic properties end existence of Pω(Y0, Y1, λ0)-solutions of equation (1) in special cases
are presented in this work. Now we need the next definition.

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies the
condition S if for any continuous differentiable function L : ∆Yi → ]0; +∞[ such that

lim
z→Yi
z∈∆Yi

zL′(z)

L(z)
= 0,
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the following condition takes place

Θ(zL(z)) = Θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

We need the following subsidiary notations.

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
Θi(z) = φi(z)|z|−σi (i = 0, 1),

I(t) = α0

t∫
Aω

p(τ) dτ, Aω =


a if

ω∫
a

p(τ) dτ = +∞,

ω if

ω∫
a

p(τ) dτ < +∞,

J1(t) =

t∫
B1

ω

|I(τ)|
1

1−σ1 dτ, B1
ω =


b1 if

ω∫
b1

|I(τ)|
1

1−σ1 dτ = +∞,

ω if

ω∫
b1

|I(τ)|
1

1−σ1 dτ < +∞,

J2(t) =

t∫
B2

ω

|I(τ)|
1
σ0 dτ, B2

ω =


b2 if

ω∫
b2

|I(τ)|
1
σ0 dτ = +∞,

ω if

ω∫
b2

|I(τ)|
1
σ0 dτ < +∞,

J3(t) =

t∫
B1

ω

∣∣∣∣I(τ)Θ1

(sign y10
|πω(t)|

)∣∣∣∣ 1
1−σ1

dτ,

B3
ω =


b3 if

ω∫
b3

∣∣∣∣I(τ)Θ1

(sign y10
|πω(t)|

)∣∣∣∣ 1
1−σ1

dτ = +∞,

ω if

ω∫
b3

∣∣∣∣I(τ)Θ1

(sign y10
|πω(t)|

)∣∣∣∣ 1
1−σ1

dτ < +∞,

I0(t) = α0

t∫
A0

ω

p(τ)|πω(τ)|σ0Θ0

(
|πω(τ)|y00

)
dτ,

A0
ω =


b if

ω∫
b

p(t)|πω(t)|σ0Θ0

(
|πω(t)|y00

)
dt = +∞,

ω if

ω∫
b

p(t)|πω(t)|σ0Θ0

(
|πω(t)|y00

)
dt < +∞,

where b ∈ [a, ω[ is chosen so that |πω(t)| sign y00 ∈ ∆Y0 as t ∈ [b, ω[ .
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Theorem 1. Let σ1 ̸= 1. Then for the existence of Pω(Y0, Y1, 1)-solutions of equation (1) the
following conditions are necessary

y00α0 > 0, y01I(t)(1− σ0 − σ1) > 0 as t ∈ [a, ω[ , (2)

lim
t↑ω

y00|J1(t)|
1−σ0−σ1

1−σ1 = Y0, lim
t↑ω

y01|J1(t)|
1−σ0−σ1

1−σ1 = Y1, lim
t↑ω

J1(t)I
′(t)

J ′
1(t)I(t)

= 1− σ1. (3)

If

σ1 ̸= 2 or (σ1 − 1)(σ0 + σ1 − 1) > 0,

conditions (2), (3) are sufficient for the existence of such solutions of equation (1).

For Pω(Y0, Y1, 1)-solutions of equation (1) the following asymptotic representations take place
as t ↑ ω

y(t)|y(t)|−
σ0

1−σ1

(f(y(t), y′(t))Θ0(y(t))Θ1(y′(t)))
1

1−σ1

= J1(t)
1− σ0 − σ1

1− σ1
|1− σ1 − σ0|

1
1−σ1 [1 + o(1)],

y(t)

y′(t)
=

J1(t)(1− σ0 − σ1)

J ′
1(t)(1− σ1)

[1 + o(1)].

Theorem 2. Let σ1 = 1. Then for the existence of Pω(Y0, Y1, 1)-solutions of equation (1) the
following conditions are necessary

y00α0 > 0, σ0y
0
1I(t) < 0 as t ∈ [a, ω[ , (4)

lim
t↑ω

y00|J ′
2(t)|−1 = Y0, lim

t↑ω
y01|J2(t)|−1 = Y1, lim

t↑ω

J2(t)I
′(t)

J ′
2(t)I(t)

= σ0. (5)

If σ0I(t) < 0, conditions (4), (5) are sufficient for the existence of such solutions of equation
(1). For Pω(Y0, Y1, 1)-solutions of equation (1) the following asymptotic representations take place
as t ↑ ω

|y′(t)|
(
f(y(t), y′(t))Θ0(y(t))Θ1(y

′(t))
) 1

σ0 = |σ0|
− 1

σ0 |J2(t)|−1[1 + o(1)],

y(t)

y′(t)
= −J2(t)

J ′
2(t)

[1 + o(1)].

Theorem 3. Let in equation (1) the function f be of the type f(y, y′) = exp(R(| ln |yy′||)), the
function R : ]0,+∞[→ ]0,+∞[ be continuously differentiable with monotone derivative and regularly
varying on infinity of the order µ, 0 < µ < 1. Let, moreover, φ1(y

′) satisfy the condition S and the
following conditions take place

lim
t↑ω

R(| ln |πω(t)||)J3(t)
πω(t) ln |πω(t)|J ′

3(t)
= 0.

Then for the existence of Pω(Y0, Y1, 0)-solutions of equation (1) the following conditions are neces-
sary and sufficient

lim
t↑ω

y00|J3(t)|
1−σ1

1−σ0−σ1 = Y0, lim
t↑ω

J ′
3(t)

y01|J(t)|
= Y1, lim

t↑ω

πω(t)I
′(t)

I(t)
= σ1 − 1,

I(t)

y01(1− σ1)
> 0 as t ∈ ]a, ω[ ,

y00y
0
1(1− σ1)J3(t)

1− σ0 − σ1
> 0 as t ∈ ]b, ω[ .
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For such solutions the following asymptotic representations take place as t ↑ ω

y(t)

| exp(R(| ln |y(t)y′(t)||))φ0(y(t))|
1

1−σ1

=
1− σ0 − σ1

1− σ1
|1− σ1|

1
1−σ1 J3(t)[1 + o(1)],

y(t)

y′(t)
=

(1− σ0 − σ1)J3(t)

(1− σ1)J ′
3(t)

[1 + o(1)].

Theorem 4. Let in equation (1) the function f be of the type f(y, y′) = exp(R(| ln |yy′||)), the
function R : ]0,+∞[→ ]0,+∞[ be continuously differentiable with monotone derivative and regularly
varying on infinity of the order µ, 0 < µ < 1. Then for the existence of Pω(Y0, Y1, 0)-solutions of
equation (1) the following conditions are necessary

Y0 =

{
±∞ if ω = +∞,

0 if ω < +∞,
πω(t)y

0
0y

0
1 > 0 as t ∈ [a, ω[ . (6)

If φ0 satisfies the condition S and

lim
t↑ω

R′(| ln |πω(t)||)I0(t)
πω(t)I ′0(t)

= 0,

then along with (6) the following conditions are necessary and sufficient for the existence of
Pω(Y0, Y1,±∞)-solutions of equation (1):

y01(1− σ0 − σ1)I0(t) > 0 as t ∈ [b, ω[ ,

lim
t↑ω

y01|I0(t)|
1

1−σ0−σ1 = Y1, lim
t↑ω

πω(t)I
′
0(t)

I0(t)
= 0.

For such solutions the following asymptotic representations take place as t ↑ ω

y′(t)|y′(t)|−σ0

φ1(y′(t)) exp(R(| ln |y(t)||))
= (1− σ0 − σ1)I0(t)[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].
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Consider the system of functional differential equations

x′(t) = F (x)(t) (1)

where F : Cloc(R;Rn) → Lloc(R;Rn) is a continuous operator satisfying the local Carathéodory
conditions, i.e., there exists a function ψ : R × R+ → R+ nondecreasing in the second argument
such that ψ(·, r) ∈ Lloc(R;R) for r ∈ R+ and for any x ∈ C0(R;Rn) the inequality

∥F (x)(t)∥ ≤ ψ
(
t, ∥x∥

)
for a.e. t ∈ R

is fulfilled.
By a solution to the system (1) we understand a vector-valued function x ∈ ACloc(R;Rn)

satisfying the equality (1) almost everywhere in R. By a bounded solution to the system (1) it is
understood a solution x to the system (1) that satisfies

sup
{
∥x(t)∥ : t ∈ R

}
< +∞.

To formulate our results, we need to introduce the following definition (the complete list of
notation and symbols is given at the end of this text). Let σ ∈ {−1, 1} and put

Iσ(t) =

{
]−∞, t] if σ = 1,

[t,+∞[ if σ = −1
for t ∈ R.

A linear continuous operator ℓ : Cloc(R;R) → Lloc(R;R) is called a σ-Volterra operator if for
arbitrary t ∈ R and v ∈ Cloc(R;R) such that v(s) = 0 for s ∈ Iσ(t), the equality ℓ(v)(s) = 0 for a.e.
s ∈ Iσ(t) is fulfilled.

Theorem 1. Let the inequality

D(σ) Sgn(v(t))
[
F (v)(t)−D(h(t))v(t) + g0(v)(t)

]
≤ p(|v|)(t) + η(t, ∥v∥) for a.e. t ∈ R (2)

be fulfilled for any v ∈ C0(R;Rn), where σ ∈ Rn, σi ∈ {−1, 1} (i = 1, . . . , n), h ∈ Lloc(R;Rn),

g0(v)(t)
def
= (g0i(vi)(t))

n
i=1 for a.e. t ∈ R, v ∈ Cloc(R;Rn)

D(σ)g0 ∈ Pn(R), p ∈ Pn(R), (3)
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each g0i is a σi-Volterra operator, and η ∈ Kloc(R× R+;Rn
+) satisfies

lim
r→+∞

1

r

b∫
a

∥η(s, r)∥ ds = 0 (4)

for every interval [a, b]. Let, moreover, there exist functions β, γ ∈ ACloc(R;Rn) such that

β(t) > 0, γ(t) > 0 for t ∈ R, ∥γ∥ < +∞,

D(σ)
[
β′(t)−D(h(t))β(t) + g0(β)(t)

]
≤ 0 for a.e. t ∈ R,

D(σ)
[
γ′(t)−D(h(t))γ(t)−D(σ)p(γ)(t)

]
≥ 0 for a.e. t ∈ R.

Let, in addition, for every i ∈ {1, . . . , n},

Gi(t, r)
def
= lim

τ→−σi∞
σi

t∫
τ

exp

( t∫
s

hi(ξ) dξ

)
ηi(s, r) ds < +∞ for t ∈ R, r ∈ R+, (5)

Hi(t)
def
= lim

τ→−σi∞
γi(τ) exp

( t∫
τ

hi(s) ds

)
> 0 for t ∈ R, (6)

and

lim sup
r→+∞

Gi(t, r)

rHi(t)
<

1

∥γ∥
uniformly for t ∈ R. (7)

Then (1) has at least one bounded solution.

Theorem 2. Let the inequality

D(σ) Sgn(v(t))
[
F (v)(t)−D(h(t))v(t)− ℓ0(v)(t) + g0(v)(t)

]
≤ p(|v|)(t) + η(t, ∥v∥) for a.e. t ∈ R

be fulfilled for any v ∈ C0(R;Rn), where σ ∈ Rn, σi ∈ {−1, 1} (i = 1, . . . , n), h ∈ Lloc(R;Rn), (3)
and

D(σ)ℓ0 ∈ Pn(R), D(σ)
[
ℓ0 − g0

]
∈ Pσ

n (R;h)
hold, and η ∈ Kloc(R × R+;Rn

+) satisfies (4) for every interval [a, b]. Let, moreover, there exist a
function γ ∈ ACloc(R;Rn) such that

γ(t) > 0 for t ∈ R, ∥γ∥ < +∞,

D(σ)
[
γ′(t)−D(h(t))γ(t)− ℓ0(γ)(t)−D(σ)p(γ)(t)

]
≥ 0 for a.e. t ∈ R.

Let, in addition, (6)–(7) be fulfilled for every i ∈ {1, . . . , n}. Then (1) has at least one bounded
solution.

Consider the nonlinear differential system with argument deviation

x′i(t) = hi(t)xi(t) +

n∑
j=1

pij(t)xj(τij(t))−
n∑

j=1

gij(t)xj(µij(t))

+ fi(t, x(t), x(ν1(t)), . . . , x(νm(t))) (i = 1, . . . , n), (8)

where h = (hi)
n
i=1 ∈ Lloc(R;Rn), P = (pij)

n
i,j=1 ∈ Lloc(R;Rn×n), G = (gij)

n
i,j=1 ∈ Lloc(R;Rn×n),

f = (fi)
n
i=1 ∈ Kloc(R × R(m+1)n;Rn), tij , µij , νk : R → R (i, j = 1, . . . , n; k = 1, . . . ,m) are locally

essentially bounded functions, and x = (xi)
n
i=1. Then Theorems 1 and 2 imply in particular the

following corollaries.
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Corollary 1. Let the inequality

Sgn(v(t))f(t, v(t), v(ν1(t)), . . . , v(νm(t))) ≤ q(t) for a.e. t ∈ R (9)

be fulfilled for any v ∈ C0(R;Rn), q ∈ Lloc(R;Rn
+). Let, moreover,

P (t) ≥ Θ, G(t) ≥ Θ for a.e. t ∈ R, (10)

gij(t) = 0 for a.e. t ∈ R (i ̸= j; i, j = 1, . . . , n), (11)

gii(t)
[
µii(t)− t

]
≤ 0 for a.e. t ∈ R (i = 1, . . . , n), (12)

and

t∫
µii(t)

gii(s) exp

(
−

s∫
µii(s)

hi(ξ) dξ

)
ds ≤ 1

e
for a.e. t ∈ R, (i = 1, . . . , n),

τij(t)∫
t

p̃(s) ds ≤ 1

e
for a.e. t ∈ R (i, j = 1, . . . , n), (13)

where

p̃(t)
def
= max

{
n∑

k=1

pik(t) exp

( τik(t)∫
t

h̃(s) ds

)
: i = 1, . . . , n

}
for a.e. t ∈ R, (14)

h̃(t)
def
= max

{
hi(t) : i = 1, . . . , n

}
for a.e. t ∈ R. (15)

Let, in addition,

sup

{ t∫
0

[
h̃(s) + ep̃(s)

]
ds : t ∈ R

}
< +∞,

0∫
−∞

p̃(s) ds < +∞, (16)

+∞∫
−∞

q(s) exp

(
−

s∫
0

hi(ξ) dξ

)
ds < +∞ (i = 1, . . . , n). (17)

Then (8) has at least one bounded solution.

Corollary 2. Let the inequality (9) be fulfilled for any v ∈ C0(R;Rn), q ∈ Lloc(R;Rn
+). Let,

moreover, (10) hold,

pik(t) exp

( τik(t)∫
µik(t)

hk(s) ds

)
≥gik(t), gik(t)

[
τik(t)−µik(t)

]
≥0 for a.e. t∈R (i, k=1, . . . , n),

and let (13) be fulfilled, where p̃ is given by (14) and (15). Let, in addition, (16) and (17) hold.
Then (8) has at least one bounded solution.

Corollary 3. Let the inequality

D(σ) Sgn(v(t))f
(
t, v(t), v(ν1(t)), . . . , v(νm(t))

)
≤ q(t) for a.e. t ∈ R (18)
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be fulfilled for any v ∈ C0(R;Rn), q ∈ Lloc(R;Rn
+), where σ ∈ Rn, σi ∈ {−1, 1} (i = 1, . . . , n). Let,

moreover,
D(σ)P (t) ≥ Θ, D(σ)G(t) ≥ Θ for a.e. t ∈ R, (19)

(11) and (12) hold, and

∞∫
−∞

|gii(s)| exp
(
−

s∫
µii(s)

hi(ξ) dξ

)
ds < 1 (i = 1, . . . , n).

Furthermore, let there exist A = (aij)
n
i,j=1 ∈ Rn×n

+ such that r(A) < 1 and

+∞∫
−∞

|pij(s)| exp
( τij(s)∫

0

hj(ξ) dξ −
s∫

0

hi(ξ) dξ

)
ds ≤ aij (i, j = 1, . . . , n). (20)

Let, in addition,

sup

{ t∫
0

hi(s) ds : t ∈ R
}
< +∞ (i = 1, . . . , n) (21)

and (17) hold. Then (8) has at least one bounded solution.

Corollary 4. Let (18) be fulfilled for any v ∈ C0(R;Rn), q ∈ Lloc(R;Rn
+), where σ ∈ Rn, σi ∈

{−1, 1} (i = 1, . . . , n). Let (19) hold and, moreover,

σipik(t) exp

( τik(t)∫
µik(t)

hk(s) ds

)
≥ σigik(t), σiσkgik(t)

[
τik(t)− µik(t)

]
≥ 0 (i, k = 1, . . . , n)

for a.e. t ∈ R. Furthermore, let there exist A = (aij)
n
i,j=1 ∈ Rn×n

+ such that r(A) < 1 and (20)
hold. Let, in addition, (21) and (17) hold. Then (8) has at least one bounded solution.

Notation

If x = (xi)
n
i=1 ∈ Rn, then

D(x) =


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

 , Sgn(x) = D(sgnx), where sgnx = (sgnxi)
n
i=1.

Θ is a zero matrix, r(X) is a spectral radius of the matrix X.
Cloc(R;Rn) is a space of continuous functions x : R → Rn with a topology of uniform convergence

on every compact interval.
C0(R;Rn) is a Banach space of bounded continuous functions x : R → Rn endowed with a norm

∥x∥ = sup
{
∥x(t)∥ : t ∈ R

}
.

ACloc(R;Rn) is a set of locally absolutely continuous functions x : R → Rn.
Lloc(R;Rn) is a space of locally Lebesgue integrable vector-valued functions p : R → Rn with a

topology of convergence in mean on every compact interval.
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Lloc(R;Rn×n) is a space of locally Lebesgue integrable matrix-valued functions P : R → Rn×n.
Pn(R) is a set of linear continuous operators ℓ : Cloc(R;Rn) → Lloc(R;Rn) that transforms

non-negative functions into the set of non-negative functions.
Pσ
n (R;h), where h ∈ Lloc(R;Rn) and σ = (σi)

n
i=1 ∈ Rn, σi ∈ {−1, 1} (i = 1, . . . , n), is a set of

linear continuous operators ℓ : Cloc(R;Rn) → Lloc(R;Rn) such that

ℓ(x)(t) ≥ 0 for a.e. t ∈ R,

whenever x ∈ ACloc(R;Rn) satisfies

x(t) ≥ 0 for t ∈ R, D(σ)
[
x′(t)−D(h(t))x(t)

]
≥ 0 for a.e. t ∈ R.

K([a, b]×A;B), where A ⊆ Rm and B ⊆ Rn, is a set of functions f : [a, b]×A→ B satisfying
the Carathéodory conditions, i.e.,

(i) f(·, x) : [a, b] → B is a measurable function for every x ∈ A,

(ii) f(t, ·) : A→ B is a continuous function for almost all t ∈ [a, b],

(iii) for every r > 0 there exists a function qr ∈ L([a, b];R+) such that

∥f(t, x)∥ ≤ qr(t) for a.e. t ∈ [a, b], x ∈ A, ∥x∥ ≤ r.

Kloc(R × A;B), where A ⊆ Rm and B ⊆ Rn, is a set of functions f : R × A → B such that
f ∈ K([a, b]×A;B) for every compact interval [a, b].
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We consider two problems of optimal control for systems of differential equations with pulse
action

ẋ = A(x, t) +B(x, t)u, x ̸∈ S,

∆x
∣∣
x∈S = g(x),

x(0) = x0.

(1)

In the first problem for the system (1) the quality criteria is the following

J(u) =

∞∫
0

ν(t)L(t, x(t), u(t)) dt → inf, (2)

where S – some hypersurface in the space Rd, x0 ∈ Rd – a fixed vector, t ∈ [0,∞), x ∈ Rd,
L(t, x, u) – a limited function, u ∈ U ⊂ Rm, U – a closed, convex set in the space Rm, 0 ∈ U ,
A(x, t) – d-dimensional vector function, B(x, t) – d × m-dimensional matrix, g – d-dimensional
vector function.

In the second problem for the system (1) we consider the quality criteria

J(u) =

θ∫
0

ν(t)L(t, x(t), u(t)) dt −→ inf, (3)

where t ∈ [0,∞), x ∈ D, D – a limited area in the space Rd, D ∩ S – is not empty, x0 ∈ Rd – a
fixed vector, θ – a moment of leaving the solution x(t) the area D.

We consider the problem (1), (2) with the following conditions: functions A(x, t), B(x, t) are
continuous for a set of variables t ∈ [0,∞), x ∈ Rd, g(x) is continuous by x ∈ Rd and the condition
of Lipschitz is satisfied, there is a constant H > 0 such that for any x1, x2 ∈ Rd, t ≥ 0 and u ∈ U
the conditions:∣∣A(t, x1)−A(t.x2)

∣∣ ≤ H|x1 − x2|,
∥∥B(t, x1)−B(t.x2)

∥∥ ≤ H|x1 − x2| (4)

hold.
Functions L(t, x, u), Lx(t, x, u) and Lu(t, x, u) are continuous for a set of variables, for any

t ∈ [0,∞), x ∈ Rd and u ∈ U , the following conditions are satisfied:

1) L(t, x, u) ≥ 0 for any t ∈ [0,∞), x ∈ Rd and u ∈ U ;
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2) there are constants R > 0 and p > 2 such that for any t ∈ [0,∞), x ∈ Rd and u ∈ U , the
inequality

L(t, x, u) ≥ R(1 + |u|p)

is fulfilled;

3) there is M > 0 such that for any t ∈ [0,∞), x ∈ Rd and u ∈ U ,

|Lx(t, x, u)|+ |Lu(t, x, u)| ≤ M(1 + |u|p−1);

4) L(t, x, u) is convex by u for any fixed t ∈ [0,∞), x ∈ Rd.

For the problem (1), (3) conditions are similar to the problem (1), (2) for x ∈ D.
Acceptable for problems (1), (2) and (1), (3) are such controls u = u(t) that:

(a) u(t) ∈ Lp([0,∞)), u(t) ∈ U , t ∈ [0,∞);

(b) there is a constant C1 > 0 which does not depend on u(t) and the following condition holds:

∞∫
0

|u(t)|p dt ≤ C1.

The set of acceptable controls will be named acceptable for (1), (2) and (1), (3) and will be denoted
by F .

We assume that the hypersurface S is a compact set and is given by s(x) = 0, where s is a
continuous function.

Let τku be moments in which the solution x(t, u) hit on the hypersurface S.

Theorem 1. Let the system (1) with the quality criteria (2), for functions A(x, t), B(x, t), ν(t)
and L(t, x, u) satisfy the condition (4) and 1)–3), the function ν(t) ∈ L1([0,∞)), 0 ≤ ν(t) ≤ 1 for
any t ≥ 0. Then the problem (1), (2) has a solution in the set of acceptable controls F .

Theorem 2. Let the system (1) with the quality criteria (3), for functions A(x, t), B(x, t), ν(t)
and L(t, x, u) satisfy the condition of Theorem 1 for t ≥ 0, x ∈ D. Then the problem (1), (3) has a
solution in the set of acceptable controls F .

Proof for the problem (1), (2). Since J(u) ≥ 0, then there exists a non-negative lower bound
m of values J(u). Let un be the sequence of acceptable controls such that: J(un) → m, n → ∞.
Namely,

J(un) =

∞∫
0

ν(t)L(t, xn(t), un(t)) dt −→ m, n → ∞,

where xn(t) are solutions of the system (1) which correspond to controls un(t).
The condition (b) guarantees a weak compactness of the sequence un(t). Thus the sequence

un(t) converge weakly to u∗(t) ∈ Lp([0,∞)). It is easy to show that u∗(t) ∈ U for almost all
t ∈ [0,∞).

We take an arbitrary T > 0 and fix. Since in the interval [0, T ] all the conditions of the
Theorem 1 are fulfilled, then there exists x∗T (t) – the solution of the system (1) at [0, T ], which
correspond to control u∗(t) and xn(t) ⇒ x∗T (t), n → ∞ for any t ∈ [0, T ].

We show that there is a subsequence of functions xnn(t) which pointwise converges to the
function x∗(t) for any t ∈ [0,∞).
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For T = 1 there exists the subsequence xn1(t) of the sequence xnn(t), n ≥ 1 such that xn1(t) ⇒
x∗1(t) for any t ∈ [0, 1].

For T = 2 there exists the subsequence xn2(t) of the sequence xn1(t), n ≥ 1 such that xn2(t) ⇒
x∗2(t) for any t ∈ [0, 2], where x∗2(t) = x∗1(t), t ∈ [0, 1].

Similarly, for any natural N there exists the subsequence xnN (t) of the sequence xnN−1(t) such
that xnN (t) ⇒ x∗N (t) for any t ∈ [0, N ], where x∗N (t) = x∗N−1(t), t ∈ [0, N − 1].

Using the diagonal method of this sequences, we can distinguish the following subsequence
xnn(t), n ≥ 1

x11(t), x22(t), x33(t), . . . , xnn(t), . . . .

This sequence pointwise converges to the function x∗(t) for any t ∈ [0,∞).
Similarly to [3], it can be shown that the control u∗(t) is optimal for the problem (1), (2), that

J(u∗) = m.

Proof for the problem (1), (3). The proof of Theorem 2 is similar to the proof of Theorem 1,
but it must be taken into account the moment of coming out the solution of the area.
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For investigation of exponential stability and instability of perturbed linear differential systems

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (1A+Q)

with bounded piecewise-constant coefficients, characteristic exponents λ1(A+Q) ≤ · · · ≤ λn(A+Q)
and exponentially decreasing sigma-perturbations Q satisfying the condition

λ[Q] ≡ lim
t→+∞

1

t
ln ∥Q(t)∥ ≤ −σ < 0,

the use is made of the so-called higher [3, 4]

∇σ(A) ≡ sup
λ[Q]≤−σ

λn(A+Q), σ > 0,

and lower [5–7]
∆σ(A) ≡ inf

λ[Q]≤−σ
λ1(A+Q), σ > 0 (2)

sigma-exponents. And if for the first of them the calculation algorithm by the Cauchy matrix
XA(t, τ) of the initial system (1A) is constructed [3, 4] and fully described [1, 2, 8] as the function
of a parameter σ > 0 (with the properties of boundedness, concavity and coincidence with the
constant σ greater than some σ0 ≥ 0), then for the second, lower sigma-exponent ∆σ(A), there is
nothing.

In works [6, 7] devoted to the investigation of the lower sigma-exponent ∆σ(A), relying only
on its definition (2), the author constructed lower sigma-exponents of linear differential systems
(1A) of general Lipschitz on the interval (0,+∞) type, more general compared to the higher sigma-
exponents. In particular, they are not only convex or only concave functions in the whole domain
(0,+∞) of their definition. Indeed, for every nondecreasing function f : (0,+∞) → R coinciding
with the constant on some interval [σ0,+∞) (the lower sigma-exponent of any system (1A) possesses
these obvious properties) and satisfying the Lipschitz condition on the interval (0, σ0, the existence
of the linear differential system (1A) with a lower sigma-exponent ∆σ(A) ≡ f(σ), σ > 0 is proved.

There arises the question whether there exist lower sigma-exponents ∆σ(A) of linear non-
Lipschitz type systems, that is not satisfying in parameter σ > 0 Lipschits condition on the whole
interval (0,+∞) with a finite Lipschitz constant L > 0. The positive answer is contained in the
following

Theorem. Any nondecreasing function

f : [0,+∞) → [c0, c1] ⊂ (−∞,+∞),

coinciding with the constant c1 on some interval [σ1,+∞) and satisfying the Lipschitz condition

0 ≤ f(ξ2)− f(ξ1) < L(σ0)(ξ2 − ξ1), 0 < σ0 ≤ ξ1 < ξ2 ≤ σ1,

on any interval [σ0, σ1] with the Lipschitz constant L(σ0) ≤ const/σ0, σ0 > 0, is a lower sigma-
exponent ∆σ(A) ≡ f(σ), σ > 0, of some linear differential system (1A) with a piecewise-continuous
bounded on the time semi-axis [0,+∞) matrix of coefficients A(t).
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Remark. Such satisfying conditions of the theorem (and not satisfying the Lipschitz on the whole
interval (0,+∞) condition with one finite Lipschitz constant L > 0) are, for example, the functions

f(σ) =

{
σα, σ ∈ [0, σ1],

σα
1 , σ > σ1, α ∈ (0, 1).
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The paper is devoted to the existence and uniqueness of a solution of the initial-boundary prob-
lem for one nonlinear multi-dimensional integro-differential equation of parabolic type. Construc-
tion and study of the additive averaged Rothe’s type scheme is also given. The studied equation is
based on well-known Maxwell’s system arising in mathematical simulation of electromagnetic field
penetration into a substance [10]:

∂H

∂t
= − rot(νm rotH), (1)

cν
∂θ

∂t
= νm(rotH)2, (2)

where H = (H1,H2,H3) is a vector of magnetic field, θ is temperature, cν and νm characterize
correspondingly heat capacity and electroconductivity of the medium.

The system (1), (2) is complex and its investigation and numerical resolution still yield for
special cases (see, for example, [6] and the references therein).

In [1], the Maxwell’s system (1), (2) were proposed to integro-differential form

∂H

∂t
= − rot

[
a

( t∫
0

|rotH|2 dτ
)
rotH

]
, (3)

where a = a(S) is dependent on coefficients cν , νm and is defined for S ∈ [0,∞).
Making certain physical assumptions in mathematical description of the above-mentioned pro-

cess in [12], a new integro-differential model is constructed which represents a generalization of the
system (3)

∂H

∂t
= a

(∫
Ω

t∫
0

|rotH|2 dx dτ
)
∆H. (4)

Principal characteristic peculiarity of systems (3) and (4) is connected with the appearance in
the coefficient with derivative of higher order nonlinear term depended on the integral of time and
space variables. These circumstances requires different discussions than it is usually necessary for
the solution of local differential problems.

The literature on the questions of existence, uniqueness, and regularity of solutions to the
models of above types is very rich. In [1–5, 11–13], the solvability of the initial-boundary value
problems for (3) type models in scalar cases is studied using a modified version of the Galerkin’s
method and compactness arguments that are used in [14,16] for investigation elliptic and parabolic
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equations. The uniqueness of solutions is investigated also in works [1–5, 11–13]. The asymptotic
behavior of solutions is discussed in [4,6,9] and in a number of other works as well. Note also that
to numerical resolution of (3) and (4) type one-dimensional models were devoted many works as
well (see, e.g., [5–7,9] and the references therein).

Many authors study the Rothe’s scheme, semi-discrete scheme with space variable, finite element
and finite difference approximation for a integro-differential models (see, for example, [5–9,14,15]).

It is very important to study decomposition analogs for above-mentioned multi-dimensional
differential and integro-differential models as well. At present there are some effective algorithms
for solving the multi-dimensional problems (see, for example, [14, 15] and the references therein).

This paper dedicated to the existence and uniqueness of solutions of initial-boundary value
problem. Investigations are given in usual Sobolev spaces. Main attention is also paid to investi-
gation of Rothe’s type additive averaged scheme. In this paper we shall focus our attention to (4)
type multi-dimensional integro-differential scalar equation.

Let Ω is bounded domain in the n-dimensional Euclidean space Rn with sufficiently smooth
boundary ∂Ω. In the domain Q = Ω × (0, T ) of the variables (x, t) = (x1, x2, . . . , xn, t) let us
consider the following first type initial-boundary value problem:

∂U

∂t
−

n∑
i=1

(
1 +

∫
Ω

t∫
0

∣∣∣∂U
∂xi

∣∣∣2 dx dτ)∂2U

∂x2i
= f(x, t), (x, t) ∈ Q, (5)

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (6)

U(x, 0) = 0, x ∈ Ω, (7)

where T is a fixed positive constant, f is a given function of its arguments.
Since problem (5)–(7) similar to problems considered in [4], where investigation of (3) type

multi-dimensional scalar equations is given and at first is discussed unique solvability and asymp-
totic behavior of (5) type models as well, we can follow the same procedure used there. Using
modified version of the Galerkin’s method and compactness arguments [16], [14] the following
statement can be proved.

Theorem 1. If
f ∈ W 1

2 (Q), f(x, 0) = 0,

then there exists a unique solution U of problem (5)–(7) satisfying the properties:

U ∈ L4(0, T ;
◦
W 1

4(Ω)
)
∩ L2(0, T ;W

2
2 (Ω)),

∂U

∂t
∈ L2(Q),

√
T − t

∂2U

∂t∂xi
∈ L2(Q), i = 1, . . . , n.

The proof of the formulated theorem is divided into several steps. One of the basic step is to
obtain necessary a priori estimates.

Using the scheme of investigation as in, e.g., [4, 6, 9], it is not difficult to get the result of
exponentially asymptotic behavior of solution as t → ∞ for (5) equation with f(x, t) ≡ 0 and
homogeneous boundary (6) and nonhomogeneous initial (7) conditions.

On [0, T ] let us introduce a net with mesh points denoted by tj = jτ , j = 0, 1, . . . , J , with
τ = 1/J .

Coming back to problem (5)–(7), let us construct additive averaged Rothe’s type scheme:

ηi
uj+1
i − uj

τ
=

(
1 + τ

j+1∑
k=1

∫
Ω

∣∣∣∂uki
∂xi

∣∣∣2 dx) ∂2uj+1
i

∂x2i
+ f j+1

i ,

u0i = u0 = 0, i = 1, . . . , n, j = 0, 1, . . . , J − 1,

(8)
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with homogeneous boundary conditions, where uji (x), j = 1, . . . , J , is a solution of problem (8) and
the following notations are introduced:

uj(x) =

n∑
i=1

ηiu
j
i (x),

n∑
i=1

ηi = 1, ηi > 0,

n∑
i=1

f j+1
i (x) = f j+1(x) = f(x, tj+1),

where uj denotes approximation of exact solution U of problem (5)–(7) at tj . We use usual norm
∥ · ∥ of the space L2(Ω).

Theorem 2. If problem (5)–(7) has sufficiently smooth solution, then the solution of problem (8)
converges to the solution of problem (5)–(7) and the following estimate is true

∥U j − uj∥ = O(τ1/2), j = 1, . . . , J.

Using early investigated finite difference and finite element schemes for one-dimensional (5)
type models (see, for example, [5–7, 9]) now we can reduce numerical resolution of the multi-
dimensional integro-differential model (5) to one-dimensional ones. It is very important to construct
and investigate studied in this note type models for more general type nonlinearities and for (5)
type multi-dimensional systems as well.
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We consider first-order cyclic functional differential systems of the type

x′(t) + p(t)φα(y(k(t))) = 0, y′(t) + q(t)φβ(x(l(t))) = 0, (A)

under the assumption that

(a) α and β are positive constants;

(b) p(t) and q(t) are positive continuous functions on [0,∞);

(c) k(t) and l(t) are positive continuous functions on [0,∞) tending to ∞ as t → ∞;

(d) φγ(u) = |u|γsgn u = |u|γ−1u, γ > 0, u ∈ R.

Let T > 0 be a fixed point on the real line. Define T0 by

T0 = min
{
T, inf

t≥T
k(t), inf

t≥T
l(t)

}
.

By a solution of system (A) on [T,∞) we mean a vector function (x(t), y(t)) which is defined on
[T0,∞) and satisfies (A) for all t ∈ [T,∞). Such a solution is called oscillatory (or nonoscillatory)
if both components of it are oscillatory (or nonoscillatory) in the usual sense. It is clear that (A)
admits no oscillatory solutions, so that all nontrivial solutions of (A), if exist, are nonoscillatory.

Let (x(t), y(t)) be a nonoscillatory solution of (A). Since (A) implies that x(t) and y(t) are
eventually monotone, the two cases may occur: either (Case I) x(t)y(t) > 0 or (Case II) x(t)y(t) < 0
for all large t. In either case the limits x(∞) = lim

t→∞
x(t) and y(∞) = lim

t→∞
y(t) exist in the extended

real numbers.
Suppose that x(t)y(t) > 0 for all large t. Then, |x(t)| and |y(t)| are eventually decreasing, and

so there are the following three possibilities for the combination (x(∞), y(∞)):



108 International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia

I(i) 0 < |x(∞)| < ∞, 0 < |y(∞)| < ∞;

I(ii) (a) 0 < |x(∞)| < ∞, |y(∞)| = 0, or

(b) |x(∞)| = 0, 0 < |y(∞)| < ∞;

I(iii) |x(∞)| = 0, |y(∞)| = 0.

Suppose that x(t)y(t) < 0 for all large t. In this case |x(t)| and |y(t)| are eventually increasing,
and there are the following three possibilities for the combination (|x(∞)|, |y(∞)|):

II(i) |x(∞)| < ∞, |y(∞)| < ∞;

II(ii) (a) |x(∞)| < ∞, |y(∞)| = ∞, or

(b) |x(∞)| = ∞, |y(∞)| < ∞;

II(iii) |x(∞)| = ∞, |y(∞)| = ∞.

The existence of nonoscillatory solutions of the four types I(i), I(ii), II(i) and II(ii) can be com-
pletely characterized as shown in the following theorems.

Theorem 1. System (A) has a solution (x(t), y(t)) such that x(t)y(t) > 0 for all large t and

lim
t→∞

x(t) = const ̸= 0, lim
t→∞

y(t) = const ̸= 0,

if and only if
∞∫
0

p(t) dt < ∞ and

∞∫
0

q(t) dt < ∞.

Theorem 2. System (A) has a solution (x(t), y(t)) such that x(t)y(t) > 0 for all large t and

lim
t→∞

x(t) = const ̸= 0, lim
t→∞

y(t) = 0,

if and only if
∞∫
0

q(t) dt < ∞ and

∞∫
0

p(t)ρ(k(t))α dt < ∞,

where

ρ(t) =

∞∫
t

q(s) ds.

Theorem 3. System (A) has a solution (x(t), y(t)) such that x(t)y(t) < 0 for all large t and

lim
t→∞

x(t) = const ̸= 0, lim
t→∞

y(t) = const ̸= 0,

if and only if
∞∫
0

p(t) dt < ∞ and

∞∫
0

q(t) dt < ∞.
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Theorem 4. System (A) has a solution (x(t), y(t)) such that x(t)y(t) < 0 for all large t and

lim
t→∞

|x(t)| = const ̸= 0, lim
t→∞

|y(t)| = ∞,

if and only if
∞∫
0

q(t) dt = ∞ and

∞∫
0

p(t)Q(k(t))α dt < ∞,

where

Q(t) =

t∫
0

q(s) ds.

Note that the theorems concerning the cases I(iib) and II(iib) could be formulated automatically
from Theorems 2 and 4, respectively.

The solutions of types I(iii) and II(iii) seem to be extremely difficult to analyze, and for the
present we have to content ourselves with seeking regularly varying solutions for system (A) in
which αβ < 1, p(t) and q(t) are regularly varying and k(t) and l(t) are regularly varying of index 1.
By a regularly varying solution of system (A) we here mean a nonoscillatory solution (x(t), y(t)) of
(A) such that both |x(t)| and |y(t)| are regularly varying in the sense of Karamata. If |x| ∈ RV(ρ)
and |y| ∈ RV(σ), we write (x, y) ∈ RV(ρ, σ), and call (x(t), y(t)) a regularly varying solution of
index (ρ, σ).

In the following theorems it is assumed that p ∈ RV(λ) and q ∈ RV(µ) and they have the
expressions

p(t) = tλL(t), q(t) = tµM(t), L,M ∈ SV,

and that k(t) and l(t) satisfy

lim
t→∞

k(t)

t
= γ, lim

t→∞

l(t)

t
= δ,

for some positive constants γ and δ, respectively.
First we look for regularly varying solutions of type I(iii). It is clear that (x, y) ∈ RV(ρ, σ) is of

type I(iii) (i.e., x(∞) = y(∞) = 0) if (ρ, σ) falls into one of the three cases:

(a) ρ < 0, σ < 0,

(b) ρ = 0, σ < 0, or ρ < 0, σ = 0,

(c) ρ = σ = 0.

We are able to deal with the cases (a) and (b) exhaustively. Our result for the case (a) follows.

Theorem 5. Let αβ < 1. Suppose that λ and µ satisfy

λ+ 1 + α(µ+ 1) < 0, β(λ+ 1) + µ+ 1 < 0,

and define ρ and σ by

ρ =
λ+ 1 + α(µ+ 1)

1− αβ
, σ =

β(λ+ 1) + µ+ 1

1− αβ
.

Then system (A) possesses a nonoscillatory solution (x(t), y(t)) of type I(iii) which satisfies
x(t)y(t) > 0 for all large t and belongs to the class RV(ρ, σ). The asymptotic behavior of the
components x(t) and y(t) are governed by the precise decay laws:

|x(t)| ∼ tρ
[(γασL(t)

−ρ

)(δβρM(t)

−σ

)α
] 1

1−αβ

, |y(t)| ∼ tσ
[(γασL(t)

−ρ

)β(δβρM(t)

−σ

)] 1
1−αβ

,

as t → ∞.
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As for the case (b) it suffices to present the result for solutions belonging to RV(0, σ) with σ < 0,
from which, as is easily seen, the result for solutions in RV(ρ, 0) with ρ < 0 can be formulated almost
automatically.

Theorem 6. Let αβ < 1. Suppose that λ and µ satisfy

λ = −1− α(µ+ 1), µ < −1.

Suppose moreover that for any a > 0
∞∫
a

t−1L(t)M(t)α dt =

∞∫
a

p(t)(tq(t))α dt < ∞.

Put σ = µ+ 1. Then system (A) possesses a nonoscillatory solution (x(t), y(t)) of type I(iii) which
satisfies x(t)y(t) > 0 for all large t and belongs to the class RV(0, σ). The asymptotic behavior of
the components x(t) and y(t) are governed by the precise decay laws:

|x(t)| ∼
[
(1− αβ)γασ

∞∫
t

s−1L(s)
(M(s)

−σ

)α
ds

] 1
1−αβ

,

|y(t)| ∼ tσ
M(t)

−σ

[
(1− αβ)γασ

∞∫
t

s−1L(s)
(M(s)

−σ

)α
ds

] β
1−αβ

,

as t → ∞.

In order to handle solutions of type II(iii) of (A) we note that if (x(t), y(t)) is a solution of (A)
of that type, then (−x(t), y(t)) and (x(t),−y(t)) are solutions of the “dual” system

X ′(t)− p(t)φα(Y (k(t))) = 0, Y ′(t)− q(t)φβ(X(l(t))) = 0, (B)

satisfying X(t)Y (t) > 0 for all large t and |X(∞)| = |Y (∞)| = ∞. Then the desired results for the
cases (a) and (b) of II(iii) could easily be obtained from Theorems 3.1 and 3.2 established for (B)
in the paper [1]. Their formulations may be omitted.

Some of the above-mentioned results for system (A) seem to be new even (A) is reduced to the
ordinary differential system

x′ + p(t)φα(y) = 0, y′ + q(t)φβ(x) = 0. (C)

For the pioneering systematic investigation of first-order ordinary differential systems including (C)
the reader is referred to the book of Mirzov [2].

It should be noticed that the results obtained for system (A) find applications to systems of the
form

x′(g(t)) + p(t)φα(y(k(t))) = 0, y′(h(t)) + q(t)φβ(x(l(t))) = 0,

as well as to scalar equations of the form(
p(t)φα(x

′(g(t)))
)′
+ q(t)φβ(x(l(t))) = 0.
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In the plane of independent variables x and t in the domain DT : 0 < x < l, 0 < t < T consider
the mixed problem of finding the solution u(x, t) of semilinear wave equation of the form

utt − uxx + g(u) = f(x, t), (x, t) ∈ DT , (1)

satisfying the initial
u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l, (2)

and boundary conditions

ux(0, t) = F [u(0, t)], ux(l, t) = α(t)u(l, t), 0 ≤ t ≤ T, (3)

where f , φ, ψ, α, g and F are given, and u is an unknown real functions.
Let the following conditions of smoothness

f ∈ C1(DT ), g, F ∈ C1(R),
φ ∈ C2([0, l]), ψ ∈ C1([0, l]), α ∈ C1([0, T ])

(4)

be fulfilled. It is assumed that the second order conditions of agreement are fulfilled at the points
(0, 0) and (l, 0).

Note that nonlinear boundary condition of the form given in (3) arises, for example, in descrip-
tion of the process of longitudinal oscillations of a spring in case of elastic fixing of one of its ends
when the tension does not comply with linear Hooke’s law and is nonlinear function of shift, and
also in description of processes in the distributed self-oscillatory systems.

Consider the conditions
s∫

0

g(s1) ds1 ≥ −M1s
2 −M2,

s∫
0

F (s1) ds1 ≥ −M3 ∀ s ∈ R,

α(t) ≤ 0, α′(t) ≥ 0, 0 ≤ t ≤ T,

(5)

where Mi := const ≥ 0, 1 ≤ i ≤ 3.
The following theorem is valid.

Theorem. Let the conditions (4), (5) be fulfilled. Then there exists a unique classical solution of
the problem (1)–(3).

Remark 1. In the case when at least one of the conditions (5), imposed on nonlinear functions
g and F , is violated, as the following particular case shows, the solution u of considering problem
can be explosive, i.e. there exists a number T ∗ > 0 such that the problem (1)–(3) has a unique
solution, besides

lim
T→T ∗−0

∥u∥C(DT ) = ∞. (6)

Thus, in particular, it follows that the problem under consideration does not have a solution in the
domain DT for T ≥ T ∗.
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Indeed, consider the case of the problem (1)–(3) when functions f, g, α equal zero, besides
φ ∈ C2([0, l]), φ(0) > 0, ψ ∈ C1([0, l]) and F (s) = −δ|s|λs, δ := const > 0, λ := const > 0, s ∈ R,
and the corresponding conditions of agreement are fulfilled. Then in the case ψ = −φ′ the solution
u of this problem in the domain DT for T = T ∗ is given by the formula

u(x, t) =


φ(x− t), (x, t) ∈ ∆1 ∩ {t < T ∗},
µ1(t− x), (x, t) ∈ ∆2 ∩ {t < T ∗},
φ(2l − x− t)− φ(l) + φ(x− t), (x, t) ∈ ∆3 ∩ {t < T ∗},
µ1(t− x) + φ(2l − x− t)− φ(x+ t− l), (x, t) ∈ ∆4 ∩ {t < T ∗}.

(7)

Here

µ1(t) =
φ(0)

[1− δλφλ(0)t]
1
λ

, 0 ≤ t < T ∗ :=
1

δλφλ(0)
< l, (8)

and
∆1 := ∆OO1C, ∆2 := ∆OO1A, ∆3 := ∆CO1B, ∆4 := ∆O1AB

are right-angled triangles, where

O = O(0, 0), A = A(0, l), B = B(l, l), C = C(l, 0), O1 = O1

( l
2
,
l

2

)
.

From (7), (8) it follows that the solution of problem (1)–(3) is explosive, i.e. the equality (6)
holds. Therefore, in this case, at the problem statement we should require that T < T ∗.

Remark 2. In fact, the formula (7) allows continuation of the solution of considering problem from
the domain DT ∗ into the domain Dl∩{t < x+T ∗}, besides, this solution u(x, t) will rise indefinitely
at approaching of the point (x, t) from the domainDl∩{t < x+T ∗} to the characteristics t−x = T ∗,
to which adjoins this domain with a part of its boundary.
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The W -method, in its present form, was proposed by N. V. Azbelev, but according to his
comment in [2] it goes back to G. Fubini and F. Tricomi. The method described originally a way
to regularize boundary value problems for deterministic differential equations (see e.g. [2,3]). Later
on the method has been developed, generalized and applied in the stability theory for determinsitic
[1, 4, 5] and stochastic [6–9] functional differential equations.

Below we describe general principles of the W-method in connection with stochastic functional
differential equations.

Let (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and an
increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E we
denote the expectation on this probability space.

The space kn consists of all n-dimensional, F0-measurable random variables, and k = k1 is a
commutative ring of all scalar F0-measurable random variables.

By Z := (z1, . . . , zm)T we denote an m-dimensional semimartingale (see e.g. [11]). A popular
example of such Z is the vector Brownian motion (the Wiener process).

We consider the homogeneous stochastic hereditary equation

dx(t) = (Vhx)(t)dZ(t), t ≥ 0, (1)

equipped with two extra conditions

x(s) = φ(s), s < 0, (1a)

x(0) = x0. (1b)

Here Vh is a k-linear Volterra operator (see below), which is defined in certain linear spaces of
vector stochastic processes, φ is an F0-measurable stochastic process, x0 ∈ kn.

By k-linearity of the operator Vh we mean the following property:

Vh(α1x1 + α2x2) = α1Vhx1 + α2Vhx2

holding for all F0-measurable, bounded and scalar random values α1, α2 and all stochastic processes
x1, x2 belonging to the domain of the operator Vh.

The solution of the initial value problem (1), (1a), (1b) will be denoted by x(t, x0, φ), t ∈
(−∞,∞). Below the solution is always assumed to exist and be unique for an appropriate choice
of φ(s), x0.

The following kinds of stochastic Lyapunov stability are well-known:
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Definition 1. For a given real number p (0 < p < ∞) we call the zero solution of the homogeneous
equation (1)

- p-stable (w.r.t. the initial data, i.e. w.r.t. x0 and the “prehistory” function φ) if for any
ε > 0 there is δ(ε) > 0 such that E|x0|p + ess sup

s<0
E|φ(s)|p < δ implies E|x(t, x0, φ)|p ≤ ε for

all t ≥ 0 and all (admissible) φ, x0;

- asymptotically p-stable (w.r.t. the initial data) if it is p-stable and, in addition, any φ, x0
such that E|x0|p + ess sup

s<0
E|φ(s)|p < δ satisfies lim

t→+∞
E|x(t, x0, φ)|p = 0;

- exponentially p-stable (w.r.t. the initial data) if there exist positive constants c, β such that
the inequality

E|x(t, x0, φ)|p ≤ c
(
E|x0|p + ess sup

s<0
E|φ(s)|p

)
exp{−βs}

holds true for all t ≥ 0 and all φ, x0.

To be able to link stochastic Lyapunov stability and the W -method, we need to represent (1),
(1a) as a functional differential equation. Let x(t) be a stochastic process on the real semiaxis
(t ∈ [0,+∞)) and x+(t) be a stochastic process on the entire real axis (t ∈ (−∞,+∞)) coinciding
with x(t) for t ≥ 0 and equalling 0 for t < 0, while φ−(t) be a stochastic process on the axis
(t ∈ (−∞,+∞)) coinciding with φ(t) for t < 0 and equalling 0 for t ≥ 0. Then the stochastic
process x+(t) +φ−(t), defined for t ∈ (−∞,+∞) will be a solution of the problem (1), (1a), (1b) if
x(t) (t ∈ [0,+∞)) satisfies the initial value problem

dx(t) =
[
(V x)(t) + f(t)

]
dZ(t), t ≥ 0, (2)

x(0) = x0, (2a)

where
(V x)(t) := (Vhx+)(t), f(t) := (Vhφ−)(t) for t ≥ 0.

Indeed, by linearity Vh(x+ + φ−) = Vh(x+) + Vh(φ−) = V x + f , which gives (2). Note that f is
uniquely defined by the stochastic process φ, “the prehistory function”. Let us also observe that
the initial value problem (2), (2a) is equivalent to the initial value problem (1), (1a), (1b) only for
f , which have representation f = Vhφ

′, where φ′ is an arbitrary extension of the function φ to the
real axis (−∞,∞).

In the sequel the following linear spaces of stochastic processes will be used:

- Ln(Z) consists of all predictable n ×m-matrix stochastic processes on [0,+∞), the rows of
which are locally integrable w.r.t. the semimartingale Z (see e.g. [11]);

- Dn consists of all n-dimensional stochastic processes on [0,+∞), which can be represented as

x(t) = x(0) +

t∫
0

H(s) dZ(s),

where x(0) ∈ kn, H ∈ Ln(Z).

Let B be a linear subspace of the space Ln(Z) equipped with some norm ∥ · ∥B. For a given
positive and continuous function γ(t) (t ∈ [0,∞)) we define Bγ = {f : f ∈ B, γf ∈ B}. The
latter space becomes a linear normed space if we put ∥f∥Bγ := ∥γf∥B.
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We will also need the following linear subspaces of “the space of initial values” kn and “the
space of solutions” Dn:

knp =
{
α : α ∈ kn, E|α|p < ∞

}
, Mγ

p =
{
x : x ∈ Dn, sup

t≥0
E|γ(t)x(t)|p < ∞

}
, M1

p = Mp.

For 1 ≤ p < ∞ the linear spaces knp , M
γ
p become normed spaces if we define

∥α∥knp =
(
E|α|p

)1/p
, ∥x∥Mγ

p
= sup

t≥0

(
E|γ(t), x(t)|p

)1/p
.

In the sequel, we will always assume that the operator V : Dn → Ln(Z) in the equation (2)
is a k-linear Volterra operator, f ∈ Ln(Z) and x0 ∈ kn. Recall that V : Dn → Ln(Z) is said to
be Volterra if for any (random) stopping time τ , τ ∈ [0,+∞) a.s. and for any stochastic processes
x, y ∈ Dn the equality x(t) = y(t) (t ∈ [0, τ ] a.s.) implies the equality (V x)(t) = (V y)(t) (t ∈ [0, τ ]
a.s.).

A solution of (2), (2a) is a stochastic process from the space Dn satisfying the equation

x(t) = x0 + (Fx)(t), t ≥ 0,

where

(Fx)(t) =

t∫
0

[
(V x)(s) + f(s)

]
dZ(s)

is a k-linear Volterra operator in the space Dn and the integral is understood as a stochastic one
w.r.t. the semimartingale Z (see e.g. [11]).

Below xf (t, x0) stands for the solution of the initial value problem (2), (2a).

Definition 2. Let 1 ≤ p < ∞. We say that the equation (2) is input-to-state stable (ISS) w.r.t. the
pair (Mγ

p , Bγ) if there exists c > 0, for which x0 ∈ knp and f ∈ Bγ imply the relation xf ( · , x0) ∈ Mγ
p

and the following estimate:

∥xf ( · , x0)∥Mγ
p
≤ c

(
∥x0∥knp + ∥f∥Bγ

)
.

This definition says that the solutions belong to Mγ
p whenever f ∈ Bγ and x0 ∈ knp and that

they continuously depend on f and x0 in the appropriate topologies. The choice of the spaces is
closely related to the kind of stability we are interested in.

The following result describes connections between Lyapunov stability of the zero solution of
the equation (1) and input-to-state stability of the equation (2) with the operator V which is
constructed from the operator Vh in (1).

Theorem 3. Let γ(t) (t ≥ 0) be a positive continuous function and 1 ≤ p < ∞. Assume that
the equation (2) is constructed from (1), (1a) and f(t) ≡ (Vhφ−)(t) ∈ Bγ whenever φ satisfies the
condition ess sup

s<0
E|φ(s)|p < ∞, and ∥f∥Bγ ≤ K ess sup

s<0
E|φ(s)|p for some constant K > 0.

1) If γ(t) = 1 (t ≥ 0) and the equation (2) is ISS w.r.t. the pair (Mγ
p , Bγ), then the zero solution

of (1) is p-stable.

2) If γ(t) = exp{βt} (t ≥ 0) for some β > 0 and the equation (2) is ISS w.r.t. the pair (Mγ
p , Bγ),

then the zero solution of (1) is exponentially p-stable.

3) If lim
t→+∞

γ(t) = +∞, γ(t) ≥ δ > 0, t ∈ [0,+∞) (t ≥ 0) for some δ, and the equation (2) is

ISS w.r.t. the pair (Mγ
p , Bγ), then the zero solution of (1) is asymptotically p-stable.
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The main idea of the W -method is to convert the given property of Lyapunov stability – via
the property of ISS – into the property of invertibility of a certain regularized operator in a suitable
functional space. This operator can be constructed with the help of an auxiliary equation. The
latter is similar to the equation (2), but it is “simpler”, so that the required ISS property is already
established for this equation:

dx(t) =
[
(Qx)(t) + g(t)

]
dZ(t), t ≥ 0, (3)

where Q : Dn → Ln(Z) is a k-linear Volterra operator, and g ∈ Ln(Z). For the equation (3) it
is always assumed the existence and uniqueness assumption, i. e. that for any x(0) ∈ kn there
is the only (up to a P -equivalence) solution x(t) satisfying (3), so that we have the following
representation:

x(t) = U(t)x0 + (Wg)(t), t ≥ 0, (4a)

where U(t) is the fundamental matrix of the associated homogeneous equation, and W is the
corresponding Cauchy operator for the equation (3).

Now, let us rewrite the equation (2) in the following way:

dx(t) =
[
(Qx)(t) + ((V −Q)x)(t) + f(t)

]
dZ(t), t ≥ 0,

or

x(t) = U(t)x(0) + (W (V −Q)x)(t) + (Wf)(t), t ≥ 0.

Denoting W (V −Q) = Θ, we obtain the operator equation

((I −Θ)x)(t) = U(t)x(0) + (Wf)(t).

Theorem 4. Given a weight γ (i. e. a positive continuous function defined for t ≥ 0), let us
assume that the equation (2) and the reference equation (3) satisfy the following conditions:

1) the operators V , Q act continuously from Mγ
p to Bγ;

2) the reference equation (3) is ISS w.r.t. the pair (Mγ
p , Bγ).

If now the operator I − Θ : Mγ
p → Mγ

p has a bounded inverse in this space, then the equation
(2) is ISS w.r.t. the pair (Mγ

p , Bγ).

Proof. Under the above assumptions we have that U( · )x0 ∈ Mγ
p whenever x0 ∈ knp and also that

xf (t, x0) =
(
(I −Θ)−1(U( · )x0)

)
(t) +

(
(I −Θ)−1Wf

)
(t) (t ≥ 0)

for an arbitrary x0 ∈ knp , f ∈ Bγ . Taking the norms and using the assumptions put on the reference
equation, we, as in the previous theorem, obtain the inequality

∥xf ( · , x0)∥Mγ
p
≤ c

(
∥x0∥knp + ∥f∥Bγ

)
,

where x0 ∈ knp , f ∈ Bγ . Thus, the equation (2) is ISS w.r.t. the pair (Mγ
p , Bγ).

The choice of the space B and the weight γ depend on the asymptotic property one is studying.

In the theorem below we use the universal constants cp (1 ≤ p < ∞) from the Burkholder–
Davis–Gandy inequalities to estimate stochastic integrals, see e.g. [11].
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Theorem 5. The zero solution of the equation

dx(t) =
(
aξ(t)x(t) + bξ(t)x

( t

τ0

))
dt+ c

√
ξ(t)x

( t

τ1

)
dB(t) (t ≥ 0),

where ξ(t) = I[0,r](t) + tI[r,∞](t), t ≥ 0 (IA(t) is the indicator of A), B(t) is the standard scalar
Brownian motion, a, b, c, τ0, τ1, r are real numbers (τ0 > 1, τ1 > 1), is asymptotically 2p-stable
(with respect to x0, as φ is not needed in this case) if there exists α > 0 for which

|a+ b+ α|+ cp|c|
√
0.5α+

(
|ab|+ b2

)
δ0 + cp|bc|

√
δ0 < α,

where
δ0 = max

{
log τ0, (1− τ−1

0 )r
}
.

The proof of the result can be found in [8].
The W -method is also proven to be efficient in the difficult case of stochastic differential equa-

tions with impulses, see [10].
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Consider parametric family of n-dimensional (n ≥ 2) linear differential systems

dx

dt
= A(t, µ)x, x ∈ Rn, t ≥ 0, µ ∈ B, (1)

whose solutions continuously depend on parameter µ ∈ B, and B is metric space. Denote class
of all such systems by S∗

n. By Sn we denote subclass of S∗
n of such systems that for any µ ∈ B

coefficient matrix A( · , µ) is bounded over all t ≥ 0. We identify family (1) and it’s coefficient
matrix and therefore write A ∈ S∗

n or A ∈ Sn. For any A ∈ S∗
n and µ ∈ B by Aµ we denote

differential system of family (1) with fixed parameter µ.

For any family A ∈ S∗
n let λ1(µ) ≤ · · · ≤ λn(µ) be Lyapunov exponents of system Aµ. Lyapunov

exponents λi(µ), i = 1, n, are real numbers for all families A ∈ Sn, therefore we consider λi( · ) as
functions B → R. For families A ∈ S∗

n, generally speaking, Lyapunov exponents λi(µ), i = 1, n can
take improper values, therefore we consider λi( · ) as functions B → R, where R = R⊔ {−∞,+∞}.

All statements given below are true in essentially more general case of Lyapunov exponents
of families of morphisms of Millionshtchikov bundles and generalized Millionshtchikov bundles.
Nevertheless we use the more familiar language of Lyapunov exponents of parametric families (1).

Lyapunov exponents of families A ∈ Sn as functions B → R are completely described using
Baire characterization. V. M. Millionschikov [5] proved that every function λk( · ) : B → R is a
function of the second Baire class. M. I. Rakhimberdiev [7] proved that the number of Baire class
in the statement above cannot be reduced. A. N. Vetokhin [8], [9] in special spaces of differential
systems proved that Lyapunov exponents considered as functions of systems belong to the Baire
class ( ∗ , Gδ). Recall that a real-valued function is referred to as a function of the class ( ∗ , Gδ) [1,
pp. 223, 224] if for each r ∈ R the pre-image of the interval [r,+∞) under the mapping f is a
Gδ-set, i.e. can be represented as a countable intersection of open sets. A complete description of
Lyapunov exponents of families A ∈ Sn as functions B → R was announced if [2] and presented
in [3]. For any positive integer n and metric space B set (f1( · ), . . . , fn( · )) of functions B → R
coincides with set of Lyapunov exponents (λ1( · ), . . . , λn( · )) of some family A ∈ Sn if and only
if all these functions belong to the Baire class ( ∗ , Gδ), have upper semi-continuous minorant and
satisfy inequalities f1(µ) ≤ · · · ≤ fn(µ) for all µ ∈ B.

Consider the same problem of description of Lyapunov exponents of families A ∈ S∗
n as functions

B → R. V. M. Millionschikov [6] proved that every function λk( · ) : B → R is a function of the
second Baire class. A complete solution of this problem is given by the following theorem.

Theorem 1. For any positive integer n and metric space B set (f1( · ), . . . , fn( · )) of functions
B → R coincides with set of Lyapunov exponents (λ1( · ), . . . , λn( · )) of some family A ∈ S∗

n if and
only if all these functions belong to the Baire class ( ∗ , Gδ) and satisfy inequalities f1(µ) ≤ · · · ≤
fn(µ) for all µ ∈ B.
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Here for functions B → R we use the same definition of the Baire class ( ∗ , Gδ): function B → R
is referred to as a function of the class ( ∗ , Gδ) if for each r ∈ R the preimage of the segment [r,+∞]
under the mapping f is a Gδ-set.

Consider family A ∈ Sn. For every Lyapunov exponent λi( · ) consider set Mi of all points µ ∈ B
at which function λi( · ) is upper (lower) semi-continuous. Set (M1,M2, . . . ,Mn) we call the set of
upper (lower) semi-continuity of Lyapunov exponents of family A. V. M. Millionschikov [6] proved
that if parameter space B is full metric space, then upper semi-continuity is Baire typical for all
Lyapunov exponents i.e. for any A ∈ Sn and i = 1, n the set Mi of upper semi-continuity contains
dense Gδ-subset. A. N. Vetokhin showed that sets of lower semi-continuity can be empty.

Sets of upper semi-continuity and lower semi-continuity of families A ∈ Sn are completely
described in [4]. In the case of Lyapunov exponents of families A ∈ S∗

n the description of upper
and lower semi-continuity sets turned out to be the same. This description is given in the next
theorem.

Theorem 2. For any positive integer n and full metric space B set (M1, . . . ,Mn) of subsets of space
B is the set of upper semi-continuity of Lyapumov exponents of some family A ∈ S∗

n if and only if
every Mi, i = 1, n is dense Gδ-set, and the set of lower semi-continuity of Lyapumov exponents of
some family A ∈ S∗

n if and only if every Mi, i = 1, n is Fσδ-set which contains all isolated points
of space B.
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Consider the linear system of impulsive equations

dx

dt
= Q(t)x+ q(t) for t ∈ R+, (1)

x(tj+)− x(tj−) = Gjx(tj−) + gj (j = 1, 2, . . . ), (2)

where Q ∈ Lloc(R+;Rn×n), q ∈ Lloc(R+;Rn), Gj ∈ Rn×n (j = 1, 2, . . . ), gj ∈ Rn (j = 1, 2, . . . ),
tj ∈ R+ (j = 1, 2, . . . ), 0 < t1 < t2 < · · · , lim

j→+∞
tj = +∞.

We use the following notation and definitions.
R = ] − ∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open

intervals.

Rn×m is the space of all real n×mmatricesX = (xij)
n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

Rn×m
+ = {(xij)n,mi,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)}.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-
minant of X and the spectral radius of X; In is the identity n× n-matrix.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-
ponent is such.

C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-functions X :
[a, b] → D.

C̃loc(I \ T,D), where T = {t1, t2, . . . }, is the set of all matrix-functions X : I → D whose
restrictions to an arbitrary closed interval [a, b] from I \ {τl}ml=1 belong to C̃([a, b], D).

L([a, b];D) is the set of all integrable matrix-functions X : [a, b] → D.
Lloc(I;D) is the set of all matrix-functions X : I → D whose restrictions to an arbitrary closed

interval [a, b] from It0 belong to L([a, b], D).
By a solution of the impulsive system (1), (2) we understand a continuous from the left vector

function x : R+ → Rn, x ∈ C̃loc(R+ \ T ;Rn), satisfying the system (1) a.e on ]tj , tj+1[ , and the
equality (2) at the point tj for every j ∈ {1, 2, . . . }.

Let ξ : R+ → R+, ξ ∈ C̃loc(R+;R+), be a continuous from the left nondecreasing function such
that

lim
t→+∞

ξ(t) = +∞.

Definition 1. The solution x0 of the system (1), (2) is said to be ξ-exponentially asymptotically
stable if there is η > 0 such that for every ε > 0 there exists δ = δ(ε) > 0 such that for every
solution x of the system (1), (2) satisfying the condition

∥x(t0)− x0(t0)∥ < δ
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for some t0 ∈ R+, the estimate

∥x(t)− x0(t)∥ < ε exp
(
η(ξ(t)− ξ(t0))

)
for t ≥ t0

holds.

Definition 2. The system (1), (2) is said to be ξ-exponentially asymptotically stable if every its
solution is ξ-exponentially asymptotically stable.

Definition 3. The pair (Q, {Gl}∞l=1), where Q ∈ Lloc(R+;Rn×n) and Gj ∈ Rn×n (j = 1, 2, . . . ),
is ξ-exponentially asymptotically stable if the corresponding to this pair homogeneous impulsive
system

dx

dt
= Q(t)x for t ∈ R+,

x(tj+)− x(tj−) = Gjx(tj−) (j = 1, 2, . . . )

is stable in the same sense.

Theorem. Let Q = (qik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and Gj = (gjik)

n
i,k=1 ∈ Rn×n (j = 1, 2, . . . ) be such

that the conditions

1 + gjii ̸= 0 (i = 1, . . . , n; j = 1, 2, . . . ),

r(H) < 1, (3)

sup

{
(ξ(t)− ξ(τ))−1

( t∫
τ

qii(s) ds+
∑

τ≤tj<t

ln |1 + gjii|
)

:

t ≥ τ ≥ t∗, ξ(t) ̸= ξ(τ); t, τ ∈ R+ \ T

}
< −γ (i = 1, . . . , n) (4)

and

t∫
t∗

exp

(
γ(ξ(t)− ξ(τ)) +

t∫
τ

qii(s) ds

)
|qik(τ)|

∏
τ≤tj<t

|1 + gjii| dτ

+
∑

t∗≤tl<t

exp

(
γ(ξ(t)− ξ(tl)) +

t∫
tl

qii(s) ds

)
|glik|

∏
tl<tj<t

|1 + gjii| ≤ hik,

for t ∈ [t∗,+∞[ \T (i ̸= k; i, k = 1, . . . , n)

hold, where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), H = (hik)
n
i,k=1 matrix, where hii = 0

(i = 1, . . . , n). Then the pair (Q, {Gj}+∞
j=1) is ξ-exponentially asymptotically stable.

Corollary. Let Q = (qik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and Gj = (gjik)

n
i,k=1 ∈ Rn×n (j = 1, 2, . . . ) be

such that the conditions (3), (4),

−1 < gjii ≤ 0 (i = 1, . . . , n; j = 1, 2, . . . ),

qii(t) ≤ 0 (i = 1, . . . , n),

|qik(t)| ≤ −hikqii(t) (i ̸= k; i, k = 1, . . . , n),

|gjik| < −hikgjii(1 + gjii) (i ̸= k; i, k = 1, . . . , n; j = 1, 2, . . . )

hold a.e on the interval [t∗,+∞[ , where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), hii = 0
(i = 1, . . . , n), and H = (hik)

n
i,k=1. Then the pair (Q, {Gj}+∞

j=1) is ξ-exponentially asymptotically
stable.
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The questions on the Lyapunov stability in this and other sense are investigated in [1, 3] (see,
also the references therein) for linear impulsive systems, and analogous questions in [2] (see, also
the references therein) for ordinary differential systems.
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Consider the semilinear hyperbolic equation of the type

Lfu := � 2u+ f(u) = F, (1)

where f : R → R is a given continuous nonlinear function, F is a given and u is an unknown real
function,

� :=
∂2

∂t2
−

n∑
i=1

∂2

∂x2i
, n ≥ 2.

Let D be a convex domain in the space Rn+1 of variables x1, . . . , xn, t with piecewise – smooth
boundary S = ∂D, consisting of smooth n-dimensional manifolds S1, S2, . . . , Sm0 , Sm0+1, . . . , Sm

whose Si, i = 1, . . . ,m0, are manifolds of spatial and temporal types, and Sm0+1, . . . , Sm are
characteristic manifolds.

For the equation (1), we consider the boundary value problem: find in the domain D a solution
u = u(x1, . . . , xn, t) of that equation according to the boundary conditions:

u|S = 0;
∂u

∂ν

∣∣∣
Si

= 0, i = 1, . . . ,m0, (2)

where ν = (ν1, . . . , νn, νn+1) is the unit vector of the outer normal to ∂D.

Assume

◦
Ck(D, ∂D) :=

{
u ∈ Ck(D) : u

∣∣
S
= 0;

∂u

∂ν

∣∣∣
Si

= 0, i = 1, . . . ,m0

}
, k ≥ 2.

Let u ∈
◦
C4(D, ∂D) be a classical solution of the problem (1), (2). Multiplying both parts of

the equation (1) by an arbitrary function φ ∈
◦
C2(D, ∂D) and integrating the obtained equality by

parts over the domain D, we obtain∫
D

�u�φ dx dt+

∫
D

f(u)φ dx dt =

∫
D

Fφ dx dt. (3)

Introduce the Hilbert space
◦
W 1

2,�(D) as the completion with respect to the norm

∥u∥ ◦
W 1

2,�(D)
=

∫
D

[
u2 +

(∂u
∂t

)2
+

n∑
i=1

( ∂u

∂xi

)2
+ (�u)2

]
dx dt

of the classical space
◦
C2(D, ∂D).
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Consider the following conditions imposed on the function f = f(u):

f ∈ C(R), |f(u)| ≤ M1 +M2|u|α, u ∈ R, (4)

where

0 ≤ α = const <
n+ 1

n− 1
. (5)

Let F ∈ L2(D). We take the equality (3) as a basis for our definition of the generalized solution

u of the problem (1), (2): the function u ∈
◦
W 1

2,�(D) is said to be a weak generalized solution of

the problem (1), (2) if for any function φ ∈
◦
W 1

2,�(D) the integral equality (3) is valid.

Theorem. Let f be a monotone function and satisfy the conditions (4), (5) and uf(u) ≥ 0 ∀u ∈ R.
Then for any F ∈ L2(D) the problem (1), (2) has a unique weak generalized solution in the space
◦
W 1

2,�(D).

As the examples show, if the conditions imposed on the nonlinear function f are violated, then
the problem (1), (2) may not have a solution.
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On the interval R+ = [0,+∞[ , we consider the differential system

u
(n1)
1 = p1(t)|u2|λ1 sgn(u2), u

(n2)
2 = p2(t)|u1|λ2 sgn(u1), (1)

where

n1 + n2 is even, λ1 > 0, λ1λ2 > 1,

and pi : R+ → R (i = 1, 2) are continuous functions such that

p1(t) ≥ 0, p2(t) ≤ 0 for t ∈ R+.

If n1 = 1, n2 = n− 1, λ1 = 1, λ2 = λ, p1(t) ≡ 1 and p2(t) ≡ p(t), then system (1) is equivalent
to the Emden–Fowler type differential equation

u(n) = p(t)|u|λ sgn(u).

Therefore this system may naturaly be called as Emden–Fowler type differential system.

A nontrivial solution (u1, u2) of system (1) defined on some infinite interval [t0,+∞[⊂ R+ is
said to be proper.

A proper solution (u1, u2) of (1) is said to be oscillatory if its components u1 and u2 change
sign in any neighbourhood of +∞.

We have established the necessary and sufficient conditions for the oscillation of all proper
solutions of system (1) and also the conditions guaranteeing the existence of a multiparametric
family of proper oscillatory solutions of that system.

Such results were known earlier only in the cases where n1 = n2 = 1 or p1(t) ≡ 1 and λ1 = 1
(see [1, 2] and the references therein).

Theorem 1. If the conditions

+∞∫
0

p1(t) dt = +∞, (2)

+∞∫
0

tn2−1

[ t∫
0

(t− s)n1−1
(s
t

)(n2−1)λ1

p1(s) ds

]λ2

p2(t) dt = −∞, (3)

lim
x→+∞

x∫
0

tn1−1

[ x∫
t

(s− t)n2−1|p2(s)| ds
]λ1

p1(t) dt = +∞ (4)

are fulfilled, then every proper solution of system (1) is oscillatory.
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If

lim inf
t→+∞

t∫
0

(t− s)n1−1s(n2−1)λ1p1(s) ds

t(n2−1)λ1

t∫
0

(t− s)n1−1p1(s) ds

> 0, (5)

then (3) takes the form

+∞∫
0

tn2−1

[ t∫
0

(t− s)n1−1p1(s) ds

]λ2

p2(t) dt = −∞. (6)

Theorem 2. Let conditions (2) and (5) be fulfilled. Then for the oscillation of all proper solutions
of system (1), it is necessary and sufficient that equalities (4) and (6) be satisfied.

Corollary 1. Let there exist numbers t0 > 0, ri > 0 (i = 1, 2), µ1 ≤ 1 and µ2 such that

r1 ≤ tµ1p1(t) ≤ r2, r1 ≤ −tµ2p2(t) ≤ r2 for t ≥ t0. (7)

Then for the oscillation of all proper solutions of system (1), it is necessary and sufficient that the
inequality

µ2 ≤
n1 − µ1

λ1
+ n2 (8)

be fulfilled.

Theorems 1 and 2 leave the question on the existence of proper solutions of system (1) open.
The answer to this question gives the following theorem.

Theorem 3. If n1 is even and n2 = n1, then system (1) has n1-parametric family of proper
solutions satisfying the condition

+∞∫
0

(
p1(t)|u2(t)|1+λ1 + p2(t)|u1(t)|1+λ2

)
dt < +∞.

From Corollary 1 and Theorem 3 it follows

Corollary 2. Let n2 = n1, n1 be even and there exist numbers t0 > 0, r2 > r1 > 0, µ1 ≤ 1 and µ2

such that inequalities (7) and (8) are fulfilled. Then system (1) has n1-parametric family of proper
oscillatory solutions.
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Let m1, . . . ,mn be positive integers. In the n-dimensional box Ω = [0, ω1]× · · · × [0, ωn] for the
linear hyperbolic equation

u(m) =
∑
α<m

pα(x)u
(α) + q(x) (1)

consider the boundary conditions

hik
(
u(m1···i−1)(x1, . . . , xi−1, • , xi+1, . . . , xn)

)
(x̂i)

= φ
(m1,...,i−1)
ik (x̂i) for x̂i ∈ Ωi (k = 1, . . . ,mi; i = 1, . . . , n). (2)

Here x = (x1, . . . , xn), x̂i = (x1, . . . , xi−1, xi+1, . . . , xn), Ωi = [0, ω1]×· · ·×[0, ωi−1]×[0, ωi+1]×· · ·×
[0, ωn], m = (m1, . . . ,mn), α = (α1, . . . , αn), m1···k = (m1, . . . ,mk, 0, . . . , 0) (m1···k = (0, . . . , 0) if
k = 0), m̂i = m−mi and mi = (0, . . . ,mi, . . . , 0) are multi-indices,

u(α)(x) =
∂α1+···+αnu(x)

∂xα1
1 · · · ∂xαn

n
,

pα ∈ C(Ω) (α < m), q ∈ C(Ω), φik ∈ Cm̂i(Ωi) (k = 1, . . . ,mi; i = 1, . . . , n), and hik :
Cmi−1([0, ωi]) → Cm̂i+1···n(Ωi) (k = 1, . . . ,mi; i = 1, . . . , n) are bounded linear operators.

Two-dimensional initial-boundary value problems were studied in [1–3].
By a solution of problem (1), (2) we understand a classical solution, i.e., a function u ∈ Cm(Ω)

satisfying equation (1) and boundary conditions (2).
Along with problem (1), (2) consider its corresponding homogeneous problem

u(m) =
∑
α<m

pα(x)u
(α), (10)

hik
(
u(m1···i−1)(x1, . . . , xi−1, • , xi+1, . . . , xn)

)
(x̂i)

= 0 for x̂i ∈ Ωi (k = 1, . . . ,mi; i = 1, . . . , n). (20)

Remark 1. Even if hik : Cmi−1([0, ωi]) → R are bounded linear functionals, conditions (2) are not
equivalent to the conditions

hik
(
u(x1, . . . , xi−1, • , xi+1, . . . , xn)

)
= φik(x̂i) (k = 1, . . . ,mi; i = 1, . . . , n),

since the latter require the additional consistency conditions

hik(φjl) = hjl(φik) (k = 1, . . . ,mi; l = 1, . . . ,mj ; i, j = 1, . . . , n).

However, the homogeneous conditions (20) are equivalent to the homogeneous conditions

hik
(
u(x1, . . . , xi−1, • , xi+1, . . . , xn)

)
= 0 (k = 1, . . . ,mi; i = 1, . . . , n).
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We make use of following notations and definitions.

suppα = {i | αi > 0}, ∥α∥ = |α1|+ · · ·+ |αn|.

α = (α1, . . . , αn) < β = (β1, . . . , βn) ⇐⇒ αi ≤ βi (i = 1, . . . , n) and α ̸= β.

α = (α1, . . . , αn) ≤ β = (β1, . . . , βn) ⇐⇒ α < β, or α = β.

mi1···ik = (α1, . . . , αn), where αij = mij (j = 1, . . . , k) and αj = 0 if j ̸∈ {i1, . . . , ik}.

α̂ = m− α, m̂i1···ik = m−mi1···ik .

xi1···il = (xi1 , . . . , xil), Ωi1···il = [0, ωi1]× · · · × [0, ωil ].

x̂i1···il = (xj1 , . . . , xjn−l
), Ω̂i1···il = [0, ωj1 ] × · · · × [0, ωin−l

], where j1 < j2 < · · · < jn−l, and
{j1, . . . , jn−l} = {1, . . . , n} \ {i1, . . . , il}.

Cm(Ω) is the Banach space of functions u : Ω → R, having continuous partial derivatives
u(α), α ≤ m, with the norm

∥u∥Cm(Ω) =
∑
α≤m

∥u(α)∥C(Ω).

Definition 1. Problem (1), (2) is called well-posed, if it is uniquely solvable for arbitrary φik ∈
Cm̂i(Ωi) (k = 1, . . . ,mi; i = 1, . . . , n) and q ∈ C(Ω), and its solution u admits the estimate

∥u∥Cm(Ω) ≤ M
( n∑

i=1

mi∑
k=1

∥φik∥Cm̂i (Ωi)
+ ∥q∥C(Ω)

)
, (3)

where M is a positive constant independent of q and φik (k = 1, . . . ,mi; i = 1, . . . , n).

In the domain Ωi1···il consider the homogeneous boundary value problem depending on the
parameter x̂i1···il ∈ Ωi1···il

v(mi1···il ) =
∑

α<mi1···il

pm̂i1···il+α(x)v
(α), (1i1···il)

hijk
(
v(mi1···ij−1

)(x1, . . . , xij−1 , • , xij+1 , . . . , xn)
)
(x̂ij )

= 0 for x̂ij ∈ Ωij (k = 1, . . . ,mij ; j = 1, . . . , l). (2i1···il)

Definition 2. Problem (1i1···il), (2i1···il) is called an associated problem of level l.

Associated problems of level n− 1 can be written in the relatively simpler form

v(m̂j) =
∑

α<m̂j

pmj+α(x)v
(α), (1j)

hik
(
u(m1···i−1)(x1, . . . , xi−1, • , xi+1, . . . , xn)

)
(x̂i) = 0 for x̂i ∈ Ωi (k = 1, . . . ,mi, i ̸= j). (2j)

Associated problems of level n− 1 play a principal role in well-posedness of problem (1), (2).

Theorem 1. Problem (1), (2) has Fredholm property if and only if each associated homogeneous
problem (1i1···il), (2i1···il) has only the trivial solution for every x̂i1···il ∈ Ωi1···il.
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Theorem 2. Problem (1), (2) is well-posed if and only if problem (10), (20) has only a trivial
solution, and each associated homogeneous problem (1i1···il), (2i1···il) has only the trivial solution
for every x̂i1···il ∈ Ωi1···il.

Theorem 2′. Problem (1), (2) is well-posed if and only if problem (10), (20) has only a trivial
solution, and each associated homogeneous problem (1j), (2j) of the level n − 1 is well-posed for
every xj ∈ [0, ωj ] (j = 1, . . . , n).

In case where the coefficients pα are smooth functions, estimate (3) is not the most precise
estimate for a solution of problem (1), (2). Consider the equation

u(m) =
∑
α<m

pα(x)u
(α) + q(β)(x). (1β)

Theorem 3. Let problem (1), (2) be well posed, pα ∈ Cm(Ω) (α < m), β ≤ m and q ∈ Cβ(Ω).
Then the solution u of the problem (1β), (2) admits the estimate

∥u∥C(Ω) ≤ M
( n∑

i=1

mi∑
k=1

∥φik∥C(Ωi) + ∥q∥C(Ω)

)
, (4)

where M is a positive constant independent of q and φik (k = 1, . . . ,mi; i = 1, . . . , n).

Now consider the following particular cases of conditions (2):

(I) Characteristic value problem:

u(m1,...,mi−1,k,0,...,0)(x1, . . . , xi−1, 0, xi+1, . . . , xn)(x̂i)

= φ
(m1,...,i−1)
ik (x̂i) (k = 1, . . . ,mi; i = 1, . . . , n). (5)

(II) Initial-Boundary value problems with n− 1 initial conditions:

h1k
(
u( • , x2, . . . , xn)

)
(x̂1) = φ1k(x̂1),

u(m1,...,mi−1,k,0,...,0)(x1, . . . , xi−1, 0, xi+1, . . . , xn)(x̂i)

= φ
(m1,...,i−1)
ik (x̂i) (k = 1, . . . ,mi; 2 = 1, . . . , n).

(6)

(III) Initial-Boundary value problems with n− l initial conditions:

hik
(
u(m1···i−1)(x1, . . . , xi−1, • , xi+1, . . . , xn)

)
(x̂i)

= φ
(m1,...,i−1)
ik (x̂i) (k = 1, . . . ,mi; i = 1, . . . , l),

u(m1,...,mi−1,k,0,...,0)(x1, . . . , xi−1, 0, xi+1, . . . , xn)(x̂i)

= φ
(m1,...,i−1)
ik (x̂i) (k = 1, . . . ,mi; i = l + 1, . . . , n).

(7)

Corollary 1. Then problem (1), (5) is well-posed.

Corollary 2. Problem (1), (6) is well-posed if and only if the problem

z(m1) =

m1−1∑
k=0

p(k,m2,...,mn)(x)z
(k),

h1(z)(x2, . . . , xn) = 0

has only the trivial solution for every (x2, . . . , xn) ∈ [0, ω2]× · · · × [0, ωn].
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Corollary 3. Problem (1), (7) is well-posed if and only if the problem

v(m1,...,ml) =
∑

α<(m1,...,ml)

pα+(ml+1,...,mn)(x)w
(α),

h1
(
w( • , x2, . . . , xl)

)
(x̂1) = 0, . . . , hl

(
w(m1,...,ml−1,0)(x1, . . . , xl−1, • )

)
(x̂l) = 0

is well-posed for every (xl+1, . . . , xn) ∈ [0, ωl+1]× · · · × [0, ωn].

Consider the particular case of equation (1)

u(2,. . . ,2) =
∑
α∈E

pα(xα)u
(α) + q(x), (8)

where

E =
{
(α1, . . . , αn) < (2, . . . , 2) | αk = 0, or αk = 2 (k = 1, . . . , n)

}
,

and

xα = (xi1 , . . . , xik), {i1, . . . , ik} = supp α̂.

For equation (8) consider the Dirichlet and periodic boundary conditions:

u(0, x2, . . . , xn) = 0, u(ω1, x2, . . . , xn) = 0,

...

u(x1, . . . , xn−1, 0) = 0, u(x1, . . . , xn−1, ωn) = 0,

(9)

and
u(i,0,...,0)(0, x2, . . . , xn) = u(i,0,...,0)(ω1, x2, . . . , xn) (i = 0, 1)

...

u(0,...,0,i)(x1, . . . , xn−1, 0) = u(0,...,0,i)(x1, . . . , xn−1, ωn) = 0 (i = 0, 1).

(10)

Corollary 4. Let

(−1)n+
∥α∥
2 pα(xα) ≤ 0 for α ∈ E . (11)

Then problem (8), (9) is well-posed.

Corollary 5. Let

(−1)n+
∥α∥
2 pα(xα) < 0 for α ∈ E . (12)

Then problem (8), (10) is well-posed.

Remark 2. In Corollary 5 strict inequality (12) cannot be replaced by the non-strict inequality
(11). Indeed, consider the equation

u(2,...,2) = (−1)n−1
n∑

i=1

uxixi + (−1)nu+ q(x1, . . . , xn−1). (13)

Equation (13) satisfies conditions (11) but does not satisfy (12). For problem (13), (10), all associate
problems of level n−1 have only trivial solutions. However, none of them is well-posed, because all
associate problems of level less than n − 1 have nontrivial solutions. Let us show ill-posedness of
problem (13), (10) directly, without applying Theorem 2 (ill-posedness of problem (13), (10) follows
immediately from Theorem 2).
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Indeed, assume that problem (13), (10) has a solution u. One can easily verify that u is a unique
solution of problem (13), (10), and thus is independent of xn. Therefore, u satisfies the equation

n−1∑
i=1

uxixi − u = q(x1, . . . , xn−1). (14)

From the theory of elliptic equations it is well-known, that if q ∈ C(Ω̂n), then, generally speaking,
u is not a classical solution, i.e., it does not belong C2(Ω̂n), and thus does not belong to C2,...,2(Ω̂n).
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In the rectangle Ω = [0, a]× [0, b] consider the nonlinear hyperbolic equation

u(m,n) = f
(
x, y, u(m,0), . . . , u(m,n−1), u(0,n), . . . , u(m−1,n), u(m−1,n−1), . . . , u

)
, (1)

lj(u( · , y))(y) = φj(y) (j = 1, . . . ,m), hk(u
(m,0)(x, · ))(x) = ψ

(m)
k (x) (k = 1, . . . , n), (2)

where

u(j,k) =
∂j+ku

∂xj∂yk
,

f : Ω×Rn+m+mn → R is a continuous function, φj ∈ Cn([0, b]), ψk ∈ Cm([0, a]), lj : C
m−1([0, a]) →

Cn([0, b]) and hk : Cn−1[0, b] → C([0, a]) are bounded linear operators.
Initial-boundary value problems for linear hyperbolic equations and systems were studied in [1]

and [2]. Initial-periodic problems for nonlinear hyperbolic systems were studied in [3].
Cm,n(Ω) is the Banach space of functions u : Ω → R, having continuous partial derivatives u(j,k)

(j = 0, . . . ,m; k = 0, . . . , n), with the norm

∥u∥Cm,n(Ω) =

m∑
j=0

n∑
k=0

∥u(j,k)∥C(Ω).

C̃m,n(Ω) is the Banach space of functions u : Ω → R, having continuous partial derivatives u(j,k)

(j = 0, . . . ,m; k = 0, . . . , n; j + k < m+ n), with the norm

∥u∥
C̃m,n(Ω)

=
n−1∑
k=0

∥u(m,k)∥C(Ω) +
m−1∑
j=0

n∑
k=0

∥u(j,k)∥C(Ω).

If z ∈ C̃m,n(Ω) and r > 0, then

B̃m,n(z; r) =
{
ζ ∈ C̃m,n(Ω) : ∥ζ − z∥

C̃m,n ≤ r
}
.

Let v = (v0, . . . , vn−1), w = (w0, . . . , wm−1) and z = (zm−1n−1, . . . , z0 0). For a function
f(x, y,v,w, z) that is is continuously differentiable with respect to v, w and z, set:

fmk(x, y,v,w, z) =
∂f(x, y,v,w, z)

∂vk
(k = 0, . . . , n− 1),

fjn(x, y,v,w, z) =
∂f(x, y,v,w, z)

∂wj
(j = 0, . . . ,m− 1),

fjk(x, y,v,w, z) =
∂f(x, y,v,w, z)

∂zj k
(j = 0, . . . ,m− 1; k = 0, . . . , n− 1),

pjk[u](x, y) = fjk

(
x, y, u(m,0)(x, y), . . . , u(m,n−1)(x, y), u(0,n)(x, y), . . . , u(m−1,n)(x, y),

u(m−1,n−1)(x, y), . . . , u(x, y)
)

(j = 0, . . . ,m; k = 0, . . . , n; j + k < m+ n).
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Definition 1. Let the function f(x, y,v,w, z) be continuously differentiable with respect to the
phase variables v, w and z. We say that problem (1), (2) to is strongly (u0, r)-well-posed, if:

(I) it has a solution u0(x, y);

(II) in the neighborhood B̃m,n(u0; r) u0 is the unique solution;

(III) there exists ε0 > 0, δ0 > 0 and M0 > 0 such that for any δ ∈ (0, δ0), φ̃j ∈ Cn([0, b]),

ψ̃k ∈ Cm([0, a]), and f̃(x, y,v,w, z) satisfying the inequalities

∥φj − φ̃j∥Cn([0,b]) < δ (j = 1, . . . ,m), ∥ψk − ψ̃k∥Cm([0,a]) < δ (k = 1, . . . , n),∥∥fv(x, y,v,w, z)− f̃v(x, y,v,w, z)
∥∥+

∥∥fw(x, y,v,w, z)− f̃w(x, y,v,w, z)
∥∥ < ε0,∣∣f(x, y,v,w, z)− f̃(x, y,v,w, z)

∣∣ < δ

in the neighborhood B̃m,n(u0; r) the problem

u(m,n) = f̃
(
x, y, u(m,0), . . . , u(m,n−1), u(0,n), . . . , u(m−1,n), u(m−1,n−1), . . . , u

)
, (1̃)

lj(u( · , y))(y) = φ̃j(y) (j = 1, . . . ,m), hk(u
(m,0)(x, · ))(x) = ψ̃

(m)
k (x) (k = 1, . . . , n) (2̃)

has a unique solution ũ and
∥u− ũ∥Cm,n(Ω) < M0δ.

Following [4] introduce the definition.

Definition 2. Problem (1), (2) is called strongly well-posed if it is strongly (u0, r)-well-posed for
every r > 0.

First consider the linear case, i.e., the equation

u(m,n) =

n−1∑
k=0

pmk(x, y)u
(m,k) +

m−1∑
j=0

pjn(x, y)u
(j,n) +

m−1∑
j=0

n−1∑
k=0

pjk(x, y)u
(j,k) + q(x, y). (3)

Theorem 1. The linear problem (3), (2) is strongly well-posed if and only if:

(i) the problem

ζ(n) =

n−1∑
i=0

pmi(x, y)ζ
(i); hk(ζ)(x) = 0 (k = 1, . . . , n) (4)

has only the trivial solution for every x ∈ [0, a];

(ii)

ξ(m) =
m−1∑
i=0

pin(x, y)ξ
(i); lj(ξ)(x) = 0 (j = 1, . . . ,m) (5)

has only the trivial solution for every y ∈ [0, b];

(iii) the homogeneous problem

u(m,n) =

n−1∑
k=0

pmk(x, y)u
(m,k) +

m−1∑
j=0

pjn(x, y)u
(j,n) +

m−1∑
j=0

n−1∑
k=0

pjk(x, y)u
(j,k), (30)

lj(u( · , y))(y) = 0 (j = 1, . . . ,m), hk(u
(m,0)(x, · ))(x) = 0 (k = 1, . . . , n) (20)

has only the trivial solution.
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Theorem 2. Let the function f be continuously differentiable with respect to the phase variables
v, w and z, and let problem (1), (2) be strongly (u0, r)-well-posed for some r > 0. Then problem
(30), (20) is strongly well-posed, where

pjk(x, y) = pjk[u0](x, y) (j = 0, . . . ,m; k = 0, . . . , n).

Theorem 3. Let the function f be continuously differentiable with respect to the phase variables
v, w and z, and let there exist functions Pijk ∈ C(Ω) such that:

(A0)

P1jk(x, y) ≤ fjk(x, y,v,w, z) ≤ P2jk(x, y) for (x, y,v,w, z) ∈ Ω× Rn+m+mn

(j = 0, . . . ,m; k = 0, . . . , n; j + k < m+ n);

(A1) for every x ∈ [0, a] and arbitrary measurable functions pmk : Ω → R satisfying the inequalities

P1mk(x, y) ≤ pmk(x, y) ≤ P2mk(x, y) for (x, y) ∈ Ω (k = 0, . . . , n− 1), (6)

problem (4) has only the trivial solution;

(A2) for every y ∈ [0, b] and arbitrary measurable functions pjn : Ω → R satisfying the inequalities

P1jn(x, y) ≤ pjn(x, y) ≤ P2jn(x, y) for (x, y) ∈ Ω (j = 0, . . . ,m− 1), (7)

problem (5) has only the trivial solution;

(A3) for arbitrary measurable functions pjk : Ω → R satisfying the inequalities

P1jk(x, y)≤pjk(x, y)≤P2jk(x, y) for (x, y)∈Ω (j=0, . . . ,m, k=0, . . . , n; j+k<m+n), (8)

problem (30), (20) has only the trivial solution.

Then problem (1), (2) is strongly well-posed.

Consider the “perturbed” equation

u(m,n) = f
(
x, y, u(m,0), . . . , u(m,n−1), u(0,n), . . . , u(m−1,n), u(m−1,n−1), . . . , u

)
+ q(x, y, u(m−1,n−1), . . . , u). (1q)

Theorem 4. Let the function f satisfy all of the conditions of Theorem 3, and q(x, y, z) be an
arbitrary continuous function such that

lim
∥z∥→+∞

|q(x, y, z)|
∥z∥

= 0 (9)

uniformly on Ω. Then problem (1q), (2) has at least one solution.

Corollary 1. Let problem (30), (20) be well-posed, and q(x, y, z) be an arbitrary continuous function
satisfying condition (9) uniformly on Ω. Then the equation

u(m,n) =

n−1∑
k=0

pmk(x, y)u
(m,k) +

m−1∑
j=0

pjn(x, y)u
(j,n) +

m−1∑
j=0

n−1∑
k=0

pjk(x, y)u
(j,k)

+ q(x, y, u(m−1,n−1), . . . , u)

has at least one solution satisfying conditions (2).
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The initial-boundary conditions

u(j−1,0)(0, y) = φj(y) (j = 1, . . . ,m), hk(u
(m,0)(x, · ))(x) = ψ

(m)
k (x) (k = 1, . . . , n) (10)

are the particular case of (2).

Theorem 5. Let the function f be continuously differentiable with respect to the phase variables
v and w, and let there exist a constant M and functions P1mk, P2mk ∈ C(Ω) satisfying conditions
(A1) of Theorem 3, such that

P1mk(x, y) ≤ fmk(x, y,v,w, z) ≤ P2mk(x, y)

for (x, y,v,w, z) ∈ Ω× Rn+m+mn (k = 0, . . . , n− 1),∣∣f(x, y,0,w, z)∣∣ ≤M
(
1 + ∥w∥+ ∥z∥

)
.

Then problem (1), (10) is solvable. Moreover, if f is locally Lipschitz continuous with respect to z,
then problem is uniquely solvable.

Remark 1. In Theorems 3–5 continuous differentiability of the function f(x, y,v,w, z) with respect
to v and w can be replaced by Lipschitz continuity, although that will make the formulation of the
theorems more cumbersome. However, without Lipschitz continuity problem (1), (2) may not have
a classical solution at all.

Indeed, in the rectangle [0, 1]× [0, 2] consider the characteristic value problem

uxy =
3

2
u

1
3
y ,

u(0, y) =
1

2
(y − 1)2 for y ∈ [0, 2], ux(x, 0) = 0 for x ∈ [0, 1].

It has a unique absolutely continuous solution

u(x, y) =
1

2
+

y∫
0

sgn(t− 1)(x+ |t− 1|)
3
2 dt,

which is not a classical solution because uy(x, y) = sgn(y − 1)(x+ |y − 1|)
3
2 is discontinuous along

the line y = 1.

Remark 2. In Theorem 5 condition (A1) cannot be weakened. Indeed, in the rectangle [0, 2π]×[0, 1]
consider the initial-periodic problem

uxy = 3p(u2)ux − cosx, (11)

u(0, y) = 0 for y ∈ [0, 1], ux(x, 0) = ux(x, 1) for x ∈ [0, 2π], (12)

where p ∈ C∞(R), p(z)z > 0 for z ̸= 0 and

p(z) =

{
z if |z| < 2,

3 sgn z if |z| > 3.

Although the righthand side of the equation is smooth, problem (11), (12) has a unique absolutely

continuous but not continuously differentiable solution u(x) = sin
1
3 x.
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We consider one-dimensional analog of the following system which arises in the mathematical
modeling of process of an electromagnetic field penetration into a substance [11]

∂H

∂t
= − rot

[
a

( t∫
0

| rotH|2 dτ
)
rotH

]
, (1)

where H = (H1,H2,H3) is a vector of the magnetic field and function a = a(S) is defined for
S ∈ [0,∞).

Note that system (1) is obtained by the reduction of the well-known Maxwell’s equations to the
integro-differential form [2]. There are many works devoted to the investigation of the particular
cases of system (1) (see, for example, [1–10,12–14,16] and the references therein).

Let us consider the following magnetic field

H = (0, U, V ),

where
U = U(x, t), V = V (x, t).

Then from (1) we get the following system of nonlinear integro-differential equations:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
,

∂V

∂t
=

∂

∂x

[
a(S)

∂V

∂x

]
, (2)

where

S(x, t) =

t∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2]
dτ. (3)

In [13], some generalization of system of type (1) is proposed. In particular, assuming the
temperature of the considered body to be constant throughout the material, i.e., depending on
time but independent of the space coordinates, the process of penetration of the magnetic field
into the material is modeled by so-called averaged integro-differential model, (2), (3) type analog
of which have the following form:

∂U

∂t
= a(S)

∂2U

∂x2
,

∂V

∂t
= a(S)

∂2V

∂x2
, (4)

where

S(t) =

t∫
0

1∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2]
dx dτ. (5)
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The existence of solutions of the corresponding initial-boundary value problems for the models
of type (2), (3) and (4), (5) are studied in many works (see, for example, [1–5, 12–14, 16] and the
references therein).

Our aim is to study the existence and uniqueness of solutions and discrete analog for the initial-
boundary value problem with mixed boundary conditions for system (4), (5) in case a(S) = (1+S)p,
0 < p ≤ 1.

Thus, in the domain [0, 1]× [0,∞) let us consider the following initial-boundary value problem:

∂U

∂t
=

(
1 +

t∫
0

1∫
0

[(∂U
∂x

)2 +
(∂V
∂x

)2]
dx dτ

)p ∂2U

∂x2
,

∂V

∂t
=

(
1 +

t∫
0

1∫
0

[(∂U
∂x

)2
+
(∂V
∂x

)2]
dx dτ

)p ∂2V

∂x2
,

(6)

U(0, t) = V (0, t) = 0,
∂U

∂x

∣∣∣∣
x=1

=
∂V

∂x

∣∣∣∣
x=1

= 0, t ≥ 0, (7)

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ [0, 1], (8)

where 0 < p ≤ 1; U0 and V0 are given functions.

The following statement takes place.

Theorem 1. If 0 < p ≤ 1, U0, V0 ∈ H2(0, 1) and conditions of coincidence are fulfilled, then there
exists unique solution (U, V ) of problem (6)–(8) such that: U, V ∈ L2(0,∞;H2(0, 1)), Uxt, Vxt ∈
L2(0,∞;L2(0, 1)).

We use usual L2(0, 1) and Sobolev spaces H2(0, 1).

The existence part of the Theorem 1 is proved using Galerkin’s modified method and compact-
ness arguments as in [15, 18] for nonlinear parabolic equations and as it is carried out for the case
of one component magnetic field in works [2–4].

As to uniqueness of a solution, we assume that there exist two different (U1, V1) and (U2, V2)
solutions of problem (6)–(8) and introduce the differences Z = U2−U1 and W = V2−V1. To show
that Z = W ≡ 0 the following identity, analogue of Hadamard formula, is mainly used:

{(
1 +

t∫
0

1∫
0

[(∂U2

∂x

)2
+
(∂V2

∂x

)2]
dx dτ

)p ∂U2

∂x

−
(
1 +

t∫
0

1∫
0

[(∂U1

∂x

)2
+
(∂V1

∂x

)2]
dx dτ

)p ∂U1

∂x

}(∂U2

∂x
− ∂U1

∂x

)

+

{(
1 +

t∫
0

1∫
0

[(∂U2

∂x

)2
+
(∂V2

∂x

)2]
dx dτ

)p ∂V2

∂x

−
(
1 +

t∫
0

1∫
0

[(∂U1

∂x

)2
+
(∂V1

∂x

)2]
dx dτ

)p ∂V1

∂x

}(∂V2

∂x
− ∂V1

∂x

)

=

1∫
0

d

dµ

(
1 +

t∫
0

1∫
0

{[∂U1

∂x
+ µ

(∂U2

∂x
− ∂U1

∂x

)]2
+
[∂V1

∂x
+ µ

(∂V2

∂x
− ∂U1

∂x

)]2}
dx dτ

)p
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×
[∂U1

∂x
+ µ

(∂U2

∂x
− ∂U1

∂x

)]
dµ
(∂U2

∂x
− ∂U1

∂x

)
+

1∫
0

d

dµ

(
1 +

t∫
0

1∫
0

{[∂U1

∂x
+ µ

(∂U2

∂x
− ∂U1

∂x

)]2
+
[∂V1

∂x
+ µ

(∂V2

∂x
− ∂U1

∂x

)]2}
dx dτ

)p

×
[∂V1

∂x
+ µ

(∂V2

∂x
− ∂V1

∂x

)]
dµ
(∂V2

∂x
− ∂V1

∂x

)
.

Now, let us consider the finite difference scheme for problem (6)–(8). On [0, 1]× [0, T ] let us in-
troduce a net with mesh points denoted by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N
with h = 1/M , τ = T/N . The initial line is denoted by j = 0. The discrete approximation at
(xi, tj) is designed by (uji , v

j
i ) and the exact solution to problem (6)–(8) by (U j

i , V
j
i ). We will use

the following known notations [17]:

rjx,i =
rji+1 − rji

h
, rjx,i =

rji − rji−1

h
.

Introduce inner products and norms:

(rj , gj) = h

M−1∑
i=1

rji g
j
i , (rj , gj ] = h

M∑
i=1

rji g
j
i ,

∥rj∥ = (rj , rj)1/2, ∥rj ]| = (rj , rj ]1/2.

For problem (6)–(8), let us consider the following finite difference scheme:

uj+1
i − uji

τ
−
(
1 + τh

j+1∑
k=1

M−1∑
ℓ=1

[
(ukx,ℓ)

2 + (vkx,ℓ)
2
])p

uj+1
xx,i = f j

1,i,

vj+1
i − vji

τ
−
(
1 + τh

j+1∑
k=1

M−1∑
ℓ=1

[
(ukx,ℓ)

2 + (vkx,ℓ)
2
])p

vj+1
xx,i = f j

2,i,

i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

(9)

uj0 = vj0 = ujxM = vjxM = 0, j = 0, 1, . . . , N, (10)

u0i = U0,i, v0i = V0,i, i = 0, 1, . . . ,M. (11)

Multiplying equations in (9) scalarly by uj+1
i and vj+1

i , respectively, it is not difficult to get the
inequalities:

∥un∥2 +
n∑

j=1

∥ujx]|
2τ < C, ∥vn∥2 +

n∑
j=1

∥vjx]|
2τ < C, n = 1, 2, . . . , N. (12)

Here and below C is a positive constant independent from τ and h.
The a priori estimates (12) guarantee the stability of scheme (9)–(11). Note that the uniqueness

of a solution of scheme (9)–(11) can be proved too.
The main statement of this note can be stated as follows.

Theorem 2. If problem (6)–(8) has a sufficiently smooth solution (U(x, t), V (x, t)), then the
solution uj = (uj1, u

j
2, . . . , u

j
M ), vj = (vj1, v

j
2, . . . , v

j
M ), j = 1, 2, . . . , N of the difference scheme

(9)–(11) tends to the solution of the continuous problem (6)–(8) U j = (U j
1 , U

j
2 , . . . , U

j
M ), V j =

(V j
1 , V

j
2 , . . . , V

j
M ), j = 1, 2, . . . , N as τ → 0, h → 0 and the following estimates are true:

∥uj − U j∥ ≤ C(τ + h), ∥vj − V j∥ ≤ C(τ + h).

We have carried out numerous numerical experiments for problem (6)–(8) with different kind
of right hand sides and initial-boundary conditions.
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Asymptotic Behaviour of Solutions of n-Order Differential Equations
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Consider the differential equation

y(n) = αp(t)
n−1∏
j=0

φj(y
(j)), (1)

where n ≥ 2, α ∈ {−1, 1}, p : [a,+∞[→ ]0,+∞[ is a continuous function, a ∈ R, the φj : ∆Yj →
]0;+∞[ are continuous functions regularly varying as y(j) → Yj of order σj , j = 0, n− 1, ∆Yj is a
one-sided neighborhood of the point Yj , Yj ∈ {0,±∞}1.

The equation (1) is a particular case of the equation, comprehensively studied by V. M. Evtukhov
and A. M. Klopot [3]

y(n) =

m∑
k=1

αkpk(t)

n−1∏
j=0

φkj(y
(j)),

where n ≥ 2, αk ∈ {−1, 1} (k = 1,m), the pk : [a, ω[→ ]0,+∞[ (k = 1,m) are continuous functions,
−∞ < a < ω ≤ +∞, the φkj : ∆Yj → ]0;+∞[ (k = 1,m, j = 0, n− 1) are continuous functions
regularly varying as y(j) → Yj of order σj , ∆Yj is a one-sided neighborhood of the point Yj , Yj is
equal to either 0 or ±∞.

From mentioned results necessary and sufficient existence conditions of the so-called
P+∞(Y0, . . . , Yn−1, λ0)-solutions of equation (1) can be obtained for all λ0 (−∞ ≤ λ0 ≤ +∞).
Moreover, asymptotic representations as t → +∞ of such solutions and their derivatives of order
up to n− 1 can be established.

It follows from the definition of these solutions that

lim
t→+∞

y(j)(t) = Yj ∈ {0,±∞} (j = 0, n− 1), lim
t→+∞

[y(n−1)(t)]2

y(n−2)(t)y(n)(t)
= λ0.

However, the set of the monotonous solutions of equation (1), defined in some neighborhood of
+∞, also can have the solutions such that for each of them there exists a number k ∈ {1, . . . , n}
so that

y(n−k)(t) = c+ o(1) (c ̸= 0) as t → +∞. (2)

When k = 1, 2 or the functions φi(y
(i)) (i = n− k + 1, n− 2) tend to positive constants, as

y(i) → Yi, a question on the existence of the solutions of type (2) of equation (1) can be solved
without any assumption on the limits. Otherwise, we can not get asymptotic formulas of these
solutions and their derivatives of order up to n− 1 directly from equation (1).

Some results concerning existence of solutions of type (2) were obtained in corollary 8.2 of the
monograph by I. T. Kiguradze and T. A. Chanturia [2, Ch. II, § 8, p. 207] for general type equations.
But these results provide for considerably strict restriction on the (n−k+1)-st derivative of solution.

1For Yj = ±∞ here and in the following all numbers in the neighborhood ∆Yj are assumed to have constant sign.
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In order to receive new results with less strict restrictions on behaviour of this and following
derivatives of order ≤ n− 1 in case, when k ∈ {3, . . . , n} and not all φi(y

(i)) (i = n− k + 1, n− 2)
tend to positive constant as y(i) → Yi, let us introduce the following definition.

Definition. The solution y of the differential equation (1) is referred (for k ∈ {3, . . . , n}) to as a
Pk
+∞(λ0)-solution, where −∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0,+∞[⊂ [a,+∞[ and

satisfies the conditions

lim
t→+∞

y(n−k)(t) = c (c ̸= 0), lim
t→+∞

[y(n−1)(t)]2

y(n−2)(t)y(n)(t)
= λ0. (3)

It is obvious that by virtue of the first relative (3) for these solutions the following representations
hold

y(l−1)(t) =
ctn−l−k+1

(n− l − k + 1)!
[1 + o(1)] (l = 1, n− k) as t → +∞ (4)

and c ∈ ∆Yn−k.
It readily follows from the form of equation (1) that y(n)(t) has constant sign in some neighbor-

hood of +∞. Then y(n−l)(t) (l = 1, k − 1) are strictly monotone functions in neighborhood of +∞
and by virtue of (2) can tend only to zero as t → +∞. Therefore it is necessary that

Yj−1 = 0 for j = n− k + 2, n. (5)

Let us introduce the numbers µj (j = 0, n− 1)

µj =


1 if Yj = +∞,

or Yj = 0, and ∆Yj is a right neighborhood of the point 0,

−1 if Yj = −∞,

or Yj = 0 and ∆Yj is a left neighborhood of the point 0,

such that

µjµj+1 > 0 for j = 0, n− k − 1, µjµj+1 < 0 for j = n− k + 1, n− 2. (6)

Besides, note that in some neighborhood of +∞

sign y(j)(t) = µj (j = 0, n− 1), sign y(n)(t) = α. (7)

In this case along with (6) the following inequality hold

αµn−1 < 0. (8)

Moreover, it follows from (4) that

Yj−1 =

{
+∞ if µn−k > 0,

−∞ if µn−k < 0,
for j = 1, n− k. (9)

These conditions on µj (j = 0, n− 1) and α are necessary for existence of Pk
+∞(λ0)-solutions

of equation (1).
The aim of the present paper is to obtain necessary and sufficient existence conditions of

Pk
+∞(λ0)-solutions (k ∈ {3, . . . , n}) of equation (1) for λ0 ∈ R \ {0, 12 , . . . ,

k−3
k−2 , 1}, and estab-

lish asymptotic as t → +∞ formulas of their derivatives of order ≤ n− 1. Moreover, the question
on the quantity of studied solutions will be solved.

It is significant that by virtue of the obtained results by V. M. Evtukhov [1] studied solutions
of equation (1) hold the following a priori asymptotic conditions.
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Lemma 1. Let k ∈ {3, . . . , n} and λ0 ∈ R \ {0, 12 , . . . ,
k−3
k−2 , 1}. Then for each Pk

+∞(λ0)-solution of
equation (1) the following asymptotic as t → +∞ relations hold

y(l−1)(t) ∼ [(λ0 − 1)t]n−l

n−1∏
i=l

a0i

y(n−1)(t) (l = n− k + 2, n− 1), (10)

where y : [t0,+∞[→ R is an arbitrary Pk
+∞(λ0)-solution of equation (1), a0i = (n−i)λ0−(n−i−1)

(i = 1, n− 1).

We say that a continuous function L : ∆Y0 → ]0,+∞[ slowly varying as y → Y0 satisfies
condition S0 if

L(µe[1+o(1)] ln |y|) = L(y)[1 + o(1)] as y → Y0 (y ∈ ∆Y0),

where µ = sign y.

Condition S0 is necessarily satisfied for functions L that have a nonzero finite limit as y → Y0,
for functions of the form

L(y) = | ln |y||γ1 , L(y) = | ln |y||γ1
∣∣ ln | ln |y||∣∣γ2 ,

where γ1, γ2 ̸= 0, and for many other functions.

We need the following auxiliary notations:

γ = 1−
n−1∑

j=n−k+1

σj , ν =

n−2∑
j=n−k+1

σj(n− j − 1),

a0j = (n− j)λ0 − (n− j − 1) (j = 1, n− 1), C =

n−2∏
j=n−k+1

∣∣∣∣(λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣σj

,

I(t) = φn−k(c)M(c)

t∫
A

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ,

where

A =


a1 if

+∞∫
a1

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ = ±∞,

+∞ if

+∞∫
a1

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ < +∞,

a1 ≥ a such that µj−1t
n−k−j+1 ∈ ∆Yj−1 (j = 1, n− k) for t ≥ a1,

M(c) =

n−k∏
j=1

∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

.

Theorem 1. Let γ ̸= 0, k ∈ {3, . . . , n} and λ0 ∈ R \ {0, 12 , . . . ,
k−3
k−2 , 1}. Then for existence of

Pk
+∞(λ0)-solutions of equation (1), it is necessary that c ∈ ∆Yn−k, along with (5), (6), (8), (9)

inequalities

λ0 < 1, a0j+1 > 0 (j = n− k + 1, n− 2) (11)
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hold and the following condition be satisfied:

lim
t→+∞

tI ′(t)

I(t)
=

γ

λ0 − 1
. (12)

Moreover, each solution of that kind admits along with (2) and (4) the asymptotic representations
(10) as t → +∞ and

|y(n−1)(t)|γ

Ln−1(y(n−1)(t))
n−2∏

j=n−k+1

Lj

(
[(λ0−1)t]n−j−1

n−1∏
i=j+1

a0i

y(n−1)(t)
) = αµn−1γCI(t)[1 + o(1)].

Theorem 2. Let γ ̸= 0, k ∈ {3, . . . , n}, λ0 ∈ R \ {0, 12 , . . . ,
k−3
k−2 , 1} and functions Lj (j =

n− k + 1, n− 1) slowly varying as y(j) → Yj satisfy condition S0. In addition, let c ∈ ∆Yn−k and
conditions (5), (6), (8), (9), (11) and (12) hold. Then, in case of existence of Pk

+∞(λ0)-solutions
of equation (1),

+∞∫
a2

τk−2
∣∣∣I(τ)Ln−1(µn−1τ

1
λ0−1 )

n−2∏
j=n−k+1

Lj(µjτ
a0j+1
λ0−1 )

∣∣∣ 1
γ
dτ < +∞, (13)

where a2 ≥ a1 such that µj−1t
a0j

λ0−1 ∈ ∆Yj−1 (j = n− k + 2, n− 1), µn−1t
1

λ0−1 ∈ ∆Yn−1 for t ≥ a2,
and each solution of that kind admits along with (4) the following asymptotic representations as
t → +∞

y(n−k)(t) = c+
µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + o(1)],

y(l−1)(t) =
µn−1(λ0 − 1)n−ltn−l−k+2

n−1∏
i=l

a0i

W ′(t)[1 + o(1)] (l = n− k + 2, n− 1),

y(n−1)(t) = µn−1
W ′(t)

tk−2
[1 + o(1)],

(14)

where

W (t) =

t∫
+∞

τk−2
∣∣∣γCI(τ)Ln−1(µn−1τ

1
λ0−1 )

n−2∏
j=n−k+1

Lj(µjτ
a0j+1
λ0−1 )

∣∣∣ 1
γ
dτ.

If the inequality σn−1 ̸= 1 holds along with mentioned conditions, then equation (1) has at least
one Pk

+∞(λ0)-solution that admits such representations. Moreover, for each c ∈ ∆Yn−k in case
λ0 ∈ ] − ∞, k−2

k−1 [ \{0,
1
2 , . . . ,

k−3
k−2} (λ0 ∈ [k−2

k−1 ; 1[) there exists an (n − k + 1)-parameter ((n − k)-
parameter, respectively) family of solutions with such representations if σn−1 > 1, and (n − k)-
parameter ((n− k − 1)-parameter) if σn−1 < 1.
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Consider the control system

ẋ = Ax+Bu, t ≥ 0, (1)

with the initial condition x(0) = xo, where x ∈ Rn, and u ∈ Rr, A, B are constant matrices of
appropriate sizes, x0 ∈ Rn.

De�nition 1. System (1) is said to be controllable if for each initial condition x0, there exists a
time t1, 0 < t1 < +∞, and piecewise continuous control u(t), 0 ≤ t ≤ t1, such that the solution
x(t), t ≥ 0, of system (1) satis�es the condition x(t1) = 0.

It is known [3] that for the controllability of system (1) it is necessary and su�cient that

rank(B,AB, . . . , An−1B) = n. (2)

According to the controllability (by Kalman [3]) the input is chosen from the class of piecewise
continuous functions. At the same time it is interesting the possibility to choose the control from
restricted class.

Let the control be constructed by the input

u(t) = Cy(t) (3)

of the di�erential-algebraic system

D0ẏ(t) = Dy(t), y(0) = y0, (4)

where y, y0 ∈ Rn, C � r × n-matrix, D0D � n× n-matrices.

We say that system (4) is the dynamical regulator for system (1).

De�nition 2. System (1) is said to be controllable by dynamical regulator (3) if for each initial
condition x0, there exists a time t1, 0 < t1 < +∞, and initial condition y0 of the regulator (4) such
that x(t1) = 0.

Theorem. System (1) is controllable by dynamical regulator (4) if and only if

rank(B,AB, . . . , An−1B) = n

and

rank(CDd
0D0, CDd

0KD0, . . . , CDd
0K

n−1D0) = n,

where Dd
0 � Drazin inverse of D0, K = DDd

0.
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Consider the di�erential equation
y′′ = f(t, y, y′), (1)

where f : [a, ω[×∆Y0 ×∆Y1 → R is continuous function, −∞ < a < ω ≤ +∞, ∆Yi (i ∈ {0, 1}) is a
one-side neighborhood of Yi and Yi (i ∈ {0, 1}) is either 0 or ±∞. We assume that the numbers µi

(i = 0, 1) given by the formula

µi =

{
1 if either Yi = +∞, or Yi = 0 and ∆Yi is right neighborhood of the point 0,

−1 if either Yi = −∞, or Yi = 0 and ∆Yi is left neighborhood of the point 0,

satisfy the relations

µ0µ1 > 0 for Y0 = ±∞ and µ0µ1 < 0 for Y0 = 0. (2)

Conditions (2) are necessary for the existence of solutions of Eq. (1) de�ned in a left neighborhood
of ω and satisfying the conditions

y(i)(t) ∈ ∆Yi for t ∈ [t0, ω[ , lim
t↑ω

y(i)(t) = Yi (i = 0, 1).

In monograph [1] de�nitions of singular solutions of �rst and second kinds are introduced. Here
we study Eq. (1) on class singular Pt∗(Y0, Y1, λ0)-solutions, that are de�ned as follows.

De�nition 1. Let t∗ < ω. A solution y of Eq. (1) on interval [t0, t∗[⊂ [a, ω[ is called singular
Pt∗(Y0, Y1, λ0)-solution, where −∞ ≤ λ0 ≤ +∞, if it satis�es the conditions

y(i)(t) ∈ ∆Yi for t ∈ [t0, t∗[ , lim
t↑t∗

y(i)(t) = Yi (i = 0, 1), lim
t↑t∗

[y′(t)]2

y(t)y′′(t)
= λ0.

Note that the singular Pt∗(Y0, Y1, λ0)-solution of Eq. (1) is noncontinuable to the right solution.
Depending on the values of λ0 the set of all such solutions of Eq.(1) is disconnected into 4 disjoint
subsets respective to the values of λ0: λ0 ∈ R \ {0, 1}, λ0 = 0, λ0 = 1, λ0 = ±∞. Here we'll
formulate the properties of singular Pt∗(Y0, Y1, λ0)-solutions that correspond to the value λ0 = ±∞.
With this aim, we impose a restriction on the function f .

De�nition 2. We say that a function f satis�es condition (RN)∗∞ if there exists a number α0 ∈
{−1, 1}, a positive number A∗ and continuous functions φi : ∆Yi → ]0,+∞[ (i = 0, 1) of orders σi
(i = 0, 1) regular varying 1 as z → Yi (i = 0, 1) such that for arbitrary continuously di�erentiable
functions zi : [a, ω[ ∆Yi (i = 0, 1) satisfying the conditions

lim
t↑t∗

zi(t) = Yi (i = 0, 1),

lim
t↑t∗

(t− t∗)z
′
0(t)

z0(t)
= 1, lim

t↑t∗

(t− t∗)z
′
1(t)

z1(t)
= 0,

1De�nition of regular varying function see in [2].
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one has representation

f(t, z0(t), z1(t)) = α0A∗φ0(z0(t))φ1(z1(t))[1 + o(1)] as t ↑ t∗.

For each singular Pt∗(Y0, Y1, λ0)-solution assuming that the function f satis�es condition (RN)∗∞
with condition (2) we have

α0µ1 > 0 for Y1 = ±∞ and α0µ1 < 0 for Y1 = 0. (3)

De�nition 3. We say that a slowly varying as z → Yi (z ∈ ∆Yi) (i ∈ {0, 1}) function L : ∆Yi →
]0;+∞[ satis�es the condition S if for any continuous di�erentiable function l : ∆Yi → ]0; +∞[ ,
such that

lim
z→Yi
z∈∆Yi

zl′(z)

l(z)
= 0,

the following condition takes place

L(zl(z)) = L(z)(1 + o(1)) as z → Yi (z ∈ ∆Yi).

We introduce an auxiliary function I∞ by the formula

I∞(t) =

t∫
A∞

(t∗ − τ)−1L0(µ0(t∗ − τ)) dτ,

where the integration limit A∞ ∈ {a∞; t∗} (a∞ > a) is chosen so as the integrals I∞ tends either
to zero or to ±∞ as t ↑ t∗, L0(z) = φ0(z)|z|−σ0 .

Theorem 1.
1 Let the function f satisfy condition (RN)λ0 , the function φ0 satisfy condition S.

Moreover, let the orders σi (i = 0, 1) of the functions φi (i = 0, 1) regularly varying as y(i) → Yi
(i = 0, 1) satisfy the condition σ0 + σ1 ̸= 1. Then, for the existence of singular Pt∗(Y0, Y1, λ0)-
solutions of the di�erential equation (1), it is necessary and su�cient that together with conditions

(2), (3) the conditions

σ0 = −1, σ1 ̸= 2, Y0 = 0, Y1 = µ1 lim
t↑t∗

|I∞(t)|
1

2−σ1 ,

µ0µ1 < 0, α0µ1(2− σ1)I∞(t) > 0 as t ∈ ]a∞, t∗[

hold. Moreover, each solution of this kind admits the asymptotic representations

y′(t)2

φ1(y′(t))
= α0µ1(2− σ1)A∗I∞(t)[1 + o(1)],

y′(t)

y(t)
=

(1 + o(1))

(t− t∗)
as t ↑ ω

and such solutions form a one-parameter family if α0µ1(2− σ1) > 0.

Theorem 2. Let the function f satisfy condition (RN)λ0 , the functions φ0, φ1 satisfy condition S,
σ0+σ1 ̸= 1. Then each singular Pt∗(Y0, Y1, λ0)-solutions (in case of the existence) of the di�erential

equation (1) admits the asymptotic representations

y(t) = µ0(t∗ − t)
(
|2− σ1|A∗|I∞(t)|L1

(
µ1A∗| |I∞(t)|

1
2−σ1

)) 1
2−σ1 (1 + o(1)),

y′(t) = µ1

(
|2− σ1|A∗|I∞(t)|L1

(
µ1A∗||I∞(t)|

1
2−σ1

)) 1
2−σ1 (1 + o(1)) as t ↑ t∗.

1Theorem 1, Theorem 2 are obtained as corollaries from theorems of [3].
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To illustrate Theorem 1, we give the result of Eq. (1) of special form

y′′ =

m∑
k=1

αkA∗kφk0(y)φk1(y
′)

m+n∑
k=m+1

αkA∗kφk0(y)φk1(y′)

, (4)

where αk ∈ {−1, 1} (k = 1, . . . ,m+n), A∗k = const > 0 (k = 1, . . . ,m+n) and φki : ∆Yi → ]0,+∞[
(k = 1, . . . , n+m; i = 0, 1) are regular varying as z → Yi continuous functions of σki-th orders.

Theorem 3. Let for any i ∈ {1, . . . ,m}, j ∈ {m+ 1, . . . ,m+ n} inequalities

σi0 − σj0 + σi1 − σj1 ̸= 1, σi0 − σk0 < 0 for k ∈ {1, . . . ,m} \ {i},
σj0 − σk0 < 0 for k ∈ {m+ 1, . . . ,m+ n} \ {j}

hold and function φi0

φj0
satisfy condition S. Then, for the existence of singular Pt∗(Y0, Y1, λ0)-soluti-

ons of the di�erential equation (4), it is necessary and su�cient that together with conditions (2),
(3) the conditions

µ0µ1 < 0, αiαjµ1(2− σi1 − σj1)I∞ij(t) > 0 as t ∈ ]a∞, t∗[ ,

σi0 − σj0 = −1, σi1 − σj1 ̸= 2, Y0 = 0, Y1 = µ1 lim
t↑t∗

|I∞ij(t)|
1

2−σi1−σj1 ,

where

I∞ij(t) =

t∫
A∞

(t∗ − τ)−1 L0i(µ0(t∗ − τ))

L0j(µ0(t∗ − τ))
dτ, L0kz = φ0k(z)|z|σ0k , k = i, j,

hold. Moreover, each solution of this kind admits the asymptotic representations

y′(t)2φj1(y
′(t))

φi1(y′(t))
= αiαjµ1(2− σi1 + σj1)

A∗i
A∗j

I∞ij(t)[1 + o(1)],
y′(t)

y(t)
=

(1 + o(1))

(t− t∗)
as t ↑ ω

and such solutions form a one-parameter family if αiαjµ1(2− σi1 + σj1) > 0.
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Consider the periodic problem

u′′ = p(t)u+ q(t, u); u(0) = u(ω), u′(0) = u′(ω), (1)

where p ∈ L([0, ω]) and q : [0, ω]×R → R is a Carathéodory function. Under a solution of problem
(1), as usually, we understand a function u : [0, ω] → R which is absolutely continuous together
with its first derivative, satisfies given equation almost everywhere and verifies periodic conditions.

We are interested in the existence and uniqueness of a non-trivial non-negative solution of
problem (1) in the case when the function q may contain both sub-linear and super-linear non-
linearities. In particular, it follows from Corollary 4 stated below that for an arbitrary p ∈ L([0, ω]),
the problem

u′′ = p(t)u+ 3
√
u− u3; u(0) = u(ω), u′(0) = u′(ω)

has at least one non-trivial non-negative solution.

Definition 1. We say that the function p ∈ L([0, ω]) belongs to the set V+(ω) (resp. V−(ω)) if for
any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),

the inequality

u(t) ≥ 0 for t ∈ [0, ω]
(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)
is fulfilled.

Definition 2. We say that the function p ∈ L([0, ω]) belongs to the set V0(ω) if the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω)

has a nontrivial sign-constant solution.
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Introduce the hypothesis

q(t, x) ≤ q0(t, x) for a.e. t ∈ [0, ω] and all x ≥ x0,

x0 ≥ 0, q0 : [0, ω]× [x0,+∞[→ [0,+∞[ is a Carathéodory function,

q0(t, · ) : [x0,+∞[→ [0,+∞[ is non-decreasing for a.e. t ∈ [0, ω],

lim
x→+∞

1

x

ω∫
0

q0(s, x) ds = 0.


(H1)

A general existence result reads as follows.

Theorem 1. Let hypothesis (H1) be fulfilled and

q(t, 0) ≤ 0 for a.e. t ∈ [0, ω]. (2)

Let, moreover, there exist functions α, β ∈ AC 1([0, ω]) satisfying

α(t) > 0, β(t) > 0 for t ∈ [0, ω],

α′′(t) ≥ p(t)α(t) + q(t, α(t)) for a.e. t ∈ [0, ω], α(0) = α(ω), α′(0) ≥ α′(ω),

β′′(t) ≤ p(t)β(t) + q(t, β(t)) for a.e. t ∈ [0, ω], β(0) = β(ω), β′(0) ≤ β′(ω).

Then problem (1) has at least one solution u such that

u(t) ≥ 0 for t ∈ [0, ω], u ̸≡ 0, (3)

and

min
{
α(tu), β(tu)

}
≤ u(tu) ≤ max

{
α(tu), β(tu)

}
for some tu ∈ [0, ω]. (4)

Corollary 1. Let inequality (2) hold, hypothesis (H1) be fulfilled,

q(t, x) ≤ −xg(t, x) for a.e. t ∈ [0, ω] and all x > κ,

κ ≥ 0, g : [0, ω]× ]κ,+∞[→ R is a locally Carathéodory function,

g(t, · ) : ]κ,+∞[→ R is non-decreasing for a.e. t ∈ [0, ω],

 (H2)

and
q(t, x) ≥ xg1(t, x)− g2(t, x) for a.e. t ∈ [0, ω] and all x ∈ ]0, δ],

δ > 0, g1, g2 : [0, ω]× ]0, δ] → R are locally Carathéodory functions,

g1(t, · ) : ]0, δ] → R is non-increasing for a.e. t ∈ [0, ω],

g2(t, · ) : ]0, δ] → R is non-decreasing for a.e. t ∈ [0, ω],

lim
x→0+

1

x

ω∫
0

|g2(s, x)|ds = 0.


(H3)

Let, moreover, there exist a non-negative function ℓ ∈ L([0, ω]) and numbers r1 ∈ ]0, δ], r2 > κ such
that

p+ g1( · , r1) ∈ V−(ω), p+ ℓ− g( · , r2) ∈ IntV+(ω).

Then problem (1) has at least one solution u satisfying condition (3).

Now we provide efficient conditions guaranteeing the existence of a non-trivial non-negative
solution of problem (1).
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Corollary 2. Let inequality (2) hold, hypotheses (H1), (H2), and (H3) be fulfilled, and

lim
x→κ+

g(t, x) ≤ 0 for a.e. t ∈ [0, ω], lim
x→+∞

ω∫
0

g(s, x) ds = +∞. (5)

Let, moreover, at least one of the following conditions be satisfied:

(a) p ∈ V−(ω) and
g1(t, δ) ≥ 0 for a.e. t ∈ [0, ω]; (6)

(b) p ∈ V0(ω), inequality (6) holds, and g1( · , δ) ̸≡ 0;

(c) p ∈ V+(ω), inequality (6) holds, and

lim
x→0+

ω∫
0

g1(s, x) ds = +∞; (7)

(d)

lim
x→0+

∫
E

g1(s, x) ds = +∞ for every E ⊆ [0, ω], measE > 0. (8)

Then problem (1) has at least one solution u satisfying condition (3).

Further, we present some consequences of the general results for the following particular cases
of (1):

u′′ = p(t)u+ h(t) ln(1 + |u|)− f(t) ln(1 + |u|)u; u(0) = u(ω), u′(0) = u′(ω) (9)

and
u′′ = p(t)u+ h(t)|u|λ sgnu− f(t)|u|µ sgnu; u(0) = u(ω), u′(0) = u′(ω), (10)

where h, f ∈ L([0, ω]) and λ, µ > 0, (1− λ)(µ− 1) > 0.

Corollary 3. Let
f(t) ≥ 0 for a.e. t ∈ [0, ω], f ̸≡ 0, (11)

and
h(t) ≥ 0 for a.e. t ∈ [0, ω].

Then problem (9) has a positive solution if and only if p+ h ∈ V−(ω).

Concerning problem (10), we first recall a known result in the case, when 0 < µ < 1 < λ.

Proposition 1. Let 0 < µ < 1 < λ and

h(t) ≥ 0, f(t) ≥ 0 for a.e. t ∈ [0, ω], h ̸≡ 0, f ̸≡ 0. (12)

If, moreover, p ∈ V−(ω), then problem (10) has a positive solution.

Definition 3. We say that the function p ∈ L([0, ω]) belongs to the set D(ω) if the problem

u′′ = p̃(t)u; u(a) = 0, u(b) = 0

has no non-trivial solution for any a, b ∈ R satisfying 0 < b − a < ω, where p̃ is the ω-periodic
extension of the function p to the whole real axis.
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For the case, when 0 < λ < 1 < µ, we get the following statement.

Corollary 4. Let 0 < λ < 1 < µ, relation (11) hold, and one of the following conditions be
satisfied:

(1) h(t) > 0 for a.e. t ∈ [0, ω];

(2) h(t) ≥ 0 for a.e. t ∈ [0, ω], h ̸≡ 0, and p ∈ D(ω).

Then problem (10) has at least one non-trivial non-negative solution.

Finally, we discuss the question of the positivity of solutions of problem (10), where 0 < λ <
1 < µ. We start with the following proposition, which provides a sufficient condition guaranteeing
that any non-trivial sign-constant solution of problem (10) has no zero, i. e., it is either positive or
negative.

Proposition 2. Let p ∈ IntD(ω). Then there exists ϱ > 0 such that for any λ ∈ ]0, 1[ , µ > 1, and
h, f ∈ L([0, ω]) satisfying conditions (12) and(ω

4

)µ−1
1−λ

e
ω(µ−1)
8(1−λ)

∥[p]+∥L ∥h∥
µ−1
1−λ

L ∥f∥L ≤ ϱ, (13)

any non-trivial non-negative solution of problem (10) is positive.

In some particular cases, the number ϱ appearing in Proposition 2 can be estimated from below.
For example, the following statement holds.

Corollary 5. Let 0 < λ < 1 < µ, condition (12) hold, and

∥[p]−∥L <
4

ω
,(ω

4

)µ−1
1−λ

e
ω(µ−1)
8(1−λ)

∥[p]+∥L ∥h∥
µ−1
1−λ

L ∥f∥L ≤ 4

ω
− ∥[p]−∥L . (14)

Then problem (10) has at least one positive solution. Moreover, every non-trivial non-negative
solution of problem (10) is positive.

The assertion of the previous corollary remains true if p ∈ V+(ω) and the point-wise condition
(15) is satisfied instead of (14).

Corollary 6. Let 0 < λ < 1 < µ, p ∈ V+(ω), condition (12) hold, and(ω
4
∥h∥L e

ω
8
∥[p]+∥L

)µ−λ
1−λ

f(t) ≤ h(t) for a.e. t ∈ [0, ω]. (15)

Then problem (10) has at least one positive solution. Moreover, every non-trivial non-negative
solution of problem (10) is positive.

Remark 1. The inclusion p ∈ V+(ω) holds, for example, if

∥[p]+∥L ≤ ∥[p]−∥L ≤ 4

ω
, p ̸≡ 0.
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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with a bounded piecewise continuous coefficient matrix A and the Cauchy matrix XA. Suppose
that ∥A(t)∥ ≤ a < +∞ for all t ≥ 0. In [8], see also [9, p. 379] and [1, p. 236], I. G. Malkin has
used estimations of the form

∥XA(t, s)∥ ≤ D exp(α(t− s) + βs), t ≥ s ≥ 0, D > 0, α, β ∈ R, (2)

in order to investigate asymptotic stability of the trivial solution to a system

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ 0,

with a nonlinear perturbation f(t, y) of a higher order. An ordered pair (α, β) ∈ R2 is called a
Malkin estimation for system (1) if there exists a number D = D(α, β) > 0 such that (2) holds.
We denote the set of all Malkin estimations for system (1) by E(A).

A pair (α, β) ∈ R2 is said to be a minimal Malkin estimation [7] if (α + ξ, β + η) ∈ E(A) for
all ξ > 0, η > 0, and (α + ξ, β + η) ̸∈ E(A) for all ξ ≤ 0, η ≤ 0, ξ2 + η2 ̸= 0. Note that a
minimal Malkin estimation is not necessarily an element of E(A) by definition; an example is given
below. On the other hand, if (α, β) ∈ E(A) and numbers ξ and η are nonnegative, then the pair
(α+ ξ, β + η) satisfies inequality (2) with the same D = D(α, β) since t ≥ s ≥ 0, i.e. the inclusion
(α+ ξ, β + η) ∈ E(A) is now valid.

We denote the set of all minimal Malkin estimations for system (1) by M(A).
It can be easily seen that the set of minimal Malkin estimations for system (1) coincides with

the set of Grudo characteristic vectors [2] for the function ∥XA(t, s)∥ with respect to the cone
C = {(t, s) ∈ R2 : t ≥ s ≥ 0}. Using this fact and the results of [2] we can give [7] another
description for the set M(A). Let K = {(α, β) ∈ R2 : α > 0, β > 0} be the positive cone of R2

and 4 be the partial order in R2 corresponding to K. Then M(A) coincides with the set of all
minimal with respect to 4 elements of clE(A), where cl is the operator of closure.

The invariant uniform exponent ι[x] of a nonzero solution x to system (1) is the number
supN(x), where the set N(x) consists of all numbers

lim
k→+∞

1

(tk − sk)
ln

∥x(tk)∥
∥x(sk)∥

such that the sequence of pairs τk = (tk, sk) ∈ R2, tk ≥ sk ≥ 0, k ∈ N, satisfy the condition
inf
k
s−1
k tk > 1 and tk − sk → +∞ as k → +∞.

The invariant general exponent I0(A) for system (1) is the number

I0(A) = sup
θ>0

lim
s→+∞

1

(θ − 1)s
ln ∥XA(θs, s)∥. (3)
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These two exponents are invariant with respect to generalized Lyapunov transformations [3],
whereas the analogous Bohl uniform and general exponents are not invariant.

There exists an alternative characterization for I0(A) given in [7]. Namely, I0(A) is the first
component of a unique pair (α, 0) ∈ M(A). It should be stressed that the pair (I0(A), 0) is
always in M(A), but the inclusion (I0(A), 0) ∈ E(A) is not valid in general. Indeed, according
to [1, p. 109], [4, p. 68], and [5, p. 63] for any ε > 0 we have

∥XA(t, s)∥ ≤ Dε exp
(
(Ω0(A) + ε)(t− s)

)
(4)

with some Dε > 0, where

Ω0(A) = lim
T→+∞

lim
k→∞

T−1 ln
∥∥XA(kT, kT − T )

∥∥ (5)

is the general exponent of system (1). A similar estimation

∥XA(t, s)∥ ≤ Dε exp(α(t− s)) (6)

with α < Ω0(A) is not possible at all. Thus, (Ω0(A) + ε, 0) ∈ E(A) for each ε > 0 and there
are no pairs (α, 0) ∈ E(A) with α < Ω0(A). On the other hand, from (3) and (5) we can assert
that the inequality Ω0(A) ≥ I0(A) is always valid and that Ω0(A) > I0(A) in general. Thereby
(I0(A), 0) ̸∈ E(A) in general too.

It was proved in [7] that the invariant general exponent I0(A) is the attainable upper bound
for invariant uniform exponents under exponentially small perturbations. Our aim is to obtain
some similar interpretation for all elements of M(A). To this end, we first obtain some alternative
formulas for I0(A) and ι[x].

Proposition 1. For any system (1) the equalities

I0(A) = lim
θ→1+0

lim
s→+∞

1

(θ − 1)s
ln ∥XA(θs, s)∥ = lim

θ→1+0
lim
k→∞

1

(θ − 1)θk
ln

∥∥XA(θ
k+1, θk)

∥∥
hold.

Proof. Let

R(θ, s) =
1

(θ − 1)s
ln ∥XA(θs, s)∥, R(θ) = lim

k→∞
R(θ, θk), I = lim

θ→1+0
R(θ).

Take any ε > 0, θ > 1 and put ϑ = 1 + εa−1(θ − 1)/(θ + 1). By definition of lower limit, for any
ε > 0 and ϑ > 1 there exists a number θε ∈]1, ϑ] such that the inequality R(θε) < I + ε holds.
Then by definition of upper limit, for the same ε > 0 there exists a number Nε ∈ N such that the
inequality

R(θε, θ
j
ε) < lim

j→∞
R(θε, θ

j
ε) + ε < I + 2ε

is valid for each j > Nε.

Take any s > θNε
ε and find numbers p, q ∈ N such that s ∈ [θpε , θ

p−1
ε [ and θs ∈ [θq+2

ε , θq+1
ε [ .

Then we have

θpε − s ≤ θpε − θp−1
ε = θp−1

ε (θε − 1) ≤ (θε − 1)s,

θs− θq+1
ε ≤ θq+2

ε − θq+1
ε = θq+1

ε (θε − 1) ≤ (θε − 1)θs,
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and

(θ − 1)sR(θ, s) ≤ ln ∥X(θs, θq+1
ε ) ∥+ ln ∥X(θpε , s)∥+

q∑
j=p

ln ∥X(θj+1
ε , θjε) ∥

≤ a(θs− θq+1
ε + θpε − s) +

q∑
j=p

(θj+1
ε − θjε)R(θε, θ

j
ε)

≤ as(θ + 1)(θε − 1) + (θq+1
ε − θpε) max

q≤j≤p
R(θε, θ

j
ε) ≤ as(θ + 1)(ϑ− 1) + (θ − 1)s max

q≤j≤p
R(θε, θ

j
ε).

By the above assumptions we have

R(θ, s) ≤ a(θ + 1)(ϑ− 1)/(θ − 1) + max
q≤j≤p

R(θε, θ
j
ε) ≤ max

j≥Nε

R(θε, θ
j
ε) + ε ≤ I + 3ε,

for all ε > 0 and θ > 1 and all sufficiently large s. Hence, the relation R̃(θ) := lim
s→∞

R(θ, s) ≤ I is

valid for each θ > 1. Now, we obtain

I0 := sup
θ>1

R̃(θ) ≤ I and lim
θ→1+0

R̃(θ) ≤ I.

On the other hand, lim
θ→1+0

R̃(θ) ≥ lim
θ→1+0

R(θ) = I, since R̃(θ) ≥ R(θ). Thus,

lim
θ→1+0

R̃(θ) ≥ I ≥ lim
θ→1+0

R̃(θ)

and therefore the limit lim
θ→1+0

R̃(θ) = I ≥ I0 exists. Since the last inequality is possible only as an

equality, we have the required assertion.

Remark. The above proof essentially follows from the well-known scheme of the similar proof for
general exponent, see [1, p. 110], [4, p. 67], or [5, p. 61].

Proposition 2. For any nonzero solution x to system (1) the following equalities

ι[x] = sup
θ>0

lim
s→+∞

1

(θ − 1)s
ln

∥x(θs)∥
∥x(s)∥

= lim
θ→1+0

lim
s→+∞

1

(θ − 1)s
ln

∥x(θs)∥
∥x(s)∥

= lim
θ→1+0

lim
k→∞

1

(θ − 1)θk
ln

∥x(θk+1)∥
∥x(θk)∥

are valid.

To prove Proposition 2, we use some theorems from [11] concerning the growth of x instead of
standard estimates for the Cauchy matrix used in the proof of Proposition 1, but the rest of the
proof is rather analogous to previous one.

Definition. The number

ιθ[x] := lim
s→+∞

1

(θ − 1)s
ln

∥x(θs)∥
∥x(s)∥

is called the θ-uniform exponent of a nonzero solution x to system (1).
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Together with original system (1), consider the perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (7)

with piecewise continuous bounded perturbation matrix Q. Let Rσ be the set of all piecewise
continuous bounded perturbations Q such that

λ[Q] = lim
t→+∞

t−1 ln ∥Q(t)∥ < −σ, σ ∈ R.

Put
iθ(A+Q) = sup

y
ιθ[y],

where the supremum is taken over all non-trivial solutions of system (7).

Theorem. For any (α, β) ∈ M(A), there exists a number θ > 1 such that

α = sup
{
iθ(A+Q) : Q ∈ Rβ

}
.

The proof is based on Millionshchikov’s rotation method [10], [3], [5, p. 75].
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1 Introduction

Here we consider a class of functional differential systems that arises under attempts to reduce
functional differential systems with continuous and discrete times [3] to equations with only con-
tinuous time having in mind to apply some results from the theory of functional differential equa-
tions [2]. First we recall the description of a class of continuous-discrete functional differential
equations with linear Volterra operators and appropriate spaces where those are considered. Then
a continuous-discrete system is reduced to a continuous system that turns out to be a charged
functional differential system with a full memory. For this system, an estimate of solutions, which
can be useful for analysis of their properties, is obtained.

2 Preliminaries

To describe the continuous subsystem, let us introduce the linear operator L :

(Lx)(t) = ẋ(t)−
t∫

0

K(t, s)ẋ(s) ds+A(t)x(0), t ∈ [0, T ]. (1)

Here the elements kij(t, s) of the kernel K(t, s) are measurable on the set {(t, s) : 0 6 s 6 t < ∞}
and such that

|kij(t, s)| 6 κ(t), i, j = 1, . . . , n,

where function κ is summable on [0, T ] for any finite T > 0, the elements (n × n)-matrix A
are summable on [0, T ] for any finite T > 0. By ACn[0, T ] we denote the space of absolutely
continuous functions x : [0, T ] → Rn, Ln[0, T ] denotes the space of functions Lebesgue summable
on z : [0, T ] → Rn,

∥x∥ACn = |x(0)|+ ∥ẋ∥Ln , ∥z∥Ln =

T∫
0

|z(t)| dt,

where |α| = max
i=1,...,n

|αi| for α = col(α1, . . . , αn) ∈ Rn (we reserve ∥ · ∥ for the corresponding norm

in Rn). The operator L : ACn[0, T ] → Ln[0, T ] is bounded. The theory of equation Lx = f is
thorouhgly treated in [2, 6]. The equation Lx = f covers differential equations with concentrated
and/or distributed delay and integrodifferential Volterra equations. The Cauchy problem

Lx = f, x(0) = α
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is uniquely solvable for any f ∈ Ln[0, T ] and α ∈ Rn and its solution has the representation

x(t) = X(t)α+

t∫
0

C1(t, s)f(s) ds,

where X( · ) is the fundamental matrix, C1( · , · ) is the Cauchy matrix [5].
For description of the discrete subsystem, we introduce the operator Λ:

(Λy)(ti) = y(ti)−
∑
j<i

Bijy(tj), i = 1, 2, . . . , µ, 0 = t0 < t1 < · · · < tµ = T.

Here Bij are constant (ν×ν)-matrices. Denote J = {t0, t1, . . . , tµ}, FDν(µ) is the space of functions

y : J → Rν normed by ∥y∥FDν(µ) =
µ∑

i=0
|y(ti)|. Recall some facts on equation Λy = g (see, for

instance, [1]). The Cauchy problem

Λy = g, y(0) = β

is uniquely solvable for any g ∈ FDν(µ) β ∈ Rν and its solution has the form

y(ti) = Y (ti)β +
∑
j6i

C2(i, j)g(tj), i = 1, 2, . . . , µ, (2)

where Y ( · ) is the fundamental matrix, C2( · , · ) is the Cauchy matrix.
Consider the system

(Lx)(t) =
∑

j: tj<t

Uj(t)y(tj) + f(t), t ∈ [0, T ], (3)

(Λy)(ti) =
∑

j:tj<ti

Aijx(tj) + g(ti), i = 1, 2, . . . , µ, (4)

that consists of subsystem (3) with continuous time and subsystem (4) with discrete time. Here
Aij are constant matrices of dimension ν × n, Uj are (n × ν)-matrices with summable elements.
The subsystems are connected between each other with respect their states.

3 A charged functional differential system

To reduce system (3), (4) to an equation with respect to x( · ), we solve (4) with respect to y( · ) by
means of (2):

y(ti) = Y (ti)y(t0) +
∑
j6i

C2(i, j)
( ∑

j: tℓ<tj

Ajℓx(tℓ)
)
+

∑
j6i

C2(i, j)g(tj), i = 1, 2, . . . , µ,

and then substitute the right-hand side of the latter into (3). After immediate calculations subsys-
tem (3) can be rewritten in the form of a charged (by the terms Vj(t)x(tj)) functional differential
equation

(Lx)(t) =
∑
j:tj<t

Vj(t)x(tj) + r(t), t ∈ [0, T ].

In the sequel, we consider this equation in the case tj = j and assume that T is as great as we
wish:

(Lx)(t) =
∑
j<t

Vj(t)x(j) + r(t), t ∈ [0,∞). (5)

Our aim is to obtain an estimate of solutions to (5). We derive this estimate on the base of the
following Lemma that is a kind of the Gronwall-Bellman inequality.
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Lemma. Let p(j), q(j), υ(j), z(j), j = 0, 1, 2, . . . be nonnegative sequences such that

z(j) ≤ υ(j) + p(j)

j−1∑
k=0

q(k)z(k), k = 1, 2, . . . , z(0) ≤ υ(0). (6)

Then the estimate

z(j) ≤ υ(j) + p(j)

j−1∑
ℓ=0

Mjℓq(ℓ)υ(l), j = 1, 2, . . . , (7)

where

Mjℓ = exp
( j−1∑

i=ℓ

p(i)q(i)
)
,

holds.

Remark. Let us note that, as to compare with the traditional version of (6), where υ(j) = cp(j),
c > 0 and the estimate has the form

z(j) ≤ cp(j)

j−1∏
ℓ=0

(
1 + p(ℓ)q(ℓ)

)
(8)

(see, for instance, Corollary of Lemma 1.1 [4]), the estimate (7) can be much more sharp. Really,
put υ(j) = 1+1/(1+j); p(j) = 1/(1+j); q(j) = 1/(1+j)2. By means of (7) we obtain z(100) ≤ 1.1,
whereas (8) gives z(100) ≤ 6.5 .

Denote

dj = X(j)x0 +

j∫
0

C1(j, s)r(s) ds, Djk =

j∫
k

C1(j, s)Vk(s) ds.

Theorem. Let the following inequalities take place:

|dj | ≤ υ(j), ∥Djk∥ ≤ p(j)q(k), j, k = 1, 2, . . . , k ≤ j,

where υ(j), p(j), q(j), j = 1, 2, . . . are nonnegative sequences. Then the estimate (7) holds for
z(j) = |x(j)|.

Proof. First we use the representation of solutions to (1) as applied to (5):

x(t) = X(t)x0 +

t∫
0

C1(t, s)r(s) ds+

t∫
0

C1(t, s)
∑
k<s

Vk(s)x(k) ds, t ∈ [0, T ].

Thus, for sections x(j), we have the system

x(j) = X(j)x0 +

j∫
0

C1(j, s)r(s) ds+

j∫
0

C1(j, s)
∑
k<s

Vk(s)x(k) ds. (9)

Next note that the expression
j∫

0

C1(j, s)
∑
k<s

Vk(s)x(k) ds
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can be written in the form ∑
k<j

Djkx(k).

This follows from the immediate calculations. Denote

w(j) = X(j)x0 +

j∫
0

C1(j, s)r(s) ds

and rewrite (9) in the form

x(tj) = w(tj) +
∑
k<j

Djkx(k). (10)

To complete the proof, it remains to apply Lemma to the inequality

|x(j)| ≤ |w(j)|+
∑
k<j

∥Djk∥ |x(k)|,

which follows from (10).

This Theorem makes it possible to take into account asymptotic properties of the Cauchy
matrix, the coefficients Vj(t) as weights of the charges x(j), and the free term r(t) in (5) to answer
questions about asymptotic behaviour of solutions. Here we restrict ourselves by the following
example.

Example. Consider the linear charged differential equation

ẋ(t) + 2tx(t) =
∑
j<t

vj(t)x(j) + r(t), t ∈ [0,∞),

where |vj(t)| ≤ c 1
(1+j)2

. For this equation, the solution x(t) with the initial condition x(0) = x0 is

bounded on [0,∞) for any r(t) such that the inequality |r(t)| ≤ d(1 + t) holds with a d > 0 almost
everywhere on [0,∞), and the estimate

|x(j)| ≤
(
e−j2 +

11

10

ce
11
5

c

e
4 + j

)
|x0|+

3

2

(
1 +

2ce
11
5

c

e
4 + j

)
d, j = 1, 2, . . .

holds.
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This work is devoted to the study of the limiting behavior of the optimal control problem for
dynamic equations defined on a family of time scales Tλ, in the regime when the graininess function
µλ converges to zero as λ → 0. At the same time the segment of the time scale [t0, t1]Tλ

= [t0, t1]∩Tλ

approaches [t0, t1] e.g. in the Hausdorff metric. The natural question that arises is how the optimal
control problem on the time scale is related to the corresponding control problem on the interval
[t0, t1].

The time scales theory was introduced by S. Hilger [6] (1988) as a unified theory for both
discrete and continuous analysis. For reader’s convenience, we present several notions from this
theory which are used in this paper.

Time scale T is a non-empty closed subset of R, AT := A ∩ T for A ⊂ R, σ : T → T,
σ(t) := inf{s ∈ T : s > t} is the forward jump operator, ρ : T → T, ρ(t) = sup{s ∈ T : s < t} is the
backward jump operator (here inf ∅ := supT and sup∅ := inf T), µ : T → [0,∞), µ(t) := σ(t)− t
is called the graininess function. A point t ∈ T is called left-dense (LD) (left-scattered (LS), right-
dense (RD) or right-scattered (RR)) if ρ(t) = t (ρ(t) < t, σ(t) = t or σ(t) > t), Tk := T \ {M} if T
has a left-scattered maximum M , Tk := T otherwise.

A function f : T → Rd is called ∆-differentiable at t ∈ Tk if the limit

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s

exists in Rd.

Let Λ ⊂ R, such that 0 is a limit point of Λ, be the set of indices. Consider the family of time
scales Tλ, λ ∈ Λ such that supTλ = ∞. For any t0, t1 ∈ Tλ denote [t0, t1]Tλ

= [t0, t1] ∩ Tλ and
µλ = supt∈[t0,t1]Tλ

µ(t). Assume

µλ(t) → 0 as λ → 0. (1)

For every Tλ consider the optimal control problem on the time scale [t0, t1]Tλ
:

x∆ = f(t, x, u),

x(t0) = x,

Jλ(u) =

∫
[t0,t1)Tλ

L(t, x(t), u(t))∆t+Ψ(x(t1)) −→ inf, u ∈ U(t0).
(2)
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Along with (2), consider the corresponding continuous optimal control problem on the interval
[t0, t1]: 

dx(t)

dt
= f

(
t, x(t), u(t)

)
,

x(t0) = x,

J(u) =

t1∫
t0

L
(
t, x(t), u(t)

)
dt+Ψ(x(t1)) −→ inf, u ∈ U(t0),

(3)

where x ∈ Rd, u ∈ U ⊂ Rm, U – compact set, U(t0) := L∞([t0, t1]T, U), i.e. the set of bounded, ∆ –
measurable functions [2, Chapter 5.7] defined on [t0, t1]T and taking values in U for each t ∈ [t0, t1]T,
is called the set of admissible controls.

Assume that f , L and Ψ satisfy

(i) f : [t0, t1]T × Rd × U → Rd, L : [t0, t1]T × Rd × U → R1 and Ψ : Rd → R1;

(ii) f is continuous and globally Lipschitz in x with the Lipschitz constant K;

(iii) L and Ψ are continuous and globally Lipschitz in x with the Lipschitz constant K.

The Bellman function in this case is

V (t0, x) := inf
u( · )∈U(t0)

J(t0, x, u). (4)

Denote by Vλ(t0, x) and V (t0, x) the corresponding Bellman functions for these problems, given by
(4). Our main result is the following theorem.

Theorem 1. Let Tλ be such that (1) holds. In addition, assume that

1) The functions f , fx and L are continuous on [t0, t1]× Rd × U ;

2) f and L are globally Lipschitz in x, with Lipschitz constant K > 0.

Then
Vλ(t0, · ) → V (t0, · ) in Cloc(Rd), λ → 0.

The proof of the main result will heavily rely on two lemmas.
Without loss of generality, we assume that t0 = 0 and t1 = 1. Consider an arbitrary time

scale Tλ and an arbitrary admissible control uλ(t) on it. Let xλ(t) be a corresponding admissible
trajectory. Denote by ũλ(t) the extension of uλ(t) to the entire interval [0, 1]:

ũλ(t) :=

uλ(t), t ∈ [0, 1]Tλ
,

uλ(r), t ∈ [r, σ(r)), r ∈ RS .
(5)

This control is admissible for the problem (3).

Lemma 1. Let x(t) be a solution of 
dx

dt
= f

(
t, x, ũλ(t)

)
,

x(0) = x0.

Then ∣∣∣∣ ∫
[0,1)Tλ

L
(
t, xλ(t), uλ(t)

)
∆t−

1∫
0

L
(
t, x(t), ũλ(t)

)
dt

∣∣∣∣ −→ 0, λ → 0.
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Let uλts( · ) be an arbitrary admissible control for the problem (2) and xλts( · ) be the corresponding
trajectory. Similarly, let x( · ) be an admissible trajectory of the problem (3) which corresponds to
the admissible control u( · ).

Lemma 2. For any admissible control u( · ) for the problem (3) and for every time scale Tλ, there
is an admissible control uλts( · ) for the problem (2) such that∣∣J(u)− Jλ(u

λ
ts)

∣∣ −→ 0, λ → 0.
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On the half-line R+ = [0,+∞[ , we consider the two-dimensional system of nonlinear ordinary
differential equations

u′ = g(t)|v|
1
α sgn v,

v′ = −p(t)|u|α sgnu,
(1)

where α > 0 and p, g : R+ → R are locally Lebesgue integrable functions such that

g(t) ≥ 0 for a.e. t ≥ 0. (2)

By a solution of system (1) on the interval J ⊆ [0,+∞[ we understand a pair (u, v) of functions
u, v : J → R, which are absolutely continuous on every compact interval contained in J and satisfy
equalities (1) almost everywhere in J .

Definition 1. A solution (u, v) of system (1) is called non-trivial if |u(t)|+ |v(t)| ̸= 0 for t ≥ 0. We
say that a non-trivial solution (u, v) of system (1) is non-oscillatory if at least one of its component
does not have a sequence of zeros tending to infinity.

Remark 2. It was proved by Mirzov in [11] that all non-extendable solutions of system (1) are
defined on the whole interval [0,+∞[ . Therefore, when we are speaking about a solution of system
(1), we assume that it is defined on [0,+∞[ . Moreover, in [11, Theorem 1.1], it is shown that a cer-
tain analogue of Sturm’s theorem holds for system (1) if the function g is nonnegative. Especially,
under assumption (2), if system (1) has a non-oscillatory solution, then any other its non-trivial
solution is also non-oscillatory. Consequently, it is possible to introduce the following definition.

Definition 3. We say that system (1) is non-oscillatory if all its non-trivial solutions are non-
oscillatory.

Oscillation and non-oscillation theory for ordinary differential equations and their systems is a
widely studied topic of the qualitative theory of differential equation. Below presented results are
closely related to those which are established in [1, 2, 4–10, 12, 13]. Some criteria stated in these
papers are generalized below.

Indeed, one can see that system (1) is a generalization of the equation

u′′ +
1

α
p(t)|u|α|u′|1−α sgnu = 0, (3)

where α ∈ ]0, 1] and p : R+ → R is a locally integrable function. This equation is studied in the
existing literature and some oscillation and non-oscillation criteria for equation (3) can be found,
e.g., in [5, 8].
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Moreover, many results (see, e.g., survey given in [2]) are known in the non-oscillation theory
for the so-called “half-linear” equation(

r(t)|u′|q−1 sgnu′
)′
+ p(t)|u|q−1 sgnu = 0, (4)

where q > 1, p, r : [0,+∞[→ R are continuous and r is positive. It is clear that (4) is a particular
case of system (1). Indeed, if the function u, with the properties u ∈ C1 and r|u′|q−1 sgnu′ ∈ C1,
is a solution of equation (4), then the vector function (u, r|u′|q−1 sgnu′) is a solution of system (1)

with g(t) := r
1

1−q (t) for t ≥ 0 and α := q − 1.
However, there are some restrictions on functions p and g in the above-mentioned papers. It is

usually assumed that p(t) ≥ 0 or
t∫
0

p(s) ds > 0 for large t. Moreover, the coefficient g(t) := r
1

1−q (t)

of the half-linear equation (4) cannot have zero points in any neighbourhood of infinity. Below we
formulate criteria without these additional assumptions.

We consider two different cases, when the coefficient g is non-integrable and integrable on the
half-line.

a) The case
+∞∫
0

g(s) ds = +∞

At first, we assume that
+∞∫
0

g(s) ds = +∞, (5)

and we put

f(t) :=

t∫
0

g(t) ds for t ≥ 0.

In view of assumptions (2) and (5), there exists tg ≥ 0 such that f(t) > 0 for t > tg and f(tg) = 0.
We can assume without loss of generality that tg = 0, since we are interested in the behaviour of
solutions in the neighbourhood of +∞, i.e., we have

f(t) > 0 for t > 0

and, moreover,
lim

t→+∞
f(t) = +∞.

We put

cα(t) :=
α

fα(t)

t∫
0

g(s)

f1−α(s)

( s∫
0

p(ξ) dξ

)
ds for t > 0.

It is known (see [3, Corollary 2.5 (with ν = 1− α)]) that if a finite limit of the function cα(t) does
not exist and lim inf

t→+∞
cα(t) > −∞, then system (1) is oscillatory. Consequetly, in what follows it is

natural to assume that
lim

t→+∞
cα(t) =: c∗α ∈ R. (6)

We put

Q(t;α) := fα(t)

(
c∗α −

t∫
0

p(s) ds

)
for t > 0,
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where the number c∗α is given by (6). Moreover, we denote lower and upper limits of the function
Q( · ;α) as follows

Q∗(α) := lim inf
t→+∞

Q(t;α), Q∗(α) := lim sup
t→+∞

Q(t;α).

Theorem 4. Let (6) hold. Let, moreover, the inequalities

−2α+ 1

α+ 1

( α

1 + α

)1+α
< Q∗(α) and Q∗(α) <

1

α+ 1

( α

1 + α

)1+α

be satisfied. Then system (1) is nonoscillatory.

We denote by B(ξ) the greatest root of the equation

|x|
α

α+1 + x+ ξ = 0,

where ξ ≤ 0. Now we can formulate the next theorem which complements the previous one in
a certain sense.

Theorem 5. Let (6) hold. Let, moreover, the inequalities

−∞ < Q∗(α) ≤ −2α+ 1

α+ 1

( α

1 + α

)1+α

and

Q∗(α) < [B(Q∗(α))]
α

α+1 −B(Q∗(α))

be satisfied. Then system (1) is nonoscillatory.

b) The case
+∞∫
0

g(s) ds < +∞

Now we assume that the coefficient g is integrable on [0,+∞[ , i.e.,

+∞∫
0

g(s) ds < +∞.

Let

f̃(t) :=

+∞∫
t

g(t) ds for t ≥ 0.

In view of assumptions (2) and (5), we have

lim
t→+∞

f̃(t) = 0

and

f̃(t) > 0 for t ≥ 0.

We put

c̃α(t) := f̃(t)

t∫
0

g(s)

f̃2(s)

( s∫
0

f̃α+1(ξ)p(ξ) dξ

)
ds for t ≥ 0.
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According to [3, Corollary 2.11 (with ν = 1− α)], the system (1) is oscillatory if function c̃α(t)
does not have a finite limit and lim inf

t→+∞
c̃α(t) > −∞. Consequently, we assume that there exists

a finite limit of the function c̃α, i.e.,

lim
t→+∞

c̃α(t) =: c̃∗α ∈ R.

We denote

Q̃(t;α) :=
1

f̃(t)

(
c̃∗α −

t∫
0

f̃α+1(s)p(s) ds

)
for t > 0.

Moreover, we denote lower and upper limits of the functions Q̃( · ;α) as follows

Q̃∗(α) := lim inf
t→+∞

Q̃(t;α), Q̃∗(α) := lim sup
t→+∞

Q̃(t;α).

Now we formulate next nonoscilation criteria by using lower and upper limits of the function Q̃(t;α).
We denote by Ã(ν) and B̃(ν) the smallest and the greatest root of the equation

α|x|
α+1
α + (α+ 1)x+ ν = 0.

Theorem 6. Let the inequalities

Ã(ν) + ν < Q̃∗(α) and Q̃∗(α) <
( α

α+ 1

)α+1

be fulfilled with ν = 2α+1
α+1

(
α

1+α

)1+α
. Then system (1) is nonoscillatory.

The following theorem complements previous one in a certain sense. Before we formulate it, we
denote by B̂(η) the greatest root of the equation

α|x|
α+1
α − αx+ η = 0,

where η <
(

α
α+1

)α+1
.

Theorem 7. Let the inequalities

−∞ < Q̃∗(α) ≤ Ã(ν) + ν

with ν = 2α+1
α+1

(
α

1+α

)1+α
, and

Q̃∗(α) < Q̃∗(α) + B̂(Q̃∗(α)) + B̃
(
Q̃∗(α) + B̂(Q̃∗(α))

)
be satisfied. Then system (1) is nonoscillatory.
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Let −∞ < a < b < +∞, and let J ⊂ [a, b] be the measurable set such that

J ̸= [a, b], mes J = b− a.

Consider the functional differential system with deviating arguments

dui(t)

dt
= fi

(
t, u1(t), . . . , un(t), u1(τ1(t)), . . . , un(τn(t))

)
(i = 1, . . . , n) (1)

with the weighted boundary conditions

lim sup
t→ti

|ui(t)|
φi(t)

< +∞ (i = 1, . . . , n). (2)

Here fi : J × R2n → R (i = 1, . . . , n) are measurable in the first and continuous in the last 2n
arguments function,

ti ∈ [a, b] \ J (i = 1, . . . , n),

while φi : [a, b] → R (i = 1, . . . , n) and τi : J → [a, b] (i = 1, . . . , n) are, respectively, absolutely
continuous and continuous functions such that

φi(t) > 0 for t ̸= ti (i = 1, . . . , n),

φ′
i(t)(t− ti) ≥ 0, τi(t) ̸= ti for t ∈ J (i = 1, . . . , n).

A vector function (ui)
n
i=1 : [a, b] → Rn with absolutely continuous components u1, . . . , un is said

to be a solution of system (1) if it satisfies that system almost everywhere on J . The solution
(ui)

n
i=1 of system (1) is said to be a solution of problem (1), (2) if it satisfies conditions (2).
Note that the boundary conditions

ui(ti) = 0 (i = 1, . . . , n) (3)

are called Cauchy–Nicoletti conditions, and problem (1), (3) is said to be a Cauchy–Nicoletti prob-
lem (see, e.g., [1–3, 5–8], where the Cauchy–Nicoletti problem is investigated both for differential
and functional differential systems). Thus it is natural to call the boundary conditions (2) and prob-
lem (1), (2) the Cauchy–Nicoletti weighted conditions and the Cauchy–Nicoletti weighted problem,
respectively.

We are interested in study of problem (1), (2) in the case where system (1) has non-integrable
singularities in the time variable, i.e., where

b∫
a

( n∑
i=1

∣∣fi(t, x1, . . . , xn, y1, . . . , yn)∣∣) dt = +∞ if

n∑
i=1

(|xi|+ |yi|) > 0.

For singular systems of ordinary differential equations, the unimprovable conditions for the
solvability and unique solvability of the Cauchy–Nicoletti weighted problem are established by
I. Kiguradze [2, 4]. In this paper, analogous results are obtained for the singular problem (1), (2).

Below everywhere we use the following notation.
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• Ik = [a, b] \ {tk} (k = 1, . . . , n).

• χ
k
(t, δ, λ) =

{
0 if t ∈ [tk − δ, tk + δ],

λ if t ̸∈ [tk − δ, tk + δ].

• Lloc(Ik;R) is the set of Lebesgue integrable on each closed interval contained in Ik functions
v : Ik → R.

• X = (xik)
n
i,k=1 is the n× n matrix with the components xik (i, k = 1, . . . , n).

• r(X) is the spectral radius of the matrix X.

Moreover, below everywhere it is assumed that

f∗
ρ,k ∈ Lloc(Ik;R) for every ρ > 0 (k = 1, . . . , n),

where

f∗
ρ,k(t) = max

{∣∣∣∣fk(t, φ1(t)x1, . . . , φn(t)xn, φ1(τ1(t))y1, . . . , φn(τn(t))yn

)∣∣∣∣ : n∑
i=1

(|xi|+ |yi|) ≤ ρ

}
.

Along with (1) we consider the functional differential system

dui(t)

dt
= χi(t, δ, λ)fi

(
t, u1(t), . . . , un(t), u1(τ1(t)), . . . , un(τn(t))

)
(i = 1, . . . , n), (4)

depended on parameters λ ∈ [0, 1] and δ ∈ ]0, 1[ .

Theorem 1 (A principle of a priori boundedness). Let there exist a positive constant ρ such that
for every δ ∈]0, 1[ and λ ∈ [0, 1] any solution (ui)

n
i=1 of problem (4), (2) admits the estimates

|ui(t)| ≤ ρφi(t) for t ∈ [a, b] (i = 1, . . . , n).

Then problem (1), (2) has at least one solution.

Theorem 2. Let on the set J × R2n the inequalities

fi(t, x1, . . . , xn, y1, . . . , yn) sgn[(t− ti)xi]

≤ |φ′
i(t)|

[ n∑
k=1

(
p1ik

|xk|
φk(t)

+ p2ik
|yk|

φk(τk(t))

)
+ q

]
(i = 1, . . . , n)

be fulfilled, where p1ik, p2ik (i, k = 1, . . . , n) and q are nonnegative constants, at that the matrix
P = (p1ik + p2ik)

n
i,k=1 satisfies the inequality

r(P) < 1. (5)

Then problem (1), (2) has at least one solution.

Remark 1. Under the conditions of Theorem 2, each function fi may have the singularity of
arbitrary order at the point ti. Indeed, if φi(t) = |t− ti| (i = 1, . . . , n), then the conditions of the
above-mentioned theorem are satisfied, for example, by the functions

fi(t, x1, . . . , xn, y1, . . . , yn) = exp
(1 + |x1|+ · · ·+ |xn|+ |y1|+ · · ·+ |yn|

|t− ti|

)
(ti − t)xi

+
n∑

k=1

(
p1ik

|xk|
|t− tk|

+ p2ik
|yk|

|τk(t)− tk|

)
+ q (i = 1, . . . , n).
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Condition (5) in Theorem 2 is unimprovable and it cannot be replaced by the condition

r(P) ≤ 1.

What is more, the following theorem is valid.

Theorem 3. Let on the set J × R2n the inequalities

fi(t, x1, . . . , xn, y1, . . . , yn) sgn(t− ti)

≥ |φ′
i(t)|

[ n∑
k=1

(
p1ik

|xk|
φk(t)

+ p2ik
|yk|

φk(τk(t))

)
+ q

]
(i = 1, . . . , n)

be fulfilled, where p1ik ≥ 0, p2ik ≥ 0 (i, k = 1, . . . , n), q > 0, and the matrix P = (p1ik + p2ik)
n
i,k=1

satisfies the inequality

r(P) ≥ 1.

Then problem (1), (2) has no solution.

Along with (1), (2) let us consider the perturbed problem

dvi(t)

dt
= fi

(
t, v1(t), . . . , vn(t), v1(τ1(t)), . . . , vn(τn(t))

)
+ hi(t) (i = 1, . . . , n), (6)

lim sup
t→ti

|vi(t)|
φi(t)

< +∞ (i = 1, . . . , n), (7)

and introduce

Definition. Problem (1), (2) is said to be well-posed if:

(i) it has a unique solution (ui)
n
i=1;

(ii) there exists a positive constant ρ such that for arbitrary integrable functions hk : J → R
(k = 1, . . . , n), satisfying the conditions

νk(hk) = sup

{
1

φk(t)

∣∣∣∣
t∫

tk

|hk(s)| ds
∣∣∣∣ : t ∈ Ik

}
< +∞ (k = 1, . . . , n),

problem (6), (7) is solvable and its every solution satisfies the inequalities

|vi(t)− ui(t)| ≤ ρ
[ n∑
k=1

νk(hk)
]
φi(t) for t ∈ [a, b] (i = 1, . . . , n).

Theorem 4. Let on the set J × R2n the inequalities

fi(t, x1, . . . , xn, y1, . . . , yn) sgn[(t− ti)xi]

≤ |φ′
i(t)|

n∑
k=1

(
p1ik

|xk|
φk(t)

+ p2ik
|yk|

φk(τk(t))

)
(i = 1, . . . , n)

be fulfilled, where p1ik, p2ik (i, k = 1, . . . , n) are nonnegative constants, and the matrix P = (p1ik +
p2ik)

n
i,k=1 satisfies inequality (5). Then problem (1), (2) is well-posed.
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Theorems 3 and 4 yield the following result.

Corollary 1. Let on the set J × R2n the equalities

fi(t, x1, . . . , xn, y1, . . . , yn) = φ′
i(t)

n∑
k=1

(
p1ik

|xk|
φk(t)

+ p2ik
|yk|

φk(τk(t))

)
(i = 1, . . . , n)

hold, where p1ik, p2ik (i, k = 1, . . . , n) are nonnegative constants. Then for problem (1), (2) to be
well-posed it is necessary and sufficient that the matrix P = (p1ik + p2ik)

n
i,k=1 to satisfy inequality

(5).
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An autonomous evolution system is called impulsive dynamical system (impulsive DS) if its
trajectories have jumps at moments of intersection with certain surface of the phase space. These
systems are an important subclass of systems with impulsive perturbations at fixed moments of time
whose qualitative theory was developed in [6]. In this paper, using the theory of global attractors
for multi-valued semiflows [3], we describe the dynamics of infinite-dimensional impulsive systems
without uniqueness of solution of the Cauchy problem. We consider global attractor as a minimal
uniformly attracting set for corresponding multi-valued semiflow [4]. Using the results of [1, 2], we
construct abstract theory of multi-valued impulsive dynamical systems and apply obtained results
to weakly non-linear impulsive parabolic system.

Let (X, ρ) be a metric space, P (X) (β(X)) be a set of all non-empty (non-empty bounded)
subset of X.

Definition 1 ([3]). A multi-valued map G : R+ × X → P (X) is called multi-valued dynamical
system (MDS) if

∀x ∈ X G(0, x) = x and ∀ t, s ≥ 0 G(t+ s, x) ⊆ G(t, G(s, x)).

Definition 2 ([4]). A non-empty subset Θ ⊂ X is called a global attractor of MDS G if

1) Θ is a compact set;

2) Θ is uniformly attracting set, i.e., ∀B ∈ β(X) dist(G(t, B),Θ) −→ 0, t→ ∞;

3) Θ is minimal among all closed uniformly attracting sets.

Lemma 1. Assume that MDS G satisfies dissipativity condition:

∃B0 ∈ β(X), ∀B ∈ β(X), ∃T = T (B) > 0, ∀ t ≥ T G(t, B) ⊂ B0. (1)

Then the following conditions are equivalent:

1) MDS G has a global attractor Θ;

2) MDS G is asymptotically compact, i.e.,

∀ tn ↗ ∞ ∀B ∈ β(X), ∀ ξn ∈ G(tn, B) sequence {ξn} is precompact in X.

Impulsive MDS G consists of a given non-empty closed impulsive set M ⊂ X, compact-valued
impulsive map I :M → P (X) and a given family K of continuous maps φ : [0,+∞) → X satisfying
the following properties:

K1) ∀x ∈ X, ∃φ ∈ K : φ(0) = x;

K2) ∀φ ∈ K, ∀ s ≥ 0 φ( · + s) ∈ K.
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We denote
Kx =

{
φ ∈ K | φ(0) = x

}
.

Impulsive MDS describes the following behaviour: a phase point moves along trajectories of K
and when it meets the impulsive set M , it jumps onto a new position from the set of impulsive
points IM .

For “well-posedness” of impulsive problem we assume the following conditions:

M ∩ IM = ∅;

∀x ∈M, ∀φ ∈ Kx, ∃ τ = τ(φ) > 0, ∀ t ∈ (0, τ) φ(t) ̸∈M.
(2)

We denote
∀φ ∈ K M+(φ) =

∪
t>0

φ(t) ∩M.

If M+(φ) ̸= ∅, then there exists a moment of time s := s(φ) > 0 such as

∀ t ∈ (0, s) φ(t) ̸∈M, φ(s) ∈M. (3)

Hence, we can define the following function : K → (0,+∞] :

s(φ) =

{
s, if M+(φ) ̸= ∅,
+∞, if M+(φ) = ∅.

(4)

Impulsive trajectory φ̃, starting from the point x ∈ X, is a right continuous function

φ̃(t) =

{
φn(t− tn), if t ∈ [tn, tn+1),

x+n+1, if t = tn+1,
(5)

where {x+n }n≥1 ⊂ IM are impulsive points, {sn}n≥0 ⊂ (0,+∞) are the corresponding moments of

time, {φn}n≥0 ⊂ K, φ0(0) = x and ∀n ≥ 0 t0 := 0, tn+1 :=
n∑

k=0

sk, n ≥ 0.

By K̃x we denote the set of all impulsive trajectories starting from x ∈ X.
We assume that every impulsive trajectory is defined on [0,+∞), i.e.,

∀x ∈ X every φ̃ ∈ K̃x is defined on [0,+∞). (6)

Definition 3. A multi-valued map G : R+ ×X → P (X)

G(t, x) =
{
φ̃(t) | φ̃ ∈ K̃x

}
(7)

is called impulsive MDS.

Lemma 2. Let conditions K1), K2), (2), (6) be satisfied. Then (7) defines the MDS G.

To state further results concerning invariance property of the global attractor we have to impose
additional constraints on the parameters of our impulsive problem:

K3) ∀xn → x, ∀φn ∈ Kxn , ∃φ ∈ Kx such that on some subsequence

∀ t ≥ 0 φn(t) → φ(t);

I) the compact-valued map I :M → P (X) is upper-semicontinuous [3];
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S1) if for x ∈ X \M , xn → x, φn ∈ Kxn and φ ∈ Kx we have ∀ t ≥ 0 φn(t) → φ(t), then{
s(φ) = ∞, if s(φn) = ∞ for infinitely many n ≥ 1,

s(φn) → s(φ), otherwise.

Lemma 3. Assume that impulsive MDS G satisfies K1), K2), (2), (6), K3), I), S1) and Θ is a
global attractor of G. Then the following property holds:

∀ t ≥ 0, ∀ ξ ∈ Θ \M G(t, ξ) ∩ (Θ \M) ̸= ∅. (8)

If, additionally, G is single-valued, then

∀ t ≥ 0 G(t,Θ \M) ⊆ Θ \M. (9)

In order to prove the inverse embedding in (9), it is necessary to impose the following additional
assumptions on K, M , I:

K4) ∀xn → x, ∀φn ∈ Kxn, ∃φ ∈ Kx such that on some subsequence

φn → φ uniformly on every [a, b] ⊂ [0,∞), (10)

S2) if for ∀xn ̸∈ M xn → x ∈ M , φn ∈ Kxn and φ ∈ Kx we have ∀ t ≥ 0 φn(t) → φ(t), then
either s(φn) = ∞ for an infinite number n ≥ 1,

or s(φn) → 0, n→ ∞.

Lemma 4. Assume that impulsive MDS G satisfies K1), K2), (2), (6), K3), I), S1), K4), S2), and
Θ is a global attractor of G. Then

∀ t ≥ 0 Θ \M ⊆ G(t,Θ \M). (11)

If ∀x ∈ X, ∀ t, s ≥ 0 G(t+ s, x) = G(t, G(s, x)), then in (11) equality takes place.

We apply obtained results for impulsive weakly non-linear parabolic problem. Let Ω ⊂ Rn be a
bounded domain. For unknown functions u(t, x), v(t, x) on (0,+∞)× Ω we consider the following
weakly non-linear problem: 

∂u

∂t
= a1∆u+ εf1(u, v),

∂v

∂t
= a2∆v + b∆u+ εf2(u, v),

(12)

where ε > 0 is a small parameter, a1, a2 > 0, |b| < 2
√
a1a2 . Continuous non-linear functions

fi : R
2 7−→ R, i = 1, 2 satisfy the following condition:

∃C > 0 ∀u, v ∈ R |f1(u, v)|+ |f2(u, v)| ≤ C. (13)

It is known that under such conditions for every ε > 0, z0 ∈ X there exists at least one solution

φ( · ) =
(
u( · )
v( · )

)
∈ C([0,+∞), X) of the problem (12) with φ(0) = z0, where X = L2(Ω)×L2(Ω) is

a phase space.
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Thus the problem (12) generates the family of continuous maps:

Kε =
{
φ : [0,+∞) → X | φ is a solution of (12)

}
,

which satisfies conditions K1), K2). For fixed α > 0, β > 0, γ > 0, µ > 0 we consider the following
impulsive perturbation:

M =

{
z =

(
u
v

)
∈ X | α(u, ψ1) + β(v, ψ1) = 1, |(u, ψ1)| ≤ γ

}
, (14)

I :M → P (X) such that for z =
∞∑
i=1

(
ci
di

)
ψi ∈M,

Iz ⊆
{(

c
′
1

d
′
1

)
ψ1 +

∞∑
i=2

(
ci
di

)
ψi | |c′1| ≤ γ, αc

′
1 + βd

′
1 = 1 + µ

}
, (15)

where {ψi}∞i=1 are eigenfunctions of −∆ in H1
0 (Ω).

Theorem. For sufficiently small ε > 0 impulsive problem (12), (14), (15) generates an impulsive
MDS Gε : R+ ×X 7−→ P (X), which has a global attractor Θε and

dist(Θε,Θ) −→ 0, ε→ 0, (16)

where Θ is global attractor of impulsive system (12), (14), (15) with ε = 0.
Moreover, if I :M 7−→ P (X) is upper semicontinuous map, then

∀ t ≥ 0 Gε(t,Θε \M) = Θε \M. (17)
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Consider the linear Pfaff system

∂x

∂ti
= Ai(t)x, x ∈ Rn, t = (t1, t2, . . . , tm) ∈ Rm

+ , i = 1,m, (1)

with bounded coefficient matrices Ai(t) continuously differentiable in Rm
+ = {t ∈ Rm : t ≥ 0} and

satisfying the condition of complete integrability [1, pp. 14–24], [2, pp. 16–26]. The characteristic
vector [1, p. 83], [3], λ[x] = λ and the lower characteristic vector [4] p[x] = p of a nontrivial solution
x : Rm

+ → Rn \ {0} of system (1) is defined by the conditions

Lx(λ) ≡ lim
t→∞

ln ∥x(t)∥ − (λ, t)

∥t∥
= 0, Lx(λ− εei) > 0, ∀ ε > 0, i = 1, . . . ,m, (2)

lx(p) ≡ lim
t→∞

ln ∥x(t)∥ − (p, t)

∥t∥
= 0, lx(p+ εei) < 0, ∀ ε > 0, i = 1, . . . ,m, (3)

where ei = (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0) ∈ Rm
+ is a unit coordinate vector. The characteristic set Λx [3] and

the lower characteristic set Px [4] of a nontrivial solution x : Rm
+ → Rn \{0} of system (1) is defined

as the unions of all characteristic vectors Λx = ∪λ[x] and all lower characteristic vectors Px = ∪p[x]
of that solution. The sets [3], [4] Λ(A) =

∪
x̸=0

Λx and P (A) =
∪
x ̸=0

Px referred respectively to as the

characteristic and the lower characteristic sets of system (1).
We generalize the statement on joint implementation of the characteristic and the lower cha-

racteristic sets of the linear Pfaff system (1) with two-dimensional time (m = 2) [6] on the system
(1) with m-dimensional time t.

Definition 1 ([9]). A set D ⊂ Rm is said to be bounded above (respectively, below) if there exists
an r ∈ Rm such that d ≤ r (respectively, d ≥ r) for all d ∈ D (d ≤ r is equivalent to the inequalities
di ≤ ri, i = 1,m).

We introduce an analog of notions of least upper bound and greatest lower bound of a one-
dimensional set for a bounded set D ⊂ Rm [10, p. 11], [7, p. 32] without considering these bounds
as elements of an ordered set of subsets of the space Rm. To this end, to each point r ∈ Rm, we
assign the sets

K(r) = {p ∈ Rm : p ≥ r}, K(r) = {p ∈ Rm : p ≤ r},

which are referred to as the upper and lower direct m-dimensional angles, respectively, with vertex
at the point r.



International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia 181

Definition 2 ([9]). The least upper (respectively, greatest lower) bound of a set D ⊂ Rm bounded
above (respectively, below) is defined as the set supD (respectively, infD) of vertices of all upper
direct m-dimensional angles K(r) (respectively, lower direct m-dimensional angles K(r)), each of
which has the unique common point, the angle vertex, with the set D,

supD ≡
{
r ∈ Rm : D ∩K(r) = {r}

} (
respectively, infD ≡

{
r ∈ Rm : D ∩K(r) = {r}

})
.

Definition 3 ( [9]). A set D ⊂ Rm is said to be upper closed (respectively, lower closed) if it
contains the least upper bound (respectively, the greatest lower bound) of itself.

Let the set D ⊂ Rm be a connected upper and lower closed convex set. Note that the sets are
its least upper bound supD and greatest lower bound infD have the properties of characteristic
and lower characteristic sets, respectively.

Theorem. Let sets P ⊂ Rm and Λ ⊂ Rm be defined, respectively, convex function pm =
fP (p1, . . . , pm−1) : Rm−1 → R and concave function λm = fΛ(λ1, . . . , λm−1) : Rm−1 → R con-
tinuous monotonically decreasing in their convex closed bounded domain, and satisfy

sup
{
pi : (p1, p2, . . . , pm) ∈ P

}
≤ inf

{
λi : (λ1, λ2, . . . , λm) ∈ Λ

}
, i = 1,m.

Then there exists a completely integrable Pfaff equation

∂x

∂ti
= Ai(t)x, x ∈ R, t ∈ Rm

+ , i = 1,m, (12)

with bounded infinitely differentiable coefficient Ai(t) with characteristic set Λ(A) = Λ and lower
characteristic set P (A) = P .

Sketch of the proof. Without loss of generality, one can assume (to within a shift) that the set
P ⊂ Rm lies in the m-dimensional cube [d1, d2] × · · · × [d1, d2] ⊂ Rm

− , and the set Λ ⊂ Rm lies in
the cube [|d2|, |d1|]× · · · × [|d2|, |d1|] ⊂ Rm

+ , where d1 < d2 ≤ 0.

I. Preliminary construction

Let us assume that the sets P and Λ, determines the functions fP and fΛ, admit the following
parametric representation

P : p = H(α) and Λ : p = G(α), α = (α1, α2, . . . , αm−1), αi ∈ [0, 1].

By the assumptions of the theorem, for each point of the sets P and Λ ⊂ Rm, there exists a
tangent hyperplane, and if several tangent hyperplanes exist at some point of that set, then we
take a hyperplane whose normal has coordinates of one sign. In addition, any of those tangent
hyperplanes µ at the set P ⊂ Rm lies not below that set, and any of those tangent hyperplanes ν
at the set Λ ⊂ Rm lies not above that set Λ. It means that for each s ∈ P , there exists Ms ∈ µ
such that s ≤ Ms, and for each s ∈ Λ, there exists Ms ∈ ν such that s ≥ Ms. Let the tangent
hyperplane µ of the set P at the point H(α) and the tangent hyperplane ν of the set Λ at the point
G(α) be defined by the points q(i)(α) ∈ Rm and r(i)(α) ∈ Rm, i = 1,m, respectively,

µ(α, ζ) = q(1)(α) · (1− ζm−1) · · · (1− ζ2)(1− ζ1) + q(2)(α) · (1− ζm−1) · · · (1− ζ2)ζ1 + · · ·
+ q(m−1)(α) · (1− ζm−1)ζm−2 + q(m)(α) · ζm−1, ζ = (ζ1, ζ2, . . . , ζm−1), ζi ∈ [0, 1],

ν(α, ζ) = r(1)(α) · (1− ζm−1) · · · (1− ζ2)(1− ζ1) + r(2)(α) · (1− ζm−1) · · · (1− ζ2)ζ1 + · · ·
+ r(m−1)(α) · (1− ζm−1)ζm−2 + r(m)(α) · ζm−1, ζ = (ζ1, ζ2, . . . , ζm−1), ζi ∈ [0, 1].
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In this case, we set q(1)(α) = H(α), r(1)(α) = G(α) and require that the projections of those
tangents µ(α, ζ) and ν(α, ζ) to the coordinate axes lies inside the corresponding projections of the
sets P and Λ, respectively.

We construct the sequence {τ (j)n (h)}, h = (h1, h2, . . . , hm−1), where j for any fixed n ∈ N ranges
over the values 1, 2, and hi for fixed values of n, j, h1, . . . , hi−1 ranges over the values 1, . . . , 2n.

We set the first element τ
(1)
1 (1, . . . , 1) of that sequence to unity, and other elements obtained by

multiplying by two the previous element of this sequence.

As a result, we obtain

τ (j)n (h) = 2
2

n∑
l=1

(2(l−1))m−1+(j−1)(2n)m−1+(h1−1)(2n)m−2+···+(hm−3−1)(2n)2+(hm−2−1)2n+hm−1−1

≤ τ
(1)
n+1(1, . . . , 1) = 2

2
n+1∑
l=1

(2(l−1))m−1

≡ 2σm(n).

We set τt = t1 + t2 + · · · + tm. We divide the subset Rm
+ = {t = (t1, t2, . . . , tm) : ti ≥ 0} of

the space Rm by the planes τt = 2k, k ∈ N , into the layers {t ∈ Rm
+ : 2k ≤ τt < 2k+1}, with

the closed “lower” face and the open “upper” face. By Π
(1)
0 (1, . . . , 1) we denote the initial layer

{t ∈ Rm
+ : 0 ≤ τt < τ

(1)
1 (1, . . . , 1)}. Next successively denote the layers by Π

(j)
n (h), where j takes

the values 1, 2 for a fixed n ∈ N , and hi takes the values 1, . . . , 2n for a fixed n, j, h1, . . . , hi−1.

The lower part of the layer Π
(j)
n (h) is defined as the layer

Π̃(j)
n (h) =

{
t ∈ Π(j)

n (h) : τ (j)n (h) ≤ τt < τ (j)n (h)
}
,

where

τ (j)n (h) ≡ τ (j)n (h)
√
2 ,

and the top part is defined as the layer

˜̃
Π(j)

n (h) =
{
t ∈ Π(j)

n (h) : τ (j)n (h) ≤ τt < τ (j)n (h)
√
2
}
.

Following [4], [9], on the segment ∆
(1)
0 = [0, 1] we construct perfect set

P0 =

+∞∩
n=1

2n∪
k=1

∆(k)
n ,

similar to the Cantor perfect set [8, p. 50] with a nonzero Lebesgue measure and modified step

functions Θ(α) [8, p. 200]. Wherein the length of the nst rank segments ∆
(k)
n will be assumed

equal εn = exp(d1 · 2σm(n)), and the middle of these segments will be denoted α
(k)
n . Next on the

segment ∆
(1)
0 = [0, 1] we define continuous nondecreasing Cantor step function Θ(α) : ∆

(1)
0 →

[0, 1] = {Θ(α) : α ∈ P0} with intervals δ
(k)
n = ∆

(k)
n \ (∆(2k−1)

n+1 ∪∆
(2k)
n+1) of constant values.

Note that by the definition of P0 for all the n ∈ N there exists a number k = k(n)(α) ∈
{1, . . . , 2n}, for which the inequality |α(k)

n − α| ≤ εn/2, k = k(n)(α), n ∈ N . Therefore we have

Θ
(
α
(kn(α))
n

)
→ α if n → ∞. We introduce the notation Θ(α, h) ≡ (Θ(α

(h1)
n ), . . . ,Θ(α

(hm−1)
n )),

n ∈ N .
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II. Construction of the equation

For further constructions, we use the following functions infinitely differentiable on the interval
[τ1, τ2]:

e01(τ, τ1, τ2) =

{
exp

{
− [τ − τ1]

−2 exp
(
− [τ − τ2]

−2
)}

if τ1 < τ < τ2,

i− 1 if τ = τi, i = 1, 2,

e00(τ, τ1, τ2) =

{
exp

(
24(τ2 − τ1)

−4 − (τ − τ1)
−2(τ − τ2)

−2
)

if τ1 < τ < τ2,

0 if τ = τi, i = 1, 2,

these are analogs of standard functions infinitely differentiable on the segment [0, 1]. Note that the
function e00(τ, τ1, τ2) attains its maximum value unity in the middle of the segment [τ1, τ2]. On the
sets

Π(1) ≡
+∞∪
n=1

2n∪
h1=1

· · ·
2n∪

hm−1=1

Π(1)
n (h)

and

Π(2) ≡
+∞∪
n=1

2n∪
h1=1

· · ·
2n∪

hm−1=1

Π(2)
n (h),

we introduce the vector functions

Q(i)(τt) =

0 if t ∈ Π̃
(j)
n (h),

q(i)(Θ(α, h))e00

( τt

τ
(j)
n

(h), 1,
√
2
)

if t ∈ ˜̃
Π

(j)
n (h),

i = 1,m,

R(i)(τt) =

0 if t ∈ Π̃
(j)
n (h),

r(i)(Θ(α, h))e00

( τt

τ
(j)
n

(h), 1,
√
2
)

if t ∈ ˜̃
Π

(j)
n (h),

i = 1,m.

We introduce the functions

E(t) = e(Q
(1)(τt),t) + e(Q

(2)(τt),t) + · · ·+ e(Q
(m)(τt),t) if t ∈ Π(1),

E(t) =
[
e−(R(1)(τt),t) + e−(R(2)(τt),t) + · · ·+ e(R

(m)(τt),t)
]−1

if t ∈ Π(2).

Obviously, the function E(t) takes a value equal to m if t ∈ Π̃
(1)
n (h), and the function E(t) takes

a value equal to m−1 if t ∈ Π̃
(2)
n (h). We construct the function x(t), t ∈ Rm

+ , by the following rule

x(t) =



m−1 + [m−m−1]e01

( τt

τ
(j)
n

(h), 1,
√
2
)

if t ∈ Π̃
(1)
n (1, 1, . . . , 1),

E(t) if t ∈ Π(1) \ Π̃(1)
n (1, 1, . . . , 1),

m+ [m−1 −m]e01

( τt

τ
(j)
n

(1, 1, . . . , 1), 1,
√
2
)

if t ∈ Π̃
(2)
n (1, 1, . . . , 1),

E(t) if t ∈ Π(2) \ Π̃(2)
n (1, 1, . . . , 1).

This function is infinitely differentiable and is a solution of the Pfaff equation (12) with bounded
infinitely differentiable on Rm

+ coefficients

Ai(t) = x−1(t)
∂x(t)

∂ti
.

The infinite differentiability of Ai(t) follows from the similar property of the functions, through
which they are defined. Boundedness of coefficients Ai(t) easy to show with the help of estimates

given in [5] for functions de01(τ,τ1,τ2)
dτ and de00(τ,τ1,τ2)

dτ , defined on any interval [τ1, τ2] of length τ2−τ1 ≤
1/2.
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III. Computation of the characteristic sets

Using conditions (2) and (3), the definition of the characteristic and the lower characteristic vectors,
and the obvious estimates

ln E(t) > max
i∈{1,2,...,m}

{
(Q(i)(τt), t)

}
, lnE(t) < min

i∈{1,2,...,m}

{
(R(i)(τt), t)

}
,

can be shown that the characteristic set of functions x(t) is the set Λ = ΛE , and the lower charac-
teristic set of functions x(t) is the set P = PE .

Comment

The result for equation (12) is easy to transfer on system (1).
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1 Formulation of the problem

Analytical results presented here are based on a common research with Jana Burkotová and they
are contained in the paper [1] where in addition numerical simulations are discussed. In particular,
here we study the existence and asymptotic behaviour of Kneser solutions to the nonlinear second
order ODE,

(p(t)u′(t))′ + q(t)f(u(t)) = 0, t ∈ [0,∞), (1)

satisfying

u(0) = u0 ∈ (0, L), 0 ≤ u(t) ≤ L for t ∈ [0,∞), (2)

or

u(0) = u0 ∈ (L0, 0), L0 ≤ u(t) ≤ 0 for t ∈ [0,∞), (3)

where the interval [L0, L] is specified in the following way:

L0 < 0 < L, f(L0) = f(0) = f(L) = 0.

Note that equation (1) is singular because we assume that p(0) = 0 (see (6)), and therefore there
is a time singularity at t = 0.

A function u is called a solution to equation (1) on [0,∞) if u ∈ C1[0,∞), pu′ ∈ C1[0,∞), and u
satisfies equation (1) for all t ∈ [0,∞). The solution u to equation (1) on [0,∞) is called a solution
to problem (1), (2) or problem (1), (3) if u additionally satisfies condition (2) or (3), respectively.
A solution u to equation (1) on [0,∞) is called a Kneser solution if there exists t0 > 0 such that

u(t)u′(t) < 0 for t ∈ [t0,∞). (4)

2 Existence of Kneser solutions to singular equation (1)

In this section, the existence of Kneser solutions to problems (1), (2) and (1), (3) is discussed under
the assumptions that f is continuous on [L0, L], p is continuous on [0,∞) and p ≡ q. For more
details see [1] and [5]. For the existence of other types of solutions and a deeper study of this
problems see also [2], [3], [4].

Theorem 1. Let us assume that

f ∈ Liploc(0, L], f(x) > 0 for x ∈ (0, L), (5)

p ∈ C1(0,∞), p(0) = 0, p′ > 0 on (0,∞), lim
t→∞

p′(t)

p(t)
= 0, (6)
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p′(t)
t∫
0

p(s) ds

p2(t)
≥ c, t ∈ (0,∞), (7)

xf(x)

F (x)
≥ 2

2c− 1
, x ∈ (0, A0], (8)

hold for some c > 1
2 and A0 ∈ (0, L), where F (x) =

x∫
0

f(z) dz.

Then, for each u0 ∈ (0, A0] there exists a unique Kneser solution u to problem (1), (2) with
p ≡ q. This solution has the following properties:

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0, u′(0) = 0, u′(t) < 0, t ∈ (0,∞).

A dual statement for an initial condition u0 from a negative neighbourhood of zero is given in
the following theorem.

Theorem 2. Let us assume that (6) and (7) with a constant c > 1
2 hold, and let

f ∈ Liploc[L0, 0), f(x) < 0 for x ∈ (L0, 0). (9)

Further, assume that there exists B0 ∈ (L0, 0) such that the inequality

xf(x)

F (x)
≥ 2

2c− 1
, x ∈ [B0, 0), (10)

is satisfied.
Then, for each u0 ∈ [B0, 0), there exists a unique Kneser solution u to problem (1), (3) with

p ≡ q. This solution has the following properties:

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0, u′(0) = 0, u′(t) > 0, t ∈ (0,∞).

To our knowledge, the existence of Kneser solutions to singular problems (1), (2) and (1), (3)
with p(0) = 0 and p ̸= q remains an open problem. Let us note, that the condition u′(0) = 0
is necessary for the smoothness of the solution in the case where p ≡ q is an increasing function.
To see this, let us consider a solution u to (1), (2) or (1), (3). Since u ∈ C1[0,∞), the assumption
p(0) = 0 yields p(0)u′(0) = 0. Since f is continuous on [L0, L] and u(0) ∈ (L0, L), there exist M > 0
and δ > 0 such that |f(u(t))| ≤ M for t ∈ (0, δ). We now integrate (1) and use the monotonicity
of p to obtain

|u′(t)| =
∣∣∣∣ 1

p(t)

t∫
0

p(s)f(u(s)) ds

∣∣∣∣ ≤ M

p(t)

t∫
0

p(s) ds ≤ Mt, t ∈ (0, δ).

Consequently, u′(0) = 0 holds.

1 Asymptotic properties of Kneser solutions

This section focuses on properties of Kneser solutions to problems (1), (2) and (1), (3) in the neigh-
bourhood of infinity. Asymptotic formulas for the solutions and for their first derivatives are pro-
vided. In the following analysis, we assume that the data functions p and q are regularly varying
at infinity and

f ∈ C[L0, L], xf(x) > 0 for x ∈ (L0, 0) ∪ (0, L). (11)
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A function g, which is positive and measurable on [τ0,∞), τ0 > 0, is called regularly varying of
index α ∈ R if for each λ > 0

lim
t→∞

g(λt)

g(t)
= λα.

The set of all regularly varying functions of index α is denoted by RV (α).

Our proofs are based on

Karamata Integration Theorem. Let L(t) ∈ SV , c > 0.

(i) If α > −1, then
t∫

c

sαL(s) ds ∼ 1

α+ 1
tα+1L(t) as t → ∞.

(ii) If α < −1, then
∞∫
t

sαL(s) ds ∼ − 1

α+ 1
tα+1L(t) as t → ∞.

(iii) If α = −1, then

l(t) =

t∫
c

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

l(t)
= 0.

Note, that if

p ∈ C[0,∞), p > 0 on (0,∞), p(0) = 0, (12)

q ∈ C[0,∞), q > 0 on (0,∞), (13)

then problems (1), (2) and (1), (3) have no Kneser solutions in case that

∞∫
1

ds

p(s)
= ∞. (14)

This follows from (12), (13), (11) and the following arguments: Let u be a solution to (1), (2).
Then, pu′ is decreasing for t > 0. Assume that pu′ ≤ 0 for t ≥ t1 > 0. By integrating inequality
p(t)u′(t) < p(t1)u

′(t1) = K < 0, we obtain

u(t) ≤ u(t1) +K

t∫
t1

ds

p(s)
.

Therefore, as t tends to infinity, lim
t→∞

u(t) ≤ −∞ contradicting (2). This means that u′ > 0 on

[t0,∞). Hence, any solution of (1), (2) is increasing and there exists no Kneser solution to (1), (2).
Similar arguments can be given for problem (1), (3). According to the Karamata Integration The-
orem, condition (14) is satisfied when p ∈ RV (α) with α < 1. For α = 1, the integral may be
convergent (or may not) and hence Kneser solutions to the problem could exist. Therefore, in the
following asymptotic analysis, we restrict our attention to the case α ≥ 1. We first formulate the
asymptotic properties of Kneser solutions to problem (1), (2), or (1), (3).
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Theorem 3. Assume that (11) holds and that p ∈ RV (α)∩C[0,∞), q ∈ RV (β)∩C[0,∞), α ≥ 1,
β > 0, β − α > −1. Let u be a Kneser solution to problem (1), (2) or (1), (3). Then,

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (15)

We finally focus our attention to the first derivatives of Kneser solutions.

Theorem 4. Assume that (11) holds and that p ∈ RV (α)∩C[0,∞), α ≥ 1, q ∈ RV (β)∩C[0,∞),
β > 0, β − α > −1, and in addition

∃ r > 1 : lim inf
x→0

|f(x)|
|x|r

> 0, lim sup
x→0

|f(x)|
|x|r

< ∞. (16)

Let u be a Kneser solution to problem (1), (2) or (1), (3). Then, for any ε > 0

lim
t→∞

t
β−α+2
r−1

−ε|u(t)| = 0. (17)
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[4] I. Rach̊unková and J. Tomeček, Homoclinic solutions of singular nonautonomous second-order
differential equations. Bound. Value Probl. 2009, Art. ID 959636, 21 pp.
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1 Introduction

The problem of the existence of solutions to Emden–Fowler type equations with prescribed number
of zeros on a given domain is investigated.

Consider the equation

y′′′ = −p(t, y, y′, y′′)|y|k+, where k ∈ (0, 1), 0 < m 6 p(t, y0, y1, y2) 6 M < ∞, (1.1)

function p(t, y1, y2, y3) is continuous and it is Lipschitz continuous in (y1, y2, y3). By |y|k+ we denote
|y|k sgn y.

The equations similar to (1.1) were considered in the previous papers. The existence of solutions
with a given number of zeros on the prescribed interval was proved. In [4] equations of the third-
and the fourth- order with constant coefficient and k ∈ (0, 1) ∪ (1,+∞) was investigated. In [6]
we provide our results regarding high-order Emden–Fowler type equation with constant coefficient
and regular nonlinearity (k > 1). This result was proved using a theorem obtained by I. Astashova
in [2]. The work [7] contains theorems regarding equation (1.1) with k > 1. Now we generalize the
result obtained in [7] to the case of singular nonlinearity k ∈ (0, 1).

2 Main result

Theorem 2.1. For any k ∈ (0, 1), −∞ < a < b < +∞, and integer j > 2, equation (1.1) has
a solution defined on the segment [a, b], vanishing at its endpoints, and having exactly j zeros on
[a, b].

The idea of the proof is as follows. In [1] it was proved that any solution y(t) is oscillatory if
the conditions y(a) = 0, y′(a) > 0, y′′(a) > 0 hold. We cannot rely on the Continuous Dependence
On Parameters theorem, because its conditions do not fulfill. Nevertheless, solutions to (1.1) (in
some extent) are continuous, and we prove this fact. After that we prove that the location of the
N -th zero of solution y(t) depends continuously on its initial data. Then we can make upper and
lower estimates of that location. Finally, we prove that there exist initial data such that the N -th
zero of the related solution y(t) is exactly at the point b.

2.1 Continuous Dependence of Solutions on Initial Data

Lemma 2.1. Let y(t) be a solution to equation (1.1) defined on [t0, I
∗] and satisfying y(t0) = y0,

y′(t0) = y1 ̸= 0, y′′(t0) = y2. Then there exists I ∈ (t0, I
∗) such that for every ε > 0 there exists

δ > 0 such that for any (z0, z1, z2) belonging to the δ-neighborhood of (y0, y1, y2) and any continuous



190 International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia

in (t, x0, x1, x2) and Lipschitz continuous in (x0, x1, x2) function q(t, x0, x1, x2) satisfying for all
(t, ξ1, ξ2, ξ3) the inequality ∣∣p(t, ξ1, ξ2, ξ3)− q(t, ξ1, ξ2, ξ3)

∣∣ < δ,

the solution z(t) to the Cauchy problem
z′′′ = −q(t, z, z′, z′′)|z|k+,
z(t0) = z0,

z′(t0) = z1,

z′′(t0) = z2

(2.1)

is extensible onto [t0, I] and satisfies on this segment the inequalities

|y(t)− z(t)| < ε, |y′(t)− z′(t)| < ε, |y′′(t)− z′′(t)| < ε.

By integrating equation (1.1) three times and taking into account the initial data, we can obtain
that the solution y(t) satisfies

y(t) = y0 + y1(t− t0) + y2
(t− t0)

2

2
−

t∫
t0

τ∫
t0

η∫
t0

p(ξ, y, y′, y′′)|y|k+ dξ dτ dη.

From this we can obtain the following estimate:

|z(t)− y(t)| 6 |y0 − z0|+ |z1 − y1| |t− t0|+ |z2 − y2|
|t− t0|2

2
t∫

t0

τ∫
t0

η∫
t0

∣∣(p(ξ, y, y′, y′′)− q(ξ, z, z′, z′′))|y|k+
∣∣ dξ dτ dη

+

t∫
t0

τ∫
t0

η∫
t0

|q(ξ, z, z′, z′′)|
∣∣|y|k+ − |z|k+

∣∣ dξ dτ dη. (2.2)

Our goal is to prove that if the difference of the initial data is small, then the difference of the
solutions is small too. For example, take a look at the last term of (2.2)

t∫
t0

τ∫
t0

η∫
t0

|q(ξ, z, z′, z′′)|
∣∣|y|k+ − |z|k+

∣∣ dξ dτ dη 6 M

t∫
t0

τ∫
t0

η∫
t0

∣∣|y|k+ − |z|k+
∣∣ dξ dτ dη

= M

t∫
t0

τ∫
t0

η∫
t0

|y|k
∣∣∣1− ∣∣∣z

y

∣∣∣k
+

∣∣∣ dξ dτ dη 6 M

t∫
t0

τ∫
t0

η∫
t0

|y|k 1

k
|1− z

y
| dξ dτ dη

=
M

k

t∫
t0

τ∫
t0

η∫
t0

|y|k−1|y − z| dξ dτ dη 6 M

k
max
[t0,I]

|y − z|
t∫

t0

τ∫
t0

η∫
t0

|y|k−1 y
′

y′
dξ dτ dη

6 max
[t0,I]

|y − z| M
k

max
[t0,I]

∣∣∣ 1
y′

∣∣∣ t∫
t0

τ∫
t0

η∫
t0

|y|k−1y′ dξ dτ dη
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6 max
[t0,I]

|y − z| M
k

max
[t0,I]

∣∣∣ 1
y′

∣∣∣ t∫
t0

τ∫
t0

1

k

∣∣|y(I)|k − |y(t0)|k
∣∣ dτ dη

= max
[t0,I]

|y − z|L3(t− t0)
2
∣∣|y(I)|k − |y(t0)|k

∣∣. (2.3)

Here L3 depends only on k, q(t, y0, y1, y2) and y(t). From (2.2) we can obtain the following inequal-
ity:

|y − z| 6 L1max
{
|z0 − y0|, |z1 − y1|, |z2 − y2|

}
+ L2(t− t0)

3
(
max
[t0,I]

|y − z|+max
[t0,I]

|y′ − z′|+max
[t0,I]

|y′′ − z′′|+max |p− q|
)

+
(
L3(t− t0)

2
∣∣|y(I)|k − |y(t0)|k

∣∣)max
[t0,I]

|y − z|. (2.4)

Similarly, we can integrate equations twice or once and obtain estimates for |y′−z′| and |y′′−z′′|,
respectively. Adding all the estimates obtained together, we get the evaluation(

max
[t0,I]

|y − z|+max
[t0,I]

|y′ − z′|+max
[t0,I]

|y′′ − z′′|
)

6 K1

1−K2[(I − t0)]

(
max{|z0 − y0|, |z1 − y1|, |z2 − y2|,max |p− q|}

)
,

where K1 > 0, K1 and K2[x] do not depend on ε, and K2[x] > 0 is a function tending to zero as
x → 0. It is possible to choose I such that 1−K2[(I − t0)] > 0.

The evaluation shows that if max{|z0 − y0|, |z1 − y1|, |z2 − y2|,max |p− q|} is sufficiently small,
then

max
[t0,I]

|y − z|+max
[t0,I]

|y′ − z′|+max
[t0,I]

|y′′ − z′′| < ε.

This proves the theorem.

Theorem 2.2. Let y(t) be a solution to (1.1) with initial data y(t0) = y0 > 0, y′(t0) = y1 > 0,
y′′(t0) = y2 > 0. Suppose y(t) is defined on a segment [t0, I] and has a finite number of zeros on
it. Then for every ε > 0 there exists δ > 0 such that if z(t) is a solution to (1.1) with initial data
z(t0) = z0, z

′(t0) = z1, z
′′(t0) = z2, and (z0, z1, z2) belongs to the δ-neighborhood of (y0, y1, y2), then

z(t) is extensible onto [t0, I] and satisfies on it the inequalities |y(t)− z(t)| < ε, |y′(t)− z′(t)| < ε,
|y′′(t)− z′′(t)| < ε.

Using Lemma 2.1, we put segments of fixed length on every zero of y(t). In such segments
continuous dependency on initial data is proven by Lemma 2.1. Between those segments either
y(t) > a > 0 or y(t) < b < 0, and therefore the Continuous Dependence On Parameters theorem
holds (because the right-hand side of (1.1) is not Lipschitz continuous only near y = 0). Combining
all the segments, we prove Theorem 2.2.

2.2 Continuous Dependence of Zeros on Initial Data

Theorem 2.3 (see [7]). Let y(t) be a solution to (1.1) with initial data y(t0) = 0, y′(t0) = y1 > 0,
y′′(t0) = y2 > 0. We denote by T (y1, y2) the location of the first zero of y(t) after t0. Then T (y1, y2)
is a continuous function.

Theorem 2.4. Let y(t) be a solution to (1.1) with initial data y(t0) = 0, y′(t0) = y1 > 0, y′′(t0) =
y2 > 0. We denote by tn(y1, y2) the location of the n-th zero of y(t) after t0. Then tn(y1, y2) is a
continuous function, and |tn(y1, y2)− t0| runs over all positive numbers.
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Now we can prove the main theorem. If we want a solution y(t) to have exactly j zeros on the
segment [a, b], we can find suitable initial data for this. Let y(a) = 0, y′(a) = c1 > 0, y′(a) = c2 > 0.
Denote by tj(c1, c2) the location of the (j − 1)-th zero of y(t) after a. It follows from Theorem 2.4
that |tj(c1, c2) − a| is a continuous function, and this function runs over all positive numbers.
Therefore, |tj(c1, c2) − a| = b has a solution (c∗1, c

∗
2). If y(a) = 0, y′(a) = c∗1 > 0, y′(a) = c∗2 > 0,

then y(t) has exactly j zeros on [a, b], and this proves the theorem.
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Institute of Mathematics, University of Miskolc, Miskolc-Egyetemváros, Hungary
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We study the problem

du(t)

dt
= f(t, u(t)), t ∈ [a, b], Φ(u) = d, (1)

where Φ : C([a, b],Rn) is a vector functional (possibly non-linear), f : [a, b]×Rn → Rn is a function
satisfying the Carathéeodory conditions in a certain bounded set, which will be specified below,
and d is a given vector.

Note that investigation of solutions of problem (1) in the paper [4] is based on reduction it to
a certain simpler parametrized “model-type” problem

du(t)

dt
= f(t, u(t)), t ∈ [a, b], u(a) = z, u(b) = η, (2)

where z := col(z1, . . . , zn), η := col(η1, . . . , ηn) are unknown parameters. Investigation of so-
lutions of problems (2) was connected with the properties of the special sequence of functions
{um(t, z, η)}∞m=0 well posed on the interval t ∈ [a, b]. We note that the sufficient condition for
the uniform convergence of sequence {um(t, z, η)}∞m=0 consists in the assumption that the max-

imal in modulus eigenvalue of the matrix Q = 3(b−a)
10 K is smaller than one, r(Q) < 1, where

|f(t, u1) − f(t, u2)| ≤ K|u1 − u2|, a.e. t ∈ [a, b], u1, u2 ∈ D, D is some closed bounded set.
To improve twice this sufficient convergence condition, in [1–3, 6] a special interval halving and
parametrization technique were suggested.

Following to the idea used in numerical methods for approximate solution of initial value prob-
lems for ordinary differential equations, let us fix a natural N and choose N +1 grid points

tk = tk−1 + hk, k = 1, . . . , N, t0 = a, tN = b, (3)

where hk, k = 1, . . . , N , are the corresponding step sizes. Thus, [a, b] is divided into N subintervals
[t0, t1], [t1, t2], [t2, t3], . . . , [tN−1, t1N ].

The aim of this note is to show that by using an N subintervals divisions of type (3) and
an appropriate parametrization technique one can N times improve the sufficient convergence
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condition. It seems that in the case of boundary value problems interval division for approximations
in analytic form was first used in [5].

Let us fix certain closed bounded sets Dk ⊂ Rn, k = 0, 1, 2, . . . , N , and focus on the absolutely
continuous solutions u of problem (1) whose values at the nodes (3) lie in the corresponding sets
Dk, i.e. u(tk) ∈ Dk, k = 0, 1, 2, . . . , N .

Based on Dk we introduce the sets

Dk−1,k := (1− θ)z(k−1) + θz(k), z(k−1) ∈ Dk−1, z(k) ∈ Dk, θ ∈ [0, 1], k = 1, 2, . . . , N,

and its some componentwise ρ(k)-vector neighbourhoods D[k] := B(Dk−1,k, ρ
(k)), k = 1, 2, . . . , N ,

where B(Dk−1,k, ρ
(k)) :=

∪
ξ∈Dk−1,k

B(ξ, ρ(k)) and B(ξ, ρ(k)) := {ν ∈ Rn : |ν− ξ| ≤ ρ(k)}. Recall that

Dk−1,k is the set of all possible straight line segments joining points of Dk−1 with points of Dk.
Let us “freeze” the values of u at the nodes (3) by formally putting

u(tk) = z(k) = col(z
(k)
1 , z

(k)
2 , . . . , z(k)n ), k = 0, 1, 2, . . . , N,

and consider the restrictions of equation (1) to each of the subintervals of the division (3).
Instead of (1) we introduce N “model-type” problems

dx(k)

dt
= f(t, x(k)), t ∈ [tk−1, tk], x(tk−1) = z(k−1), x(tk) = z(k), k = 1, 2, . . . , N, (4)

where the vectors z(0), z(1), . . . , z(N) ∈ Rn will be regarded as unknown parameters whose values
are to be determined. Note that the length of the intervals in problems (4), which will be studied
independently, are equal to step-size hk in opposition to b− a in the case of the original BVP (1).

To study the solutions of (4) we will use the special parametrized successive approximations

x
(k)
m (t, z(k−1), z(k)) constructed in analytic form and well defined on the intervals t ∈ [tk−1, tk],

k = 1, 2, . . . , N , respectively.

Assumption 1. There exist non-negative vectors ρ(1), ρ(2), . . . , ρ(N) such that

ρ(k) ≥ hk
2

δ[tk−1,tk],D[k](f) for all k = 1, 2, . . . , N,

where

δ[tk−1,tk],D[k](f) :=
1

2

[
ess sup

(t,x)∈[tk−1,tk]×D[k]

f(t, x)− ess inf
(t,x)∈[tk−1,tk]×D[k]

f(t, x)
]
. (5)

Assumption 2. There exist non-negative matrices K1,K2, . . . ,KN such that∣∣f(t, u1)− f(t, u2)
∣∣ ≤ Kk|u1 − u2|, a.e. t ∈ [tk−1, tk], u1, u2 ∈ D[k]. (6)

Assumption 3. The maximal in modulus eigenvalue of the matrix Qk = 3hk
10 Kk, k = 1, 2, . . . , N ,

is smaller than one, r(Qk) < 1.

Let us define for problems (4) the recurrence parametrized sequences of functions

x
(k)
0 (t, z(k−1), z(k)) := z(k−1) +

(t− tk−1)

hk

[
z(k) − z(k−1)

]
=

[
1− t− tk−1

hk

]
z +

t− tk−1

hk
z(k), (7)

t ∈ [tk−1, tk], k = 1, 2, . . . , N,

x(k)m (t, z(k−1), z(k)) := z(k−1) +

t∫
tk−1

f
(
s, x

(k)
m−1(s, z

(k−1), z(k))
)
ds

− t− tk−1

hk

tk∫
tk−1

f
(
s, x

(k)
m−1(s, z

(k−1), z(k))
)
ds+

t− tk−1

hk

[
z(k) − z(k−1)

]
, (8)



International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia 195

for all m = 1, 2, . . . , z(k−1) ∈ Rn, z(k) ∈ Rn and t ∈ [tk−1, tk], k = 1, 2, . . . , N .

Theorem 1. Let Assumptions 1–3 hold. Then, for any fixed vectors (z(0), z(1), . . . , z(N)) ∈ D0 ×
D1 × · · · ×DN and k = 1, 2, . . . , N :

1. The limit: lim
m→∞

x
(k)
m (t, z(k−1), z(k)) = x

(k)
∞ (t, z(k−1), z(k)), exists uniformly in t ∈ [tk−1, tk].

2. The limit function satisfies the conditions

x(k)∞ (tk−1, z
(k−1), z(k)) = z(k−1), x(k)∞ (tk, z

(k−1), z(k)) = z(k).

3. The function x
(k)
∞ (t, z(k−1), z(k)) is the unique absolutely continuous solution of the integral

equation

x(k)(t) = z(k−1) +

t∫
tk−1

f(s, x(k)(s)) ds− t− tk−1

hk

tk∫
tk−1

f(s, x(k)(s)) ds

+
t− tk−1

hk

[
z(k) − z(k−1)

]
, t ∈ [tk−1, tk],

in the domain D[k].

In other words, x
(k)
∞ (t, z(k−1), z(k)) is the unique solution of the following Cauchy problem for

the modified system of integro-differential equations:

dx(k)

dt
= f(t, x(k)) +

1

hk
∆(k)(z(k−1), z(k)), t ∈ [tk−1, tk], x(tk−1) = z(k−1),

where ∆(k)(z(k−1), z(k)) : Dk−1 ×Dk → Rn are the mapping given by formula

∆(k)(z(k−1), z(k)) = z(k) − z(k−1) −
tk∫

tk−1

f(s, x(k)(s)) ds.

4. The following estimates hold for m ≥ 0:∣∣x(k)∞ ( · , z(k−1), z(k))− x(k)m ( · , z(k−1), z(k))
∣∣

6 10

9
α1(t, tk−1, hk)Q

m
k (1n −Qk)

−1δ[tk−1,tk],D[k](f), t ∈ [tk−1, tk],

where δ[tk−1,tk],D[k](f)) is given in (5) and

|α1(t, tk−1, hk)| ≤
hk
2

, t ∈ [tk−1, tk].

Theorem 1 guarantees that under the assumed conditions, the functions x
(k)
∞ (t, z(k−1), z(k)) :

[tk−1, tk] → Rn, k = 1, 2, . . . , N , are well defined for all (z(k−1), z(k)) ∈ Dk−1 ×Dk. Therefore, by
putting

u∞(t, z(0), z(1), . . . , z(N)) :=


x
(1)
∞ (t, z(0), z(1)), if t ∈ [t0, t1],

x
(2)
∞ (t, z(1), z(2)), if t ∈ [t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(N)
∞ (t, z(N−1), z(N)), if t ∈ [tN−1, tN ]

(9)
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we obtain a function u∞( · , z(0), z(1), . . . , z(N)) : [a, b] → Rn, which is well defined for the values
z(k) ∈ Dk, k = 0, 1, 2, . . . , N . This function is obviously continuous since at the points t = tk we
have

x(k)∞ (tk, z
(k−1), z(k)) = x(k)∞ (tk, z

(k), z(k+1)), k = 1, 2, . . . , N.

Theorem 2. Let the conditions of Theorem 1 hold. Then:

1. The function u∞(t, z(k−1), z(k)) : [a, b] → Rn defined by (9) is an absolutely continuous so-
lution of problem (1) if and only if the vectors z(k), k = 0, 1, 2, . . . , N , satisfy the system of
n(N + 1) numerical equations

∆(k)(z(k−1), z(k)) = z(k) − z(k−1) −
tk∫

tk−1

f
(
s, x(k)∞ (s, z(k−1), z(k))

)
ds = 0, k = 1, 2, . . . , N,

∆(N+1)(z(0), z(1), . . . , z(N)) = Φ
(
u∞( · , z(0), z(1), . . . , z(N))

)
− d = 0. (10)

2. For every solution U( · ) of problem (1) with U(tk) ∈ Dk, k = 0, 1, 2, . . . , N , there exist
vectors z(k), k = 0, 1, . . . , N , such that U( · ) = u∞( · , z(0), z(1), . . . , z(N)), where the function
u∞( · , z(0), z(1), . . . , z(N)) is given in (9).

Although Theorem 2 provides a theoretical answer to the question on the construction of a
solution of the BVP (1), its application faces difficulties due to the fact that the explicit form

of x
(j)
∞ (s, z(j−1), z(j)) and the functions ∆(k)(z(k−1), z(k)) : Dk−1 × Dk → Rn, k = 1, 2, . . . , N ,

∆(N+1)(z(0), z(1), . . . , z(N)) : D0×D1×· · ·×DN → Rn, appearing in (10) is usually unknown. This

complication can be overcome by using x
(k)
m (s, z(k−1), z(k)) of form (8) for a fixed m, which will lead

one to the so-called approximate determining equations:

∆(k)
m (z(k−1), z(k)) = z(k) − z(k−1) −

tk∫
tk−1

f
(
s, x(k)m (s, z(k−1), z(k))

)
ds = 0, k = 1, 2, . . . , N,

∆(N+1)
m (z(0), z(1), . . . , z(N)) = Φ

(
um( · , z(0), z(1), . . . , z(N))

)
− d = 0. (11)

Note that, unlike system (10), the m-th approximate determining system (11) contains only

terms involving the functions x
(j)
m ( · , z(j−1), z(j)) which are explicitly known.

It is natural to expect that approximations to the unknown solution of problem (1) can be
obtained by using the function

um(t, z̃(0), z̃(1), . . . , z̃(N)) :=


x
(1)
m (t, z̃(0), z̃(1)), if t ∈ [t0, t1],

x
(2)
m (t, z̃(1), z̃(2)), if t ∈ [t1, t2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(N)
m (t, z̃(N−1), z̃(N)), if t ∈ [tN−1, tN ]

where z̃(k) ∈ Dk, k = 0, 1, 2, . . . , N , are solutions of the numerical system (11).

The constructivity of a suggested technique is shown on the following example with four absolute
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continuous solutions:

du1(t)

dt
=


u1u2 −

48

25
t3 +

44

25
t2 − 17

100
t− 7

10
, t ∈

[
0,

1

4

]
,

u1u2 +
48

25
t3 − 28

25
t2 − 131

20
t+

483

200
, t ∈

[1
4
,
1

2

]
,

du2(t)

dt
=


t(u1 − u2)−

16

5
t3 +

7

5
t2 − 131

20
t+

4

5
, t ∈

[
0,

1

4

]
,

t(u1 − u2) +
16

5
t3 − 9

5
t2 +

1

4
t+

3

5
, t ∈

[1
4
,
1

2

]
,

1
2∫

0

u21(s) ds =
47

1000
,

1
2∫

0

u22(s) ds =
47

1000
.

For N = 2, t0 = 0, t1 = 1
4 , t2 = 1

2 , m = 5 these four solutions are defined by the approximate

values of parameters z(0), z(1), z(2) given in table.

1-solution 2-solution 3-solution 4-solution

z̃
(0)
1 0.3999999998 0.4469892219 −0.1615332331 −0.2084976508

z̃
(0)
2 0.25 −0.3803603881 0.2769448823 −0.3583253898

z̃
(1)
1 0.2499999998 0.2446667248 −0.3540518758 −0.3583375962

z̃
(1)
2 0.2500000001 −0.3606725966 0.2579658912 −0.3583910008

z̃
(2)
1 0.2499999998 0.2046115983 −0.4035821965 −0.3584724797

z̃
(2)
2 0.4000000003 −0.1585615166 0.3508654384 −0.2082301147
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[2] A. Rontó, M. Rontó, and N. Shchobak, Constructive analysis of periodic solutions with interval
halving. Bound. Value Probl. 2013, 2013:57, 34 pp.
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In a Euclidean space Rn with n > 1, consider the set Mn of linear systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,∞), (1)

with continuous operator-functions A : R+ → EndRn, identified with the systems themselves.
Developing the ideas from the papers [1–7], we study the Lyapunov type indicators which are
responsible for the oscillation of solutions: in this case, for their rotatability in a specially chosen
planes in which it is the most significant.

Let S(A) be the set of all solutions of system (1), and let Gk(A) be the set of all its k-dimensional
subspaces. The asterisk as subscript of a linear space denotes the set with the zero removed.

Definition 1. For a given linearly independent solutions x, y ∈ S∗(A) of the system A ∈ Mn and
for a moment t ∈ R+ define the angle of rotation of function x in direction of function y and,
respectively, the trace variation of function x in the time from 0 to t by the following formulas

Ψ(x, y, t) ≡
∣∣∣∣

t∫
0

(
ėx(τ), Ry(τ)ex(τ)

)
dτ

∣∣∣∣, P(x, t) ≡
t∫

0

|ėx(τ)| dτ, (2)

where ea ≡ a/|a| is a normalized vector a, and Rba is the result of rotation of the vector a by the
angle π/2 to the half-plane which contains the vector b (linearly independent of a).

Definition 2. For each plane (two-dimensional subspace) G ∈ G2(A) of solutions of the system
A ∈ Mn define the weak and, respectively, strong rotatability indicators of the plane G: the lower
one

ψ̌◦(G) ≡ lim
t→∞

inf
L∈AutRn

1

t
Ψ(Lx,Ly, t), ψ̌•(G) ≡ inf

L∈AutRn
lim
t→∞

1

t
Ψ(Lx,Ly, t) (3)

and the upper one

ψ̂◦(G) ≡ lim
t→∞

inf
L∈AutRn

1

t
Ψ(Lx,Ly, t), ψ̂•(G) ≡ inf

L∈AutRn
lim
t→∞

1

t
Ψ(Lx,Ly, t), (4)

where x and y form a basis in G.

Remark 1. If one replaces in formulas (3) and (4) for each t ∈ R+ the angle of rotation Ψ(Lx,Ly, t)
of the function Lx in direction of the function Ly in time from 0 to t by the trace variation P(Lx, t)
of the function Lx in the same time (see eq. (2)), then the resulting formulas will give corresponding
wandering indicators ρ̂◦(x), ρ̂•(x), ρ̌◦(x), ρ̌•(x) of the solution x ∈ S∗(A) of the system A ∈ Mn

(see [3] in somewhat different notation).

Definition 3. For each solution x ∈ S∗(A) of the system A ∈ Mn define weak and, respectively,
strong plain rotatability indicators of the solution x: the lower one

ψ̌◦(x,A) ≡ sup
x∈G∈G2(A)

ψ̌◦(G), ψ̌•(x,A) ≡ sup
x∈G∈G2(A)

ψ̌•(G) (5)
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and the upper one

ψ̂◦(x,A) ≡ sup
x∈G∈G2(A)

ψ̂◦(G), ψ̂•(x,A) ≡ sup
x∈G∈G2(A)

ψ̂•(G). (6)

Definition 4. If the upper indicator in Definitions 2 and 3 coincides with the similar lower one,
then it is called exact and its accent (check or hat) is removed, and in case of coincidence of weak
indicator with the similar strong one it is called absolute and its circle (empty or full) is omitted.

Definition 5. For each system A ∈ Mn, by the spectrum of an indicator defined on the set S∗(A)
or G2(A) (or perhaps only on a part of these) we mean the set of all its values on that set.

Remark 2. The case n = 2 is special in that the plane G ∈ G2(A) of solutions of the system
A ∈ M2 coincides with the whole space S(A), and hence, indicators (3) and (4) coincide with the
corresponding oriented rotatability indicators θ̌◦(x) = θ̌•(x) and θ̂◦(x) = θ̂•(x) of some solution
x ∈ G∗ (actually, of any one; see [7] in other notation), and they are the absolute lower ψ̌(G)
and upper ψ̂(G) rotatability indicators of the plane G = S(A), respectively, and have one-point
spectrum.

The apparent incorrectness of Definition 2, in the part of its possible dependence on the choice
of linearly independent solutions x, y in G and of a scalar product in Rn, is eliminated by

Theorem 1. The rotatability indicators of a plane G ∈ G2(A) of solutions of any system A ∈ Mn,
defined by formulas (3) and (4), are invariant under the choice of a basis x, y ∈ G∗ and the choice
of a Euclidean structure in Rn.

The proof of Theorem 1 is provided by

Lemma 1. For any plane G ∈ G2(A) of any system A ∈ Mn, there are a system B ∈ M2 and a
continuously differentiable family of orthogonal transformations

U(t) : G(t) → G(0) ≡ R2, t ∈ R+, U(0) = I,

sending any linearly independent solutions x, y ∈ G∗ into solutions u, v ∈ S(B) such that

u ≡ Ux, v ≡ Uy, Ψ(x, y, t) = Ψ(u, v, t), t ∈ R+.

According to the notation given in Definition 3 for the plane rotatability indicator of a solution
of a system, it is not uniquely determined by that solution alone and may depend on the other
solutions of the system, which is justified by

Theorem 2. There exist an autonomous system A ∈ M3 and a non-autonomous system B ∈ M3,
having a common solution x ∈ S∗(A) ∩ S∗(B) with exact, absolute, but different plane rotatability
indicators

ψ(x,A) > ψ(x,B).

There exists a usual order in the set of plane indicators [3]: the lower indicators do not exceed
the upper ones and the weak indicators do not exceed the strong ones. In addition, the seminorm

∥A∥I ≡ lim
t→∞

1

t

t∫
0

∥A(τ)∥ dτ <∞, ∥A(τ)∥ ≡ sup
|e|=1

|A(τ)e|, (7)

in the space Mn gives the upper bound for all the wandering indicators and hence for all the
indicators introduced in Definitions 2 and 3, since the following assertion holds.
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Theorem 3. For any solution x ∈ G∗ from any plane G ∈ G2(A) of solutions of any system
A ∈ Mn the following estimates hold

0 ≤ ψ̌◦(G) ≤ ψ̌◦(x,A) ≤ ρ̌◦(x), ψ̌•(G) ≤ ψ̌•(x,A) ≤ ρ̌•(x),

ψ̂◦(G) ≤ ψ̂◦(x,A) ≤ ρ̂◦(x), ψ̂•(G) ≤ ψ̂•(x,A) ≤ ρ̂•(x) ≤ ∥A∥I .

The inequalities in Theorem 3 between the plane rotatability indicators and the wandering
indicators are not equalities in general, already for solutions of two-dimensional systems (but non-
autonomous, according to Theorem 10 below) as shown by

Theorem 4. There exists a system A ∈ M2 such that the plane rotatability indicators of all
solutions x ∈ S∗(A) are exact, absolute, and the same but do not coincide with the wandering
indicators, which are also exact, absolute, and the same:

ψ(x,A) < ρ(x).

If in Definition 2 instead of the exact lower bounds over all automorphisms of the phase space
the upper bounds are taken, then so defined indicators are upper estimated neither by the seminorm
(7) nor by anything else, as shown by

Theorem 5. For any ε > 0 there exists a system A ∈ M3 satisfying the conditions

∥A(t)∥ ≤

{
ε, t ∈ [0, 1],

0, t ≥ 1,
∥A∥I = 0,

such that all the indicators of some plane G ∈ G2(A) obtained from formulas (3) and (4) by
replacement of all the exact lower bounds by the upper ones equal ∞.

If in Definition 3 instead of the exact upper bounds over all planes of solution space (containing
the given solution) the lower bounds are taken, then so defined indicators are too less informative,
already for three-dimensional autonomous systems as shown by

Theorem 6. All the indicators of all solutions x ∈ S∗(A) of any autonomous A ∈ M3 obtained
from formulas (5) and (6), with the exact upper bounds replaced by the lower ones, equal 0.

In the case of an autonomous system A ∈ Mn all the spectra of various indicators from Defin-
itions 2–4 are closely related to the spectrum | ImSp(A)| – the set of absolute values of imaginary
parts of the eigenvalues of the operator A ∈ EndRn. This relationship is described by the next
three theorems.

Theorem 7. For any autonomous system A ∈ Mn the spectrum of the exact absolute rotatability
indicator of a plane includes the spectrum | ImSp(A)|.

Theorem 8. There exists an autonomous system A ∈ Mn with the spectrum of the exact absolute
rotatability indicator of a plane not included in the spectrum | ImSp(A)|.

Theorem 9. For any autonomous system A ∈ Mn the spectrum of the exact weak, as well as
strong, plane rotatability indicator of a solution coincides with the spectrum | ImSp(A)|.

As an example confirming the validity of Theorem 8, it suffices to take a four-dimensional
autonomous system with eigenvalues ±i,±2i: its exact absolute rotatability indicators for at least
one of planes equal zero. The proof of Theorem 9 is provided by
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Theorem 10. For each solution x ∈ S∗(A) of any autonomous system A ∈ Mn the weak and
strong plane rotatability indicators are exact and coincide with the similar wandering indicators

ψ◦(x,A) = ρ◦(x), ψ•(x,A) = ρ•(x). (8)

To prove Theorem 10 it is enough, in its turn, to make sure that the next assertion is true.

Lemma 2. For each solution x ∈ S∗(A) of any autonomous system A ∈ Mn there exists a linearly
independent with x solution y ∈ S∗(A) satisfying the condition

Ψ(Lx,Ly, t) = P(Lx, t), L ∈ AutRn, t ∈ R+.

In Lemma 2, in the case when the initial value x(0) of a solution x is an eigenvector for
A ∈ EndRn corresponding to a real eigenvalue, any nonzero solution is suitable as a solution y
related to the solution x, otherwise there is a suitable one, for example, the function y = Ax.

Remark 3. Applying Theorem 10 and the results of the papers [3, 4] to each of the indicators
(8), we can describe the distribution of its values over the space S∗(A), namely, on the steps of
some flag of subspaces in S(A) it takes constant values ranging in some special order over all the
numbers of the spectrum | ImSp(A)|.

Theorems 9 and 10 justify the introduction of the plain rotatability indicators of a solution in
Definition 3. But equalities (8) do not extend to non-autonomous systems A ∈ Mn: by Theorem 4
already for n = 2 and by Theorem 2 even when the function x is a solution of some autonomous
system.
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The differential equation
y′′′ = α0p(t)y| ln |y||σ (1)

is considered, where α0 ∈ {−1; 1}, σ ∈ R, p : [a,w) → (0,+∞) is a continuous function; a < w ≤
+∞.

Asymptotic properties of solutions of equation (1) when σ = 0 were investigated in detail in
the work by I. T. Kiguradze [6, § 6]. For second order equations of the form (1) the asymptotic
of solutions of this class was studied in the works by V. M. Evtukhov and Mousa Jaber Abu
Elshour [1, 3].

In this work the equation of the third order equation (1) is investigated using the methodology
proposed by V. M. Evtukhov for differential equations of n-th order in [2] and further developed
in the works [4, 5, 9]. Some results for equation (1) we published in [7, 8].

The solution y of equation (1), defined on the interval [ty, w) ⊂ [a,w) is called Pw(λ0) solution
if it satisfies the following conditions:

lim
t→w

y(k)(t) =

{
either 0,

or ±∞,
(k = 0, 1, 2), lim

t→w

(y′′(t))2

y′′′(t)y′(t)
= λ0.

Necessary and sufficient conditions for the existence of Pw(λ0) solutions of equation (1) are
stated. The asymptotic representation of such solutions and their derivatives up to second order
when t → w were received.

Let us introduce the necessary notation.

πw(t) =

{
t if w = +∞,

t− w if w < +∞,
IA(t) =

t∫
A

π2
w(τ)p(τ) dτ, IB(t) =

t∫
B

p
1
3 (τ) dτ,

A =


a if

w∫
a

|πw(τ)|2p(τ) dτ = +∞,

w if

w∫
a

|πw(τ)|2p(τ) dτ < +∞,

B =


a if

w∫
a

p
1
3 (τ) dτ = +∞,

w if

w∫
a

p
1
3 (τ)dτ < +∞,

q(t) = p(t)π3
ω(t)

∣∣ lnπ2
ω(t)

∣∣σ, Q(t) =

∫ t

a
p(τ)π2

ω(τ)
∣∣ lnπ2

ω(t)
∣∣σ dτ.

Let us formulate the main theorem on the existence of Pw(λ0) solutions of equation (1).
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Theorem 1. Let σ ̸= 1. Then for the existence of Pw(λ0) solutions of equation (1), where λ0 ∈
R\{0; 1; 12}, it is necessary, and if the function p : [a,w) → (0,+∞) is continuous and differentiable
and

λ0 ̸=
−(2 + σ)±

√
(2 + σ)2 + 8

4
, λ0 ̸=

−1±
√
3

2
, λ0 ̸=

−(2− σ)±
√

(2 + σ)2 + 8

4
,

then it is also sufficient that

α0λ0(2λ0 − 1)(λ0 − 1)πw(t) > 0, lim
t→w

p(t)π3
w(t)∣∣ (1−σ)(1−λ0)2

λ0
IA(t)

∣∣ σ
σ−1

= α0
|λ0| |2λ0 − 1|
|λ0 − 1|3

. (2)

Moreover, for each of such solutions there are asymptotic representation as t → w

ln |y(t)| = ν((1− σ)
(λ0 − 1)2

λ0
IA(t))

1
1−σ (1 +O(1)),

y′(t)

y(t)
=

(2λ0 − 1)

(λ0 − 1)πw(t)
(1 +O(1)),

y′′(t)

y′(t)
=

λ0

(λ0 − 1)πw(t)
(1 +O(1)),

where ν = sign(α0(λ0 − 1)(1− σ)IA(t)).

Theorem 2. Let σ ̸= 3. Then for the existence of Pw(1) solutions of equation (1) it is necessary,
and if p : [a,w) → (0,+∞) is continuous and differentiable and such that there is a finite or equal
±∞

lim
t→w

(p
1
3 (t)|IB(t)|

σ
3−σ )′

p
1
3 (t)|IB(t)|

3σ
3−σ

,

then it is also sufficient that

lim
t→w

πw(t)p
1
3 (t)|IB(t)|

σ
3−σ = ∞.

Moreover, for each of such solutions the are asymptotic representation as t → w

ln |y(t)| = µ
∣∣∣3− σ

3
IB(t)

∣∣∣ 3−σ
3
(1 +O(1)),

y′(t)

y(t)
= p

1
3

∣∣∣3− σ

3
IB(t)

∣∣∣ σ
3−σ

(1 +O(1)),
y′′(t)

y(t)
= p

1
3

∣∣∣3− σ

3
IB(t)

∣∣∣ σ
3−σ

(1 +O(1)),

where µ = sign(3−σ
3 IB(t)).

Theorem 3. For the existence of Pw(±∞) solution of equation (1), necessary and sufficient con-
ditions are:

lim
t→w

q(t) = 0, lim
t→w

Q(t) = ∞.

Moreover, for each of such solutions there are asymptotic representation as t → w

ln |y(t)| = lnπ2
w(t) +

α0Q(t)

2
(1 +O(1)),

ln |y′(t)| = ln |πw(t)|+
α0Q(t)

2
(1 +O(1)), ln |y′′(t)| = α0Q(t)

2
(1 +O(1)).

The asymptotic of solutions in Theorems 1–4 is written in implicit form. The conditions for the
existence of solutions of equation (1) of the specified type were obtained in which their asymptotic
performance, as well as derivatives of first and second order can be written in explicit form.
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Theorem 4. Let σ(1 − σ) ̸= 0 and conditions (2) take place. Let, in addition λ0 ∈ R \ {0; 1; 12},
λ0 ̸= −1±

√
3 and the functions

h1(t) =
p(t)π3

ω(t)∣∣ (1−σ)(1−λ0)2

λ0
IA(t)

∣∣ σ
σ−1

− α0|λ0| |2λ0 − 1|
|λ0 − 1|3

, h2(t) =
∣∣∣(1− σ)

(λ0 − 1)2

λ0
IA(t)

∣∣∣ 1
σ−1

,

such that

lim
t→ω

h1(t)

h2(t)
= 0.

Then the differential equation (1) has Pw(λ0) solution, which allows asymptotic representation as
t → w

y(t) = (±1 + o(1))e
ν
∣∣(1−σ)

(λ0−1)2

λ0
IA(t)

∣∣ 1
1−σ

,

y′(t) =
(2λ0 − 1)

(λ0 − 1)πw(t)

(
± 1 + o(1)

)
e
ν
∣∣(1−σ)

(λ0−1)2

λ0
IA(t)

∣∣ 1
1−σ

,

y′′(t) =
λ0(2λ0 − 1)

(λ0 − 1)2π2
w(t)

(
− 1± o(1)

)
e
ν
∣∣(1−σ)

(λ0−1)2

λ0
IA(t)

∣∣ 1
1−σ

.

Here is a consequence of this theorem, if σ = 0, i.e. for the linear differential equation

y′′′ = α0p(t)y, (3)

where α0 ∈ {−1; 1}, σ ∈ R, p : [a,w) → (0,+∞) is a continuous function; a < w ≤ +∞.

Corollary. Let for the differential equation (3),

lim
t→ω

p(t)π3
ω(t) = c0 > 0 and

ω∫
a

∣∣∣p(t)π3
ω(t)− c0
πω(t)

∣∣∣ dt < +∞.

Then, if

−16

36
<

c0
α0

<
1

3

and (
32

(α0

c0

)3
+ 36

(α0

c0

)2
− 2

α0

c0
+ 6

)2

−
(
32

(α0

c0

)3
− 2

(α0

c0

)2
+ 24

α0

c0

)2(
1 +

36c0
16α0

)
< 0,

the differential equation (3) has a fundamental system of solutions yi (i = 1, 2, 3), admitting asym-
ptotic representation as t → ω

yi(t) = (1 + o(1))e

[
α0

(λi−1)2

λi
IA(t)

]
,

y′i(t) =
(2λi − 1)

(λi − 1)πw(t)
(1 + o(1))e

[
αi

(λi−1)2

λi
IA(t)

]
,

y′′i(t) =
λi(2λi − 1)

(λi − 1)2π2
w(t)

(1 + o(1))e

[
α0

(λi−1)2

λi
IA(t)

]
,

where λi (i = 1, 2, 3) – the roots of the algebraic equation

λ3 − λ2
(
3 + 2

α0

c0

)
+ λ

(
3 +

α0

c0

)
− 1 = 0.

The obtained asymptotics are consistent with the already known results for linear differential
equations.
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Let O ⊂ Rn and U0 ⊂ Rr be open sets. Let θi2 > θi1 > 0, i = 1, s be given numbers
and n-dimensional function f(t, x, x1, . . . , xs, u) satisfy the following conditions: for almost all
fixed t ∈ I = [a, b] the function f(t, · ) : O1+s × U0 → Rn is continuously differentiable; for
each fixed (x, x1, . . . , xs, u) ∈ O1+s × U0 the functions f(t, x, x1, . . . , xs, u), fx(t, · ) and fxi(t, · ),
i = 1, s, fu(t, · ) are measurable on I; for compact sets K ⊂ O, U ⊂ U0 there exist a function
mK,U (t) ∈ L1(I, [0,∞)) such that

∣∣f(t, x, x1, . . . , xs, u)∣∣+ |fx(t, · )|+
s∑

i=1

|fxi(t, · )|+ |fu(t, · )| ≤ mK,U (t)

for all (x, x1, . . . , xs, u) ∈ K1+s×U and for almost all t ∈ I. Furthermore, Φ is the set of continuous
initial functions φ : I1 = [τ̂ , b] → O, τ̂ = a − max{θ12, . . . , θs2}, and Ω is the set of measurable
control functions u : I → U with clu(I) is a compact set and clu(I) ⊂ U .

To each element

µ = (t0, τ1, . . . , τs, φ, u) ∈ Λ = [a, b)× [θ11, θ12]× · · · [θs1, θs2]× Φ× Ω

we assign the delay controlled functional differential equation

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t)

)
(1)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0]. (2)

Condition (2) is said to be the continuous initial condition since always x(t0) = φ(t0).

Definition. Let µ = (t0, τ1, . . . , τs, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈ (t0, b]
is called a solution of equation (1) with the initial condition (2) or a solution corresponding to µ
and defined on the interval [τ̂ , t1] if it satisfies condition (2) and is absolutely continuous on the
interval [t0, t1] and satisfies equation (1) almost everywhere on [t0, t1].

Let us introduce the set of variation:

V =

{
δµ = (δt0, δτ1, . . . , δτs, δφ, δu) : |δt0| ≤ α, |δτi| ≤ α, i = 1, s,

δφ =

k∑
i=1

λiδφi, δu =

k∑
i=1

λiδui, |λi| ≤ α, i = 1, k

}
,
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where δφi ∈ Φ− φ0, δui ∈ Ω− u0, i = 1, k. Here φ0 ∈ Φ, u0 ∈ Ω are fixed functions and α > 0 is a
fixed number.

Let µ0 = (t00, τ10, . . . , τs0, φ0(t), u0(t)) ∈ Λ be a fixed element, where t00, t10 ∈ (a, b), t00 < t10
and τi0 ∈ (θi1, θi2), i = 1, s. Let x0(t) be the solution corresponding to µ0.

There exist numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1) × V , we have
µ0 + εδµ ∈ Λ, and the solution x(t;µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 corresponds
to it (see [2, Theorem 1.3]).

By the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t) on the interval
[τ̂ , t10 + δ1]. Therefore, we can assume that the solution x0(t) is defined on the whole interval
[τ̂ , t10 + δ1].

Now we introduce the increment of the solution x0(t) = x(t;µ0) :

∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t), (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1)× V.

Theorem 1. Let the following conditions hold:

1) the function φ0(t) is absolutely continuous and φ̇0(t), t ∈ I1, is bounded;

2) function f(w, u), w = (t, x, x1, . . . , xs) ∈ I ×O1+s is bounded on I ×Os+1 × U0

3) there exist the finite limits

lim
t→t00−

φ̇0(t) = φ̇−
0 , lim

w→w0

f(w, u0(t)) = f−, w ∈ (a, t00]×O1+s,

where w0 = (t00, φ0(t00), φ0(t00−τ10), . . . , φ0(t00−τs0). Then there exist numbers ε2 ∈ (0, ε1)
and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t00, t10 + δ2] × (0, ε2) × V −, where V − =
{δµ ∈ V : δt0 ≤ 0}, we have

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ). (3)

Here

δx(t; δµ) = Y (t00; t)
[
φ̇−
0 − f−]δt0 + β(t; δµ), (4)

β(t; δµ) = Y (t00; t)δφ(t00)−
s∑

i=1

[ t∫
t00

Y (ξ; t)fxi [ξ]ẋ0(ξ − τi0) dξ

]
δτi

+
s∑

i=1

t∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ +

t∫
t00

Y (ξ; t)fu[ξ]δu(ξ) dξ,

where Y (ξ; t) is the n× n-matrix function satisfying the equation

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]−
s∑

i=1

Y (ξ + τi0; t)fxi [ξ + τi0], ξ ∈ [t00, t]

and the condition

Y (ξ; t) =

{
H for ξ = t,

Θ for ξ > t,

H is the identity matrix and Θ is the zero matrix;

fxi [ξ] = fxi

(
ξ, x0(ξ), x0(ξ − τ10), . . . , x0(ξ − τs0), u0(ξ)

)
.
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The expression (4) is called the variation formula of solution. The addend

−
s∑

i=1

[ t∫
t00

Y (ξ; t)f0xi [ξ]ẋ0(ξ − τi0) dξ

]
δτi

in the formula (4) is the effects of perturbations of the delays τi0, i = 1, s.

The expression

Y (t00; t)
{
δφ(t00) +

[
φ̇−
0 − f−]δt0}+

s∑
i=1

t∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ

is the effect of the continuous initial condition and perturbation of the initial moment t00 and the
initial function φ0(t).

The expression
t∫

t00

Y (ξ; t)fu[ξ]δu(ξ) dξ

is the effect of perturbation of the control function u0(t).

In [4] variation formulas of solution were proved for the equation

ẋ(t) = f
(
t, x(t), x(t− τ), u(t)

)
with the condition (2) in the case when the initial moment and delay variations have the same
signs.

In the present paper, the equation with several delays is considered and variation formulas of
solution are obtained with respect to wide classes of variations (see V − and V +).

Variation formulas of solution for various classes of controlled delay functional differential equa-
tions, without perturbations of delays, are proved in [1, 3].

Theorem 2. Let the conditions 1) and 2) of the Theorem 1 hold. Moreover, there exist the finite
limits

lim
t→t00+

φ̇0(t) = φ̇+
0 , lim

w→w0

f(w, u0(t)) = f+, w ∈ [t00, b).

Then for any t̂ ∈ (t00, t10) there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary
(t, ε, δµ) ∈ [t̂, t10 + δ2]× (0, ε2)× V +, where V + = {δµ ∈ V : δt0 ≥ 0} the formula (3) holds, where

δx(t; δµ) = Y (t00; t)
[
φ̇+
0 − f+

]
δt0 + β(t; δµ).

Theorem 3. Let the conditions 1) and 2) of the Theorem 1 and the condition 6) hold. Moreover,

φ̇−
0 − f− = φ̇+

0 − f+ := f̂ .

Then for any t̂ ∈ (t00, t10) there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary
(t, ε, δµ) ∈ [t̂, t10 + δ2]× (0, ε2)× V the formula (3) holds, where

δx(t; δµ) = Y (t00; t)f̂ δt0 + β(t; δµ).
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Let

G(ε0) =
{
t, ε : t ∈ R, ε ∈ [0, ε0], ε0 ∈ R+

}
.

Definition 1. We say that a function p(t, ε), in general a complex-valued, belongs to the class
S(m; ε0) (m ∈ N ∪ {0}) if

1) p : G(ε0) → C;

2) p(t, ε) ∈ Cm(G(ε0)) with respect to t;

3)
dkp(t, ε)

dtk
= εkp∗k(t, ε) (0 ≤ k ≤ m),

∥p∥S(m;ε0)
def
=

m∑
k=0

sup
G(ε0)

|p∗k(t, ε)| < +∞.

Definition 2. We say that a function f(t, ε, θ) belongs to the class F (m; ε0; θ) (m ∈ N ∪ {0}) if
this function can be represented as

f(t, ε, θ) =

∞∑
n=−∞

fn(t, ε) exp(in θ(t, ε)),

and

1) fn(t, ε) ∈ S(m; ε0) (n ∈ Z);

2) ∥f∥F (m;ε0,θ)
def
=

∞∑
n=−∞

∥fn∥S(m;ε0) < +∞;

3) θ(t, ε) =

t∫
0

φ(τ, ε) dτ , φ ∈ R+, φ ∈ S(m, ε0), inf
G(ε0)

φ(t, ε) = φ0 > 0.

The set of functions of the class F (m; ε0; θ) forms a linear space, that turns into a complete
normed space by introducing norms ∥ · ∥F (m;ε0;θ). The chain of next inclusions are true: F (0; ε0; θ) ⊃
F (1; ε0; θ) ⊃ · · · ⊃ F (m; ε0; θ).

Suppose we have two functions of the class F (m; ε0; θ),

u(t, ε, θ) =

∞∑
n=−∞

un(t, ε) exp(inθ(t, ε)), v(t, ε, θ) =

∞∑
n=−∞

vn(t, ε) exp(inθ(t, ε)).
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The product of these functions we define by the formula:

(uv)(t, ε, θ) =

∞∑
n=−∞

( ∞∑
s=−∞

un−s(t, ε)vs(t, ε)
)
exp(inθ(t, ε)).

Obviously, uv ∈ F (m; ε0; θ).
We formulate some properties of the norm ∥ · ∥F (m;ε0;θ). Let u, v ∈ F (m; ε0; θ), k = const.

Then

1) ∥ku∥F (m;ε0;θ) = |k| · ∥u∥F (m;ε0;θ);

2) ∥u+ v∥F (m;ε0;θ) ≤ ∥u∥F (m;ε0;θ) + ∥v∥F (m;ε0;θ);

3) ∥u∥F (m;ε0;θ) =
m∑
k=0

∥∥∥ 1

εk
∂ku

∂tk

∥∥∥
F (0;ε0;θ)

;

4) ∥uv∥F (m;ε0;θ) ≤ 2m∥u∥F (m;ε0;θ) · ∥v∥F (m;ε0;θ).

Definition 3. We say that the infinite vector x(t, ε) = col(x1(t, ε), x2(t, ε), . . .) belongs to the class
S1(m; ε0) if xj ∈ S(m; ε0) (j = 1, 2, . . .) and

∥x∥S1(m;ε0)
def
= sup

j
∥xj∥S(m;ε0) < +∞.

Definition 4. We say that the infinite matrix A(t, ε) = (ajk(t, ε))j,k=1,2,... belongs to the class
S2(m; ε0) if ajk ∈ S(m; ε0), and

∥A∥S2(m;ε0)
def
= sup

j

∞∑
k=1

∥ajk∥S(m;ε0) < +∞.

Definition 5. We say that the infinite vector x(t, ε, θ) = col(x1(t, ε, θ), x2(t, ε, θ), . . .) belongs to
the class F1(m; ε0; θ) if xj ∈ F (m; ε0) (j = 1, 2, . . .), and

∥x∥F1(m;ε0,θ)
def
= sup

j
∥xj∥F (m;ε0,θ) < +∞.

Definition 6. We say that the infinite matrix A(t, ε, θ) = (ajk(t, ε, θ)j,k=1,2,... belongs to the class
F2(m; ε0, θ) if ajk ∈ F (m; ε0, θ), and

∥A∥F2(m;ε0,θ)
def
= sup

j

∞∑
k=1

∥ajk∥F (m;ε0,θ) < +∞.

Consider the countable system of differential equations:

dx

dt
= A(t, ε)x+ f(t, ε, θ) + µX(t, ε, θ, x), (1)

where t, ε ∈ G(ε0), x = col(x1, x2, . . .) ∈ D ⊂ l1 (l1 – the space of boundary numerical sequences),
f = col(f1, f2, . . .) ∈ F1(m; ε0; θ), A = diag[A1, A2, . . .], Aj = Aj(t, ε) = (aj,αβ)α,β=1,2 (j = 1, 2, . . .),
aj,αβ ∈ S(m; ε0) (j = 1, 2, . . .; α, β = 1, 2), eigenvalues of matrix Aj(t, ε) have a kind ±iωj(t, ε),
ωj ∈ R+ (j = 1, 2, . . .); infinite vector-function X = col(X1, X2, . . .) ∈ F1(m; ε0; θ) with respect to
t, ε, θ and continuous with respect to x ∈ D; parameter µ ∈ (0, µ0) ⊂ R+.

The purpose of the article is to establish conditions under which the system (1) has a particular
solution x(t, ε, θ, µ) ∈ F1(m1; ε1; θ) (0 ≤ m1 ≤ m; 0 < ε1 ≤ ε0).

We assume the next conditions.
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10. inf
G(ε0)

|aj,12(t, ε)| = a0 > 0 (j = 1, 2, . . .).

20. sup
j

sup
G(ε0)

ωj(t, ε) = ω < +∞.

30. ∀n ∈ Z: |n| ≤ (2ω + 1)φ−1
0 :

inf
G(ε0)

∣∣kωj(t, ε)− nφ(t, ε)
∣∣ ≥ γ > 0 (k = 1, 2; j = 1, 2, . . .).

40. The functions Xj (j = 1, 2, . . .) have in D continuous particular derivations with respect to
x1, x2, . . . up to order 2q+1 (q ∈ N), and if x1, x2, . . . ∈ F (m; ε0; θ), then all these derivations
belong to the class F (m; ε0; θ) also, and

sup
j

∥∥∥∂2q+1Xj(x1, x2, . . .)

∂xq1k1∂x
q2
k2
· · · ∂xqsks

∥∥∥
F (m;ε0;θ)

< +∞

(q1 + q2 + · · ·+ qs = 2q + 1; k1, k2, . . . , ks ∈ N).

Lemma 1. Let the countable system of the differential equations

dx

dt
=

(
Λ(t, ε) +

q∑
l=1

Bl(t, ε, θ)µ
l
)
x, (2)

where x = col(x1, x2, . . .), Λ(t, ε) = diag(λ1(t, ε), λ2(t, ε), . . .), λj ∈ S(m; ε0), Bl(t, ε, θ) ∈ F2(m; ε0; θ)
(l = 1, . . . , q), µ ∈ (0, µ0) ⊂ R+, satisfy the condition: ∀n ∈ Z, j ̸= k:

inf
G(ε0)

∣∣λj(t, ε)− λk(t, ε)− inφ(t, ε)
∣∣ ≥ γ1 > 0,

where φ(t, ε) – the function is involved in the definition of the class F (m; ε0; θ). Then there exists
µ1 ∈ (0, µ0) such that ∀µ ∈ (0, µ1) there exists a non-degenerate transformation

x =
(
E +

q∑
l=1

Φl(t, ε, θ)µ
l
)
y,

where Φl ∈ F2(m; ε0; θ) (l = 1, . . . , q), which leads the system (2) to the kind:

dy

dt
=

(
Λ(t, ε) +

q∑
l=1

Ul(t, ε)µ
l + ε

q∑
l=1

Vl(t, ε, θ)µ
l + µq+1W (t, ε, θ, µ)

)
y,

where Ul(t, ε) – infinite diagonal matrices whose elements belong to the class S(m; ε0), Vl,W ∈
F2(m− 1; ε0; θ) (l = 1, . . . , q).

Lemma 2. Let the system (1) satisfy conditions 10–40. Then there exists µ2 ∈ (0, µ0) such that
∀µ ∈ (0, µ2) there exists a transformation of kind

x = ξ(t, ε, θ, µ) + Ψ(t, ε, θ, µ)y, (3)

where ξ(t, ε, θ, µ) ∈ F1(m; ε0; θ), Ψ(t, ε, θ, µ) ∈ F2(m; ε0; θ), which leads the system (1) to the kind:

dy

dt
=

(
Λ̃(t, ε) +

q∑
l=1

Kl(t, ε)µ
l
)
y + εh(t, ε, θ, µ) + µ2qr(t, ε, θ, µ)

+ εC(t, ε, θ, µ)y + µq+1P (t, ε, θ, µ)y + µY (t, ε, θ, y, µ), (4)
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where Λ̃(t, ε) = diag[Λ1(t, ε),Λ2(t, ε), . . .], Λj(t, ε) = diag(−iωj(t, ε), iωj(t, ε)) (j = 1, 2, . . .),
Kl(t, ε) = diag(kl,1(t, ε), kl,2(t, ε), . . .) ∈ S2(m; ε0), h, r ∈ F1(m − 1; ε0; θ), C,P ∈ F2(m − 1; ε0; θ).
Vector-function Y belongs to the class F1(m; ε0; θ) with respect to (t, ε, θ) and contains the terms
not lower than the second order with respect to the components of vector y.

Theorem 1. Let the system (4) satisfy the condition: there exists q0 ∈ N such that |Re kq0,j(t, ε)| ≥
γ0 > 0, and for all l = 1, . . . , q0 − 1 (if q0 > 1): Re kl,j(t, ε) ≡ 0 (j = 1, 2, . . .). Then there exists
µ3 ∈ (0, µ0), ε1(µ) ∈ (0, ε0) such that for all µ ∈ (0, µ3), ε ∈ (0, ε1(µ)) the system (4) has a
particular solution y(t, ε, θ, µ) ∈ F1(m− 1; ε1(µ)).

Proof. We make in the system (4) the substitution:

y =
ε+ µ2q

µq0
ỹ,

where ỹ is a new unknown vector. We obtain:

dỹ

dt
=

(
Λ̃(t, ε) +

q∑
l=1

Kl(t, ε)µ
l
)
ỹ +

εµq0

ε+ µ2q
h(t, ε, θ, µ) +

µ2q+q0

ε+ µ2q
r(t, ε, θ, µ)

+ εC(t, ε, θ, µ)ỹ + µq+1P (t, ε, θ, µ)ỹ +
ε+ µ2q

µq0−1
Ỹ (t, ε, θ, ỹ, µ). (5)

Consider the appropriate linear homogeneous and diagonal system:

dỹ(0)

dt
=

(
Λ̃(t, ε) +

q∑
l=1

Kl(t, ε)µ
l
)
ỹ(0) +

εµq0

ε+ µ2q
h(t, ε, θ, µ) +

µ2q+q0

ε+ µ2q
r(t, ε, θ, µ). (6)

In the paper [2] it has been found that the conditions of the theorem guarantee the existence of a
particular solution ỹ(0)(t, ε, θ, µ) ∈ F1(m−1; ε0; θ) of the system (6), and there exists M ∈ (0,+∞)
such that

∥ỹ(0)∥F1(m−1;ε0;θ) ≤
M

γ0µq0

( εµq0

ε+ µ2q
∥h∥F1(m−1;ε0;θ) +

µ2q+q0

ε+ µ2q
∥r∥F1(m−1;ε0;θ)

)
<

M

γ0

(
∥h∥F1(m−1;ε0;θ) + ∥r∥F1(m−1;ε0;θ)

)
.

We seek the solution belonging to the class F1(m− 1; ε1(µ); θ) of the system (5) by the method
of succesive approximations, defining the initial approximations ỹ(0) and the subsequents approxi-
mations defining as solutions, belonging to the class F1(m− 1; ε0; θ) of the countable linear, homo-
geneous and diagonal systems:

dỹ(s+1)

dt
=

(
Λ̃(t, ε) +

q∑
l=1

Kl(t, ε)µ
l
)
ỹ(s+1) +

εµq0

ε+ µ2q
h(t, ε, θ, µ) +

µ2q+q0

ε+ µ2q
r(t, ε, θ, µ)

+ εC(t, ε, θ, µ)ỹ(s) + µq+1P (t, ε, θ, µ)ỹ(s) +
ε+ µ2q

µq0−1
Ỹ (t, ε, θ, ỹ(s), µ), s = 0, 1, 2, . . . . (7)

Let
Ω =

{
ỹ ∈ F1(m− 1; ε0; θ) : ∥ỹ − ỹ(0)∥F1(m−1;ε0;θ) ≤ d

}
.

By virtue of the condition 40, there exists L(d) ∈ (0,+∞) such that ∀ ỹ, z̃ ∈ Ω:∥∥Ỹ (t, ε, θ, ỹ, µ)− Ỹ (t, ε, θ, z̃, µ)
∥∥
F1(m−1;ε0;θ)

≤ L(d)∥ỹ − z̃∥F1(m−1;ε0;θ).
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Using the ordinary technique of the contraction mapping principle [1], it is easy to show that
there exists µ3 ∈ (0, µ0), N1 ∈ (0,+∞) such that ∀µ ∈ (0, µ0), ∀ ε ∈ (0, ε1(µ)), where ε1(µ) =
N1µ

2q0−1, the process (7) converges to the solution ỹ(t, ε, θ, µ) ∈ F1(m− 1; ε1(µ); θ) of the system
(5).

Lemma 2 and Theorem 1 immediately yield the following theorem.

Theorem 2. Let the system (1) satisfy conditions 10–40, and the system (4), which is obtained
from the system (1) by the transformation (3), satisfy the conditions of Theorem 1. Then there
exists µ4 ∈ (0, µ0), ε2(µ) ∈ (0, ε0) such that ∀µ ∈ (0, µ4), ε ∈ (0, ε2(µ)) the system (1) has a
particular solution x(t, ε, θ, µ) ∈ F1(m− 1; ε2(µ); θ).
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Let J = [0, 1] and R0 = [0,∞).

We consider the fractional boundary value problem

cDαu(t) = q
(
t, u(t), u′(t)

)
cDβu(t) + f

(
t, u(t), u′(t)

)
, (1)

u(0) = ku′(0), u(1) = ku′(1), k ≥ 1

α− 1
, (2)

where 1 < β < α ≤ 2, cD denotes the Caputo fractional derivative and

(H1) f, q ∈ C(J × R2
0) and

0 ≤ f(t, x, y), 0 ≤ q(t, x, y) ≤ W < ∞ for (t, x, y) ∈ J × R2
0. (3)

The further conditions on f will be specified later.

We recall that the Riemann–Liouville fractional integral Iγx of order γ > 0 of a function
x : J → R is defined as [1, 2]

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s) ds

and the Caputo fractional derivative cDγx of order γ > 0, γ ̸∈ N, of a function x : J → R is given as

cDγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)

(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)
ds,

provided that the right-hand sides exist. Here, Γ is the Euler gamma function and n = [γ] + 1, [γ]
means the integral part of the fractional number γ. Λ0 is the identical operator and if n ∈ N, then
cDnx(t) = x(n)(t).

In particular,

cDγx(t) =
d2

dt2

t∫
0

(t− s)1−γ

Γ(2− γ)

(
x(s)− x(0)− x′(0)s

)
ds, γ ∈ (1, 2).

Definition. We say that u is a solution of equation (1) if u ∈ C1(J), cDαu ∈ C(J) and (1) holds
for t ∈ J . A solution u of (1) satisfying the boundary condition (2) is called a solution of problem
(1), (2). We say that u is a positive and increasing solution of problem (1), (2) if u > 0 and u′ > 0
on J .



216 International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia

The special case of problem (1), (2) is the problem

u′′(t) = q
(
t, u(t), u′(t)

)
cDβu(t) + f

(
t, u(t), u′(t)

)
, (4)

u(0) = ku′(0), u(1) = ku′(1), k ≥ 1. (5)

Equation (4) is called the generalized Bagley–Torvik fractional differential equation (see [2–6]).
We are interested in the existence of positive and increasing solutions to problem (1), (2). To

this end for a ∈ C(J) introduce an operator Λa : C(J) → C(J) as

Λax(t) = a(t)Iα−βx(t).

For n ∈ N, let Λn
a = Λa ◦ Λa ◦ · · · ◦ Λa︸ ︷︷ ︸

n

be nth iteration of Λa and Ba be an operator acting on C(J)

defined by the formula

Bax(t) =

∞∑
n=0

Λn
ax(t).

For γ > 0, let Eγ be the classical Mittag–Leffler functions [1, 2]

Eγ(z) =

∞∑
n=0

zn

Γ(nγ + 1)
, z ∈ R.

In the following result, solutions of the auxiliary linear fractional differential equation

cDαu(t) = a(t)cDβu(t) + r(t), (6)

satisfying (2), are given by the operator Ba.

Lemma 1. Let a, r ∈ C(J). Then the function

u(t) = IαBar(t) + (t+ k)
(
kIα−1Bar(t)

∣∣
t=1

− IαBar(t)
∣∣
t=1

)
, t ∈ J,

is the unique solution to problem (6), (2).

Let
S =

{
x ∈ C1(J) : x(t) ≥ 0, x′(t) ≥ 0 for t ∈ J

}
and, under condition (H1), introduce the Nemytskii operators Q,F : S → C(J),

Qx(t) = q
(
t, x(t), x′(t)

)
, Fx(t) = f

(
t, x(t), x′(t)

)
,

where q and f are from (1). It is clear that S is a cone in C1(J). Note that, by the definition,

ΛQxy(t) = q
(
t, x(t), x′(t)

)
Iα−βy(t).

Keeping in mind, Lemma 1 define an operator K acting on S by the formula

Kx(t) = IαLQxx(t) + (t+ k)
(
kIα−1LQxx(t)

∣∣
t=1

− IαLQxx(t)
∣∣
t=1

)
,

where
LQxx(t) = BQxFx(t)

and k ≥ 1/(α− 1) is from (2).
The properties of K are summarized in the following lemma.
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Lemma 2. Let (H1) hold. Then K : S → S, K is a completely continuous operator and if u is a
fixed point of K, then u is a solution to problem (1), (2).

In view of Lemma 2, we need to prove that the operator K admits a fixed point. The existene of a
fixed point of K is proved in Theorem 1 by the Schauder fixed point theorem, while in Theorem 2 by
the Guo–Krasnoselskii fixed point theorem on cones. We work with the following growth condition
on the function f .

(H2) For t ∈ J and x, y ∈ R0, the estimate

f(t, x, y) ≤ φ(x+ y)

holds, where φ ∈ C(R0), φ is positive, nondecreasing and there exists M > 0 such that

φ(M) ≤ MΓ(α+ 1)

(1 + k)(αk + α− 1)Eα−β(W )
, (7)

where W is from (H1).

Theorem 1. Let (H1) and (H2) hold. Let f(t0, 0, 0) > 0 for some t0 ∈ J . Then there exists at
least one positive and increasing solution to problem (1), (2).

If f(t, 0, 0) = 0 on J , we can’t apply Theorem 1 to problem (1), (2). In this case u = 0 is a
solution of this problem.

Example 1. Let ρ, µ ∈ (0, 1), a, p ∈ C(J) and p(t0) ̸= 0 for some t0 ∈ J . Theorem 1 guarantees
that the equation

cDαu =
∣∣a(t) + cos(x− y)

∣∣cDβu+ |p(t)|+ uρ + (u′)µ

has at least one positive and increasing solution satisfying condition (2).

Corollary 1. Let (H1) and (H2) with (7) replaced by

φ(M) ≤ 2M

(1 + k)(2k + 1)E2−β(W )

hold. Let f(t0, 0, 0) > 0 for some t0 ∈ J . Then there exists at least one positive and increasing
solution to problem (4), (5).

Theorem 2. Let (H1) and (H2) hold. Let

lim
x,y∈R0, x+y→0

f(t, x, y)

x+ y
>

Γ(α+ 1

2(kα− 1)
uniformly on J.

Then problem (1), (2) has at least one positive and increasing solution.

Example 2. Let a, p ∈ C(J) and p > Γ(α+1)
2(kα−1) . Theorem 2 guarenrees that there exists a positive

and increasing solution of the equation

cDαu =
∣∣a(t) + e−u sinu′

∣∣cDβu+ p(t)(u+ u′)e−u−u′
, (8)

satisfying condition (2). Note that u = 0 is also a solution to problem (8), (2).
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1 Introduction

The following initial-value problem is considered

d

(
u(t, x) +

∫
Rd

b(t, x, u(α(t), ξ), ξ) dξ

)
=

(
∆xu(t, x) + f(t, u(α(t), x), x)

)
dt+ σ

(
t, u(α(t), x), x

)
dW (t, x), 0 < t ≤ T, x ∈ Rd, (1)

u(t, x) = ϕ(t, x), −r ≤ t ≤ 0, x ∈ Rd, r > 0, (2)

where ∆x ≡
d∑

i=1
∂2xi

is d-measurable operator of Laplace, ∂2xi
≡ ∂2

∂x2
i
, i ∈ {1, . . . , d}, W (t) =W (t, · )

is L2(Rd)-valued Q-Wiener process, {f, σ} : [0, T ]× R× Rd → R and b : [0, T ]× Rd × R× Rd → R
are some given functions to be specified later, ϕ : [−r, 0]×Rd ×Ω → R is an initial-datum function
and α : [0, T ] → [−r,∞) is a delay-function.

Differential equations with delay have appeared as mathematical models of real processes, evolu-
tion of which depends on previous states. Number of works are devoted to investigation qualitative
theory of stochastic differential equations with delay in finite-dimensional spaces. With regard to
such equations in infinite-dimensional spaces, let us remark the work [3], where theorem on exis-
tence and uniqueness of mild solution to neutral stochastic differential equation in Hilbert space
has been proved. But conditions of this theorem are formulated in an abstract form, therefore it is
difficult to check them directly for concrete equations in specific spaces, e.g., for stochastic partial
differential equations of reaction-diffusion type. For such equations abstract mappings are gener-
ated by real-valued functions as operator of Nemytskii. Thus our expectations to receive conditions
in terms of coefficients of these equations, i.e. in terms of real-valued functions, are natural. If
such conditions are found, it will be possible to check them easily while solving concrete applied
problems. Equation (1), considered in our work, is special case of equation from the work [3].
It has an applied importance: it models behavior of various dynamical systems in physics and
mathematical biology. Equations of such type are well known in literature and have a wide range
of applications. The presence of an integral term in (1) turns this equation into nonlocal neutral
stochastic equation of reaction-diffusion type.
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2 Preliminaries

Throughout the article L2(Rd) will denote real Hilbert space with an inner product (f, g)L2(Rd) =∫
Rd

f(x)g(x) dx and the corresponding norm ∥f∥L2(Rd) =
√∫

Rd

f2(x) dx. Let {en(x), n ∈ {1, 2, . . . }}

be an orthonormal basis in L2(Rd) such that sup
n∈{1,2,... }

∥en∥L∞(Rd) ≤ 1. Let (Ω,F ,P) be a complete

probability space. We now define Q-Wiener L2(Rd)-valued process W (t) =W (t, · ) as follows

W (t, x) =

∞∑
n=1

√
λn en(x)βn(t), t ≥ 0, x ∈ Rd, (3)

where {βn(t), n ∈ {1, 2, . . . }} ⊂ R are independent standard one-dimensional Wiener processes

on t ≥ 0, {λn, n ∈ {1, 2, . . . }} is a sequence of positive numbers such that
∞∑
n=1

λn < ∞. Let

{Ft(dW ), t ≥ 0} be normal filtration, generated by (3). It means that Ft(dW ) is the least σ-algebra
such that increments W (t)−W (s) are measurable with respect to this σ-algebra for 0 ≤ s ≤ t. It
is clear that W (t)−W (s), s ≤ t, are independent from Fs(dW ).

In what fellows, we will need some facts on the Cauchy problem for heat-equation

∂tu(t, x) = ∆xu(t, x), t > 0, x ∈ Rd,

u(0, x) = g(x), x ∈ Rd. (4)

Let us denote

K (t, x) =


1

(4πt)
d
2

exp
{
− |x|2

4t

}
, t > 0,

0, t < 0,

– heat-kernel.

Proposition 2.1 ([1, p. 47]). If g in (4) belongs to L2(Rd), then it’s solution will be represented
by the following formula

u(t, x) =

∫
Rd

K (t, x− ξ)g(ξ) dξ,

an besides u ∈ C∞((0,∞)× Rd).

Proposition 2.2 ([1, pp. 242–244]). Operators S(t) : L2(Rd) → L2(Rd), generating solution of the
Cauchy problem (4) by the rule

u(t, x) = (S(t)g( · ))(x) =
∫
Rd

K (t, x− ξ)g(ξ) dξ,

form an analytic contractive (C0-)semi-group of operators, i.e. the following estimate is valid∥∥(S(t)g( · ))(x)∥∥2
L2(Rd)

≤ ∥g(x)∥2L2(Rd),

and besides Laplacian ∆x is an infinitesimal generator of this semi-group.

Proposition 2.3 ([2, p. 274]). For partial derivatives of K the following estimate is true

∣∣∂rt ∂sxK (t, x)
∣∣ ≤ cr,st

− d
2
−r− s

2 exp
{
− c0|x|2

t

}
, cr,s > 0, c0 <

1

4
. (5)
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Proposition 2.4. If g in (4) belongs to L1(Rd)∩L2(Rd), then solution of this problem will satisfy
the following limit relations

lim
|x|→∞

u(t, x) = 0, lim
|x|→∞

∂tu(t, x) = 0. (6)

J The proof follows from standard theorems on possibility to limit transition in Lebesgue
integral and differentiability of integral by parameter via using estimate (5). I

From Propositions 2.1 and 2.4 we have the following result.

Proposition 2.5 ([2, p. 360]). If relations (6) are valid, then for some CT > 0, depending only on
T , solution of (4) will satisfy

sup
0≤t≤T

∫
Rd

(∆xu(t, x))
2 dx = sup

0≤t≤T

∫
Rd

∥∥D2
xu(t, x)

∥∥2
d
dx ≤ CT

∫
Rd

∥D2g(x)∥2d dx,

where ∇x ≡ (∂x1 · · · ∂xd
)⊤, D2

x ≡

 ∂2x1
· · · ∂x1xd

...
. . .

...
∂xdx1 · · · ∂2xd

 is Hesse-operator, ∥ · ∥d is the corresponding

norm of matrix.

3 Formulation of the problem

The following assumptions are the main, assumed in the article.

3.1) α : [0, T ] → [−r,∞) is function from C1([0, T ]) such that 0 < α′ ≤ 1 (observe that there exist
a constant c > 0 and a unique point 0 ≤ t∗ ≤ T such that 1

α′ ≤ c, α(t∗) = 0);

3.2) {f, σ} : [0, T ]× R× Rd → R, b : [0, T ]× Rd × R× Rd → R are measurable with respect to all
of their variables functions, and b is continuous by its first argument;

3.3) initial-datum function ϕ(t, · , ω) : [−r, 0] × Ω → L2(Rd) is F0-measurable random variable,
independent from W , with almost surely continuous paths and such that

Eϕ2(t) <∞, −r ≤ t ≤ 0,

E sup
−r≤t≤0

∥ϕ(t)∥p
L2(Rd)

<∞, p > 2;

3.4) for {f, σ}, there exist a constant L > 0 and a function χ : [0, T ]× Rd → [0,∞) such that

sup
0≤t≤T

∫
Rd

χ2(t, x) dx <∞

and the following conditions of linear-growth and Lipschitz are valid

|f(t, u, x)| ≤ χ(t, x) + L|u|, 0 ≤ t ≤ T, u ∈ R, x ∈ Rd,∣∣f(t, u, x)− f(t, v, x)| ≤ L|u− v|, 0 ≤ t ≤ T, {u, v} ⊂ R, x ∈ Rd,

|σ(t, u, x)| ≤ L(1 + |u|), 0 ≤ t ≤ T, u ∈ R, x ∈ Rd,∣∣σ(t, u, x)− σ(t, v, x)
∣∣ ≤ L|u− v|, 0 ≤ t ≤ T, {u, v} ⊂ R, x ∈ Rd;
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3.5) |b(t, x, 0, ξ)| ≤ b1(x, ξ), 0 ≤ t ≤ T , x ∈ Rd, ξ ∈ Rd, where function b1 : Rd × Rd → [0,∞)
satisfies conditions∫

Rd

∫
Rd

b1(x, ζ) dζ dx <∞,

∫
Rd

(∫
Rd

b1(x, ζ) dζ

)2

dx <∞;

3.6) there exists a function l : Rd × Rd → [0,∞) such that∣∣b(t, x, u, ξ)− b(t, x, v, ξ)
∣∣ ≤ l(x, ξ)|u− v|, 0 ≤ t ≤ T, {x, ξ} ⊂ Rd, {u, v} ⊂ R,

and l satisfies the following conditions∫
Rd

√√√√∫
Rd

l2(x, ζ) dζ dx <∞,

∫
Rd

∫
Rd

l2(x, ζ) dζ dx <∞;

3.7) for each x ∈ Rd, there exist partial derivatives ∂xib, ∂xixjb, {i, j} ⊂ {1, . . . , d}, and for
gradient-vector ∇xb and Hesse-matrix D2

xb the following condition of linear-growth by the
third argument is true

|∇xb(t, x, u, ξ)|+ ∥D2
xb(t, x, u, ξ)∥d ≤ ψ(t, x, ξ)(1 + |u|), 0 ≤ t ≤ T, {x, ξ} ⊂ Rd, u ∈ R,

and for D2
xb – Lipschitz condition∥∥D2

xb(t, x, u, ξ)−D2
xb(t, x, v, ξ)

∥∥
d
≤ ψ(t, x, ξ)|u− v|, 0 ≤ t ≤ T, {x, ξ} ⊂ Rd, {u, v} ⊂ R,

where function ψ : [0, T ]× Rd × Rd → [0,∞) is such that

sup
0≤t≤T

∫
Rd

(∫
Rd

ψ(t, x, ξ) dξ

)2

dx <∞, sup
0≤t≤T

∫
Rd

∫
Rd

ψ2(t, x, ξ) dξ dx <∞,

and besides for each point x0 ∈ Rd, there exist its vicinity Bδ(x0) and a nonnegative function
φ such that

sup
0≤t≤T

φ(t, · , x0, δ) ∈ L1(Rd) ∩ L2(Rd), δ > 0,∣∣ψ(t, x, ξ)− ψ(t, x0, ξ)
∣∣ ≤ φ(t, ξ, x0, δ)|x− x0|, 0 ≤ t ≤ T, |x− x0| < δ, ξ ∈ Rd.

Definition 3.1. Continuous random process u(t, · , ω) : [−r, T ]×Ω → L2(Rd) is called mild solution
of (1), (2) if it

1) is Ft-measurable for almost all −r ≤ t ≤ T ;

2) satisfies the following integral equation

u(t, · ) = S(t)

(
ϕ(0, · ) +

∫
Rd

b
(
0, · , ϕ(−r, ζ), ζ

)
dζ

)
−

∫
Rd

b
(
t, · , u(α(t), ξ), ξ

)
dξ

−
t∫

0

∆( · )

(
S(t− s)

∫
Rd

b
(
s, · , u(α(s), ζ), ζ

)
dζ

)
ds
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+

t∫
0

S(t− s)f
(
s, u(α(s), · ), ·

)
ds

+

t∫
0

S(t− s)σ
(
s, u(α(s), · ), ·

)
dW (s, · ), 0 ≤ t ≤ T,

u(t, · ) = ϕ(t, · ), −r ≤ t ≤ 0, r > 0.

Remark 3.1. It is assumed in the definition above that all integrals make sense.

Our first result is concerned with existence and uniqueness of solution to (1), (2).

Theorem 3.1 (existence and uniqueness). Suppose that assumptions 3.1–3.7 are satisfied. Then, if∫
Rd

∫
Rd

l2(x, ξ) dξ dx <
1

4
,

the Cauchy problem (1), (2) has a unique for 0 ≤ t ≤ T mild solution.

Remark 3.2. If we replace an initial range [−r, 0] from (2) with [s − r, s] for arbitrary s ≥ 0, it
will be possible to guarantee existence and uniqueness of mild solution to (1), (2) for 0 ≤ s ≤ t.

Concerning continuation of mild solution to (1), (2) on the whole semi-axis t ≥ 0, the following
corollary is true.

Corollary 3.1. If in Theorem 3.1 conditions 3.4–3.7 are valid for t ≥ 0, then the Cauchy problem
(1), (2) has a unique mild solution for t ≥ 0.

The next result is concerned with continuous dependence of u from the corresponding initial-
datum function ϕ.

Theorem 3.2 (continuous dependence). Under the conditions of Theorem 3.1, there exists C(T ) >
0 such that for arbitrary admissible initial-datum functions ϕ and ϕ1 the following estimates hold

E sup
0≤t≤T

∥∥u(t, ϕ)− u(t, ϕ1)
∥∥p
L2(Rd)

≤ C(T )E sup
−r≤t≤0

∥ϕ(t)− ϕ1(t)∥pL2(Rd)
, p > 2,

where u(t, ϕ) denotes solution u(t, x) of (1) that satisfies (2).
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Let θi2 > θi1 > 0, i = 1, s, be given numbers and O ⊂ Rn be an open set. Let Ef be the set of
functions f : I×O1+s → Rn, I = [a, b], satisfying the following conditions: for almost all fixed t ∈ I
the function f(t, · ) : O1+s → Rn is continuously differentiable; for each fixed (x, x1, . . . , xs) ∈ O1+s

the functions f(t, x, x1, . . . , xs), fx(t, · ) and fxi(t, · ), i = 1, s, are measurable on I; for any f ∈ Ef

and compact set K ⊂ O there exists a function mf,K(t) ∈ L1(I,R+), R+ = [0,∞), such that

∣∣f(t, x, x1, . . . , xs)∣∣+ |fx(t, · )|+
s∑

i=1

∣∣fxi(t, · )
∣∣ ≤ mf,K(t)

for all (x, x1, . . . , xs) ∈ K1+s and for almost all t ∈ I.
Let Φ be the set of continuous initial functions φ : I1 = [τ̂ , b] → O, where τ̂ = a −

max{θ12, . . . , θs2}. To each element µ = (t0, τ1, . . . , τs, x0, φ, f) ∈ Λ = [a, b) × [θ11, θ12] × · · · ×
[θs1, θs2]×O × Φ× Ef we set in correspondence the delay functional differential equation

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs)

)
(1)

with the discontinuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0), x(t0) = x0. (2)

The condition (2) is said to be the discontinuous initial condition since, in general, x(t0) ̸= φ(t0).

Definition. Let µ = (t0, τ1, . . . , τs, x0, φ, f) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ [τ̂ , t1], t1 ∈
(t0, b], is called a solution of equation (1) with the initial condition (2) or a solution corresponding
to the element µ and defined on the interval [τ̂ , t1] if it satisfies condition (2) and is absolutely
continuous on the interval [t0, t1] and satisfies equation (1) almost everywhere on [t0, t1].

Let us introduce the set of variation:

V =

{
δµ = (δt0, δτ1, . . . , δτs, δx0, δφ, δf) : |δt0| ≤ α, |δτi| ≤ α, i = 1, s,

|δx0| ≤ α, δφ =
k∑

i=1

λiδφi, δf =
k∑

i=1

λiδfi, |λi| ≤ α, i = 1, k

}
,

where δφi ∈ Φ − φ0, δfi ∈ Ef − f0, i = 1, k, φ0 ∈ Φ, f0 ∈ Ef are fixed functions; α > 0 is a fixed
number.
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Let

µ0 = (t00, τ10, . . . , τs0, x0, φ0, f0) ∈ Λ (3)

be a fixed element, where t00, t10 ∈ (a, b), t00 < t10 and τi0 ∈ (θi1, θi2), i = 1, s. Let x0(t) be
the solution corresponding to µ0. There exist numbers δ1 > 0 and ε1 > 0 such that for arbitrary
(ε, δµ) ∈ (0, ε1)× V , we have µ0 + εδµ ∈ Λ, and the solution x(t;µ0 + εδµ) defined on the interval
[τ̂ , t10 + δ1] ⊂ I1 corresponds to it (see [4, Theorem 1.2]). By the uniqueness, the solution x(t;µ0)
is a continuation of the solution x0(t) to the interval [τ̂ , t10 + δ1]. Therefore, we can assume that
the solution x0(t) is defined on the whole interval [τ̂ , t10 + δ1]. Now we introduce the increment of
the solution x0(t) = x(t;µ0):

∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t), (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1)× V.

Theorem 1. Let the following conditions hold:

1) τ10 < · · · < τs0 (see (3)) and t00 + τs0 < t10;

2) the function φ0(t) is absolutely continuous and φ̇0(t), t ∈ I1, is bounded;

3) the function f0(w), w = (t, x, x1, . . . , xs) ∈ I ×O1+s, is bounded;

4) there exists the finite limit

lim
w→w0

f0(w) = f−
0 , w ∈ (a, t00]×O1+s,

where w0 = (t00, x00, φ0(t00 − τ10), . . . , φ0(t00 − τs0));

5) there exist the finite limits

lim
(w1i,w2i)→(w0

1i,w
0
2i)

[
f0(w1i)− f0(w2i)

]
= f0i, w1i, w2i ∈ (a, b)×O1+s, i = 1, s,

where

w0
1i =

(
t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), . . . , x0(t00 + τi0 − τi−10),

x00, x0(t00 + τi0 − τi+10), . . . , x0(t00 + τi0 − τs0)
)
,

w0
2i =

(
t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), . . . , x0(t00 + τi0 − τi−10),

φ0(t00), x0(t00 + τi0 − τi+10), . . . , x0(t00 + τi0 − τs0)
)
.

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1), t00 + τs0 < t10 − δ2, such that for arbitrary
(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)× V −, where V − = {δµ ∈ V : δt0 ≤ 0}, we have

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ). (4)

Here

δx(t; δµ) = −Y (t00; t)f
−
0 δt0 + β(t; δµ), (5)

β(t; δµ) = Y (t00; t)δx0 −
[ s∑

i=1

Y (t00 + τi0; t)f0i

]
δt0
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−
s∑

i=1

[
Y (t00 + τi0; t)f0i +

t00+τi0∫
t00

Y (ξ; t)f0xi [ξ]φ̇0(ξ − τi0) dξ

+

t∫
t00+τi0

Y (ξ; t)f0xi [ξ]ẋ0(ξ − τi0) dξ

]
δτi

+

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)f0xi [ξ + τi0]δφ(ξ) dξ +

t∫
t00

Y (ξ; t)δf [ξ] dξ,

where Y (ξ; t) is the n× n-matrix function satisfying the equation

Yξ(ξ; t) = −Y (ξ; t)f0x[ξ]−
s∑

i=1

Y (ξ + τi0; t)f0xi [ξ + τi0], ξ ∈ [t00, t]

and the condition:
Y (ξ; t) = H for ξ = t, Y (ξ; t) = Θ for ξ > t;

H is the identity matrix and Θ is the zero matrix;

f0xi [ξ] = f0xi

(
ξ, x0(ξ), x0(ξ − τ10), . . . , x0(ξ − τs0)

)
,

δf [ξ] = δf
(
ξ, x0(ξ), x0(ξ − τ10), . . . , x0(ξ − τs0)

)
.

The expression (5) is called the variation formula of solution. The addend

−
s∑

i=1

[
Y (t00 + τi0; t)f0i +

t∫
t00

Y (ξ; t)f0xi [ξ]ẋ0(ξ − τi0) dξ

]
δτi

in the formula (5) is the effects of perturbations of the delays τi0, i = 1, s. For the ordinary differ-
ential equation the variation formula of solution has been proved in the monograph R. V. Gamkre-
lidze [1]. In [3] variation formulas of solution were proved for the equation ẋ(t) = f(t, x(t), x(t−τ))
with the condition (2) in the case when the initial moment and delay variations have the same signs.
In the present paper, the equation with several delays is considered and variation formulas of solu-
tion are obtained with respect to wide classes of variations (see V − and V +). Variation formulas
of solution for various classes of delay functional differential equations, without perturbations of
delays, are proved in [2].

Theorem 2. Let the conditions 1)–3) and 5) of the Theorem 1 hold. Moreover, there exists the
finite limit

lim
w→w0

f0(w) = f+
0 , w ∈ [t00, b)×O1+s. (6)

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t10 −
δ2, t10 + δ2]× (0, ε2)× V +, where V + = {δµ ∈ V : δt0 ≤ 0}, the formula (4) holds. Here

δx(t; δµ) = −Y (t00; t)f
+
0 δt0 + β(t; δµ).

Theorem 3. Let the conditions 1)–4) of the Theorem 1 hold. Moreover, there exists the finite
limits:

lim
(w1i,w2i)→(w0

1i,w
0
2i)

[
f0(w1i)− f0(w2i)

]
= f−

0i , w1i, w2i ∈ (a, t00 + τi0]×O1+s, i = 1, s,
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Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t10 −
δ2, t10 + δ2]× (0, ε2)×V −

1 , where V −
1 = {δµ ∈ V : δt0 ≤ 0, δτi ≤ 0, i = 1, s} the formula (4) holds.

Here

δx(t; δµ) = −
[
Y (t00; t)f

−
0 +

s∑
i=1

Y (t00 + τi0; t)f
−
0i

]
δt0 −

s∑
i=1

[
Y (t00 + τi0; t)f

−
0i

]
δτi + β1(t; δµ),

where

β1(t; δµ) = Y (t00; t)δx0

+

s∑
i=1

[ t00+τi0∫
t00

Y (ξ; t)f0xi [ξ]φ̇0(ξ − τi0) dξ +

t∫
t00+τi0

Y (ξ; t)f0xi [ξ]ẋ0(ξ − τi0) dξ

]
δτi

+
s∑

i=1

t00∫
t00−τi0

Y (ξ + τi0; t)f0xi [ξ + τi0]δφ(ξ) dξ +

t∫
t00

Y (ξ; t)δf [ξ] dξ.

Theorem 4. Let the conditions 1)–3) of the Theorem 1 and the condition (6) hold. Moreover,
there exists the finite limits:

lim
(w1i,w2i)→(w0

1i,w
0
2i)

[
f0(w1i)− f0(w2i)

]
= f+

0i , w1i, w2i ∈ [t00 + τi0, b)×O1+s, i = 1, s,

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t10 −
δ2, t10+ δ2]× (0, ε2)×V +

1 , where V +
1 = {δµ ∈ V : δt0 ≥ 0, δτi ≥ 0, i = 1, s} the formula (4) holds.

Here

δx(t; δµ) = −
[
Y (t00; t)f

+
0 +

s∑
i=1

Y (t00 + τi0; t)f
+
0i

]
δt0 −

s∑
i=1

[
Y (t00 + τi0; t)f

+
0i

]
δτi + β1(t; δµ).
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1 Introduction

The equations

y(n) +
a

x2
y + p(x)y|y|k−1 = f(x), (1.1)

z(n) +
a

x2
z + p(x)z|z|k−1 = 0 (1.2)

with k > 1, a ∈ R \ {0} are considered. Functions p(x) and f(x) are assumed to be continuous as
x > x0 > 0, p(x) ̸≡ 0. Exponential equivalence of solutions to equations (1.1), (1.2) is proved under
some assumptions on the function f(x). If a = 0, equation (1.2) is well-known Emden–Fowler
equation:

z(n) + p(x)z|z|k−1 = 0.

A lot of results on the asymptotic behaviour of solutions to this equation and its generalizations
were obtained in [1,2,4–6]. Note that equation (1.2) with a ̸= 0 can’t be reduced to Emden–Fowler
differential equation by any substitution of dependent or independent variables.

2 Exponential equivalence of solutions to nonlinear differential
equations

Consider the differential equations

y(n) +
a

x2
y + p(x)y|y|k−1 = e−αxf(x), (2.1)

z(n) +
a

x2
z + p(x)z|z|k−1 = e−αxg(x). (2.2)

with n ≥ 2, k > 1, a ∈ R \ {0}, α > 0.

Lemma 2.1 ([3]). If function y(x) and its n-th derivative y(n)(x) tend to zero as x → +∞, then
the same holds for y(j)(x), 0 < j < n.

Lemma 2.2. Let y(x) be a solution to equation (2.1) such that y(x) tends to zero as x → +∞.
Then it holds

y(x) = Jn
[
e−αxf(x)− a

x2
y(x)− p(x)[y(x)]k±

]
with [y(x)]k± = |y|k−1y. J is the operator that maps tending to zero as x → +∞ function φ(x) to
its antiderivative:

J[φ](x) = −
+∞∫
x

φ(t) dt.
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Theorem 2.1. Let p(x), f(x), g(x) be continuous bounded functions defined as x > x0 > 0,
p(x) ̸≡ 0. Then for any solution y(x) to equation (2.1) that tends to zero as x → +∞ there exists
a unique solution z(x) to equation (2.2) such that

|z(x)− y(x)| = O(e−αx), x → +∞.

Remark 2.1. Obviously, equations (2.1) and (2.2) in Theorem 2.1 can be swapped.

Back to equations (1.1), (1.2):

y(n) +
a

x2
y + p(x)y|y|k−1 = f(x),

z(n) +
a

x2
z + p(x)z|z|k−1 = 0

with k > 1, a ∈ R \ {0}.

Corollary 2.1.1. Suppose continuous function f(x) satisfies the following condition

f(x) = O(e−αx), α > 0.

Let function p(x) be a continuous bounded function, p(x) ̸≡ 0. Then for any solution y(x) to
equation (1.1) that tends to zero as x → +∞ there exists a unique solution z(x) to equation (1.2)
such that

|y(x)− z(x)| = O(e−αx), x → +∞.
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Bounded Solutions to Systems of Nonlinear Functional Differential Equations . . . . . . . . . . 93

A. O. Ivashkevych, T. V. Kovalchuk

Existence of Optimal Control on an Infinitive Interval for Systems of

Differential Equations with Pulses at Non-Fixed Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

N. A. Izobov

Non-Lipschitz Lower Sigma-Exponents of Linear Differential Systems . . . . . . . . . . . . . . . . . 101

Temur Jangveladze

Unique Solvability and Additive Averaged Rothe’s Type Scheme for

One Nonlinear Multi-Dimensional Integro-Differential Parabolic Problem . . . . . . . . . . . . . . 103
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