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1 Introduction

The recent general theory of functional differential equations [2]–[5] allowed us to give a clear and
concise description of their basic properties including the properties of solution stability. At the
same time broad classes of linear hybrid functional differential systems with aftereffect (LHFDSA)
arising in many applications are not formally covered by the developed theory and remain out of
view of specialists using functional differential and difference systems with aftereffect for simula-
tion of real processes. Below we suggest hybrid functional differential analogues of fundamental
assertions of the theory of functional differential equations for problems of stability.

2 The W -method of N. V. Azbelev

First, let us consider the case when one of the equations is a linear differential one and is defined on
a set of discrete points, and the other one is a linear functional differential equation with aftereffect
(LFDEA) on a semiaxis. For this case we describe the W-method scheme of N. V. Azbelev.

Let us denote the infinite matrix with the columns y(−1), y(0), y(1), . . . , y(N), . . . of size n, by
y = {y(−1), y(0), y(1), . . . , y(N), . . .} and the infinite matrix with columns g(0), g(1), . . . , g(N), . . .
the of size n, by g = {g(0), g(1), . . . , g(N), . . .}.

Each infinite matrix
y =

{
y(−1), y(0), y(1), . . . , y(N), . . .

}
can be associated with the vector function

y(t) = y(−1)χ
[−1,0)

(t) + y(0)χ
[0,1)

(t) + y(1)χ
[1,2)

(t) + · · ·+ y(N)χ
[N,N+1)

(t) + · · · .

Similarly, each of the infinite matrices g = {g(0), g(1), . . . , g(N), . . .} can be associated with the
vector function

g(t) = g(0)χ
[0,1)

(t) + g(1)χ
[1,2)

(t) + · · ·+ g(N)χ
[N,N+1)

(t) + · · · .

Let us denote the vector function y(t) = y([t]), t ∈ [−1,∞), by y(t) = y[t] and the vector
function g(t) = g([t]), t ∈ [0,∞), by g[t].

The set of vector functions y[ · ] is denoted by ℓ0. The set of vector functions g[ · ] is denoted
by ℓ. Let (∆y)(t) = y(t) − y(t − 1) = y[t] − y[t − 1] at t ≥ 1, and (∆y)(t) = y(t) = y[t] = y(0) at
t ∈ [0, 1).

The abstract hybrid functional differential system takes the form

L11x+ L12y = ẋ− F11x− F12y = f,

L21x+ L22y = ∆y − F21x− F22y = g.
(1)

Here and below Rn is the space of vectors α = col{α1, . . . , αn} with real components and
the norm ∥α∥Rn . Assume the space L of locally summable f : [0,∞) → Rn with seminorms
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∥f∥L[0,T ] =
T∫
0

∥f(t)∥Rn dt for all the T > 0 and the space D of locally absolutely continuous

functions x : [0,∞) → Rn with seminorms

∥x∥D[0,T ] = ∥ẋ∥L[0,T ] + ∥x(0)∥Rn

for all the T > 0.
Also assume the space ℓ of vector functions

g(t) = g(0)χ
[0,1)

(t) + g(1)χ[1,2)(t) + · · ·+ g(N)χ[N,N+1)(t) + · · ·

with the seminorms ∥g∥ℓT =
T∑
i=0

∥gi∥Rn for all the T ≥ 0 and the space ℓ0 of vector functions

y(t) = y(−1)χ
[−1,0)

(t) + y(0)χ
[0,1)

(t) + y(1)χ
[1,2)

(t) + · · ·+ y(N)χ
[N,N+1)

(t) + · · ·

with the seminorms ∥y∥ℓ0T =
T∑

i=−1
∥yi∥Rn for all the T ≥ −1.

The operators L11, F11 : D → L, L12, F12 : ℓ0 → L, L21, F21 : D → ℓ, L22, F22 : ℓ0 → ℓ are
assumed to be continuous linear and Volterra.

Let L =

(
L11 L12

L21 L22

)
. Then (1) can be written as L{x, y} = col{f, g}. Suppose that for any

x(0) ∈ Rn and y(−1) ∈ Rn the Cauchy problem for the “model” system ẋ = F 0
11x + F 0

12z + z,
∆y = F 0

21z + F 0
22y + u, where the operators F 0

11 : D → L, F 0
12 : ℓ0 → L, F 0

12 : ℓ0 → L, F 0
21 : D → ℓ,

F 0
22 : ℓ0 → ℓ are assumed to be continuous linear and Volterra. Then the model system can be

written as L0{x, y} = col{z, u}. Suppose its solution can be represented as:(
x
y

)
=

(
U11 U12

U21 U22

)(
x(0)
y(−1)

)
+

(
W11 W12

W21 W22

)(
z
u

)
.

Here W : L × ℓ → D × ℓ0 is the continuous Volterra operator, the Cauchy operator for the

system, W =

(
W11 W12

W21 W22

)
, U : Rn × Rn → D × ℓ0 is the fundamental matrix for the system

U =

(
U11 U12

U21 U22

)
.

If the elements col{x, y} : [0,∞) × [−1,∞) → Rn × Rn forming the Banach space D × M0
∼= (B × Rn) × (M × Rn) (space D ⊂ D, space M0

∼= M ⊕ Rn ⊂ ℓ0, space B ⊂ L, space M ⊂ ℓ,
B,M are the Banach spaces) have certain specific properties, such as

sup
t≥0

∥x(t)∥Rn + sup
k=−1,0,1,...

∥y(k)∥Rn < ∞,

and the Cauchy problem is uniquely solvable for the equation L{x, y} = col{f, g} with the bounded
linear operator L : D ×M0 → B ×M, then the solutions of this problem have the same asymp-
totic properties. This follows from the theorem given below [6] (see [2, Theorem 2.1.1] and [1,
Theorem 1]).

Theorem. Assume W : B×M → D×M0 is the bounded Cauchy operator of the Cauchy problem
for the model equation L0{x, y} = col{f, g}, col{x(0), y(−1)} = col{0, 0} and U is the fundamental
matrix of the model equation L0{x, y} = col{0, 0}. Here L0 : D × M0 → B × M. Assume the
linear operator L : D×M0 → B×M is bounded, C is the Cauchy operator of the Cauchy problem
L{x, y} = col{f, g}, col{x(0), y(−1)} = col{0, 0} and X is the fundamental matrix of the equation
L{x, y} = col{0, 0}. Then for the equality

W{B,M}+ U{Rn,Rn} = C{B,M}+X{Rn,Rn} (2)
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to hold true it is necessary and sufficient that the operator LW (the operator WL) have a bounded
inverse

(LW)−1 : B×M → B×M
(
(WL)−1 : (D×M0)

0 → (D×M0)
0
)
,

where (D×M0)
0 = {col{x, y} ∈ D×M0 : col{x(0), y(−1)} = col{0, 0}}.

Corollary ([1], [2, pp. 36, 48]). If the operator L : D × M0 → B × M is bounded and ∥(L −
L0)W∥B×M→B×M < 1 is true or ∥W(L − L0)∥(D×M0)0→(D×M0)0 < 1 is true, then Equality (2)
holds true as well.

In the case when (2) holds true (when the solution spaces of the model equation and equation
under study coincide), we say that the equation L{x, y} = col{f, g} has the property D×M0, or,
in short, the equation is D×M0-stable.

Assume the model equation [1]–[5] and Banach spaceB with the elements of the space L (B ⊂ L,
this embedding is continuous) are selected so that the solutions of this equation possess asymptotic
properties we are interested in.

We introduce the Banach space D(L11,B) with the norm

∥x∥D(L11,B) = ∥L11x∥B + ∥x(0)∥Rn .

Assume that the operator W11 acts continuously from the space B into the space B, and the
operator U11 acts from space Rn into the space B. This condition is equivalent to the fact [1]–[5]
that the space D(L11,B) is linearly isomorphic to the Sobolev space with the norm

∥x∥
W

(1)
B [0,∞)

= ∥ẋ∥B + ∥x∥B.

Hereinafter this space is referred to as WB (WB ⊂ D, this embedding is continuous).
The equation L11x = z with the operator L11 : WB → B is D(L11,B)-stable if and only if it is

strongly B-stable. L11x = z is strongly B- stable if for any z ∈ B each solution x of this equation
has the property x ∈ B and ẋ ∈ B ([2, Ch. IV, § 4.6], [5]).

3 Reduction of LFDEA on the Semiaxis

Let us consider the scheme from Clause 2 for two equations (1). The operators L11 : D → L,
L12 : ℓ0 → L, L21 : D → ℓ, L22 : ℓ0 → ℓ are considered as reduction to pairs (WB,B), (M0,B),
(WB,M), (M0,M). These operators are assumed to be Volterra linear and bounded operators.

Assume that the general solution of the equation L22y = g for g ∈ M is the space of M0 and is
represented by the Cauchy formula

y[t] = Y22[t]y(−1) +

[t]∑
s=0

C22[t, s]g[s].

Let

(C22g)[t] =

[t]∑
s=0

C22[t, s]g[s], (Y22y(−1))[t] = Y22[t]y(−1).

Then every solution y of the second equation in (1) has the form

y = −C22L21x+ Y22y(−1) + C22g.

Substituting the first equation into (1), we obtain

L11x+ L12y = L11x− L12C22L21x+ L12Y22y(−1) + L12C22g = f,

L11x− L12C22L21x = f1 = f − L12Y22y(−1)− L12C22g.

Let L = L11 − L12C22L21, then the first equation in (1) takes the form of Lx = f1. Suppose
the Volterra operator L : (WB)

0 → B is Volterra invertible, that is (when the Cauchy problem for
Lx = f1 possesses the following property: at any f1 ∈ B its solutions are x ∈ WB). Thus, we solved
the problem, when for Equation (1) at any {f, g} ∈ B×M its solutions are {x, y} ∈ WB ×M.
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4 Reduction to a Linear Difference Equation (LDE) on a Discrete
Set of Points

Let us use the ability of the hybrid system to be reduced to a LDE defined on a discrete set of
points. For Equation (1) we use the designations given in Clauses 2 and 3.

Assume the general solution of the equation L11x = f for f ∈ L is a member of the space D
and is represented by the Cauchy formula

x(t) = X11(t)x(0) +

t∫
0

C11(t, s)f(s) ds.

Let (C11f)(t) =
t∫
0

C11(t, s)f(s) ds, (X11x(0))(t) = X11(t)x(0), then for x ∈ D the representation

x = X11x(0) + C11f holds true.
The first variable x can be estimated out of the first equation in (1)

x = −C11L12y +X11x(0) + C11f.

We use this substitution in the second equation of (1), we obtain

L21x+ L22y = −L21C11L12y + L21X11x(0) + L21C11f + L22y = g,

−L21C11L12y + L22y = g1 = g − L21X11x(0)− L21C11f.

Let L = L22−L21C11L12, then the second equation in (1) takes the form Ly = g1. Suppose the
Volterra operator L : (M0)

0 → M is Volterra invertible (when the Cauchy problem for Ly = g1 at
any g1 ∈ M its solutions are x ∈ M0). Thus, we solved the problem, when at any {f, g} ∈ B×M
for (1) its solutions are {x, y} ∈ D×M0.
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