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1 Introduction

Here we continue the study of functional differential systems that cover many kinds of dynamic
models with aftereffect (integro-differential, delayed differential, differential difference, difference),
see [5, 3] and references therein. First we recall the description of a class of continuous-discrete
functional differential equations with linear Volterra operators and appropriate spaces where those
are considered. On the basis of the representation of general solution to the system with the use of
the Cauchy operator we consider an optimal control problem and propose sufficient and necessary
conditions for its solvability in the terms of programming control.

2 A class of Continuous-Discrete Functional Differential Systems

Fix a segment [0, T ] ⊂ R. By Ln = Ln[0, T ] we denote the space of summable functions v : [0, T ] →

Rn under the norm ∥v∥Ln =
T∫
0

|v(s)|n ds, where | · |n stands for the norm of Rn; Ln
2 = Ln

2 [0, T ] is the

space of square summable functions u : [0, T ] → Rr with the inner product (u, v) =
T∫
0

u⊥(s)v(s) ds,

where ⊥ stands for transposition.
The space ACn = ACn[0, T ] is the space of absolutely continuous functions x : [0, T ] → Rn

with the norm
∥x∥ACn = ∥ẋ∥Ln + |x(0)|n.

Let us fix a set J = {t0, t1, . . . , tµ}, 0 = t0 < t1 < · · · < tµ = T .
FDν(µ) = FDν{t0, t1, . . . , tµ} denotes the space of functions z : J → Rν under the norm

∥z∥FDν(µ) =

µ∑
i=0

|z(ti)|ν .

We consider the system under control

ẋ = T11x+ T12z + Fu+ f,

z = T21x+ T22z + g,
(1)

where the linear operators Tij , i, j = 1, 2, are defined as follows.

1.

T11 : ACn → Ln; (T11)

(T11x)(t) =
t∫

0

K1(t, s)ẋ(s) ds+A1(t)x(0), t ∈ [0, T ].
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Here the kernel K1(t, s) with its elements k1ij(t, s) satisfies the condition K: k1ij(t, s), i, j = 1, . . . , n,
are measurable on the set 0 ≤ s ≤ t ≤ T and there exists a summable nonnegative function
κ( · ) ∈ L1[0, T ] such that |k1ij(t, s)| ≤ κ(t), t ∈ [0, T ], i, j = 1, . . . , n; (n×n)-matrix A1 has elements

summable on [0, T ].

2.
T12 : FDν(µ) → Ln; (T12z)(t) =

∑
{j: tj≤t}

B1
j (t)z(tj), t ∈ [0, T ], (T12)

where elements of matrices B1
j , j = 0, . . . , µ, are summable on [0, T ].

3.

T21 : ACn → FDν(µ); (T21)

(T21x)(ti) =
ti∫
0

K2
i (s)ẋ(s) ds+A2

ix(0), i = 0, 1, . . . , µ,

with measurable and essentially bounded on [0, T ] elements of matrices K2
i and constant (ν × n)-

matrices A2
i , i = 0, 1, . . . , µ.

4.

T22 : FDν(µ) → FDν(µ); (T22z)(ti) =
i−1∑
j=0

B2
ijz(tj), i = 1, . . . , µ, (T22)

with constant (ν × ν)-matrices B2
ij .

In what follows we shall use some results from [6, 2] concerning the equation

ẋ = T11x+ f (2)

and the results of [1] concerning the equation

z = T22z + g. (3)

The general solution of (2) has the form

x(t) = X(t)α+

t∫
0

C1(t, s)f(s) ds,

with arbitrary α ∈ Rn, where X( · ) is the fundamental matrix, C1( · , · ) is the Cauchy matrix.
As for equation (3), it has the immediate analogs of the above terms. Thus, the general solution

of (3) has the representation

z(ti) = Z(ti)β + (C2g)(ti), i = 1, . . . , µ,

with arbitrary β ∈ Rν , where Z( · ) is the fundamental matrix, C2( · , · ) is the Cauchy matrix.

3 An Optimal Control Problem for a Continuous-Discrete Func-
tional Differential System

Let us fix the initial state of the system (1):

x(0) = α, z(0) = β. (4)
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Next we assume that the constraints with respect to the control are formed as a system of linear
inequalities:

Gu(t) 6 γ, t ∈ [0, T ], (5)

where G is a given (N × r)-matrix; also it is assumed that the set of all solutions to the system
Gv 6 γ (that is the set of admissible control values) is nonempty and bounded in Rr. Let us denote
this set by V.

As for the aim of control, it is defined with the use of a linear bounded functional Λ : ACn ×
FDν(µ)× Lr

2 → R,
Λ(x, z, u) = l1x+ l2z + λu,

where l1 : AC
n → R, l2 : FD

ν(µ) → R, λ : Lr
2 → R are linear bounded functionals.

We need to find an admissible control u : [0, T ] → Rr under which the corresponding trajectory
of (1) with conditions (2) brings a minimal value to the objective functional Λ. Thus we consider
the optimal control problem

Λ(x, z, u) −→ minwith constraints (1), (4), (5). (6)

Let us recall the general form of l1 : l1x = ψ1x(0) +
T∫
0

φ1(s)ẋ(s) ds and λ : λu =
T∫
0

λ(s)u(s) ds.

Here ψ1 is a constant (1 × n)-vector, φ1(s) is a (1 × n)-vector with elements bounded in essence,

λ⊥( · ) ∈ Lr
2. As for l2, we put l2z =

µ∑
i=0

qiz(ti) with given (1× µ)-vectors qi, i = 0, . . . , µ.

Lemma 1. The operator T : ACn → Ln, T = T11 + T12C2T21 can be represented in the form

(T x)(t) =
t∫

0

K(t, s)ẋ(s) ds +A(t)x(0), t ∈ [0, T ],

where the kernel K(t, s) satisfies the condition K, the columns of the matrix A( · ) belongs to the
space Ln.

Remark 1. The kernel K(t, s) and the matrix A can be effectively constructed.

Lemma 2. The functional l : ACn → R, l = l1 + l2C2T21 can be represented in the form

lx = ψx(0) +

T∫
0

φ(s)ẋ(s) ds,

where ψ is a constant (1× n)-vector, φ(s) is (1× n)-vector with essentially bounded elements.

Remark 2. The vectors ψ and φ(s) can be effectively constructed.

Below we shall use the kernel K(t, s) and the function φ(s) to formulate the main result.
Now denote by ϑ : [0, T ] → (Rn)∗ the solution to the integral equation

ϑ(t) =

T∫
t

ϑ(τ)K(τ, t) dτ −
T∫
t

φ(τ)K(τ, t) dτ, t ∈ [0, T ]. (7)

The unique solvability of this equation is established in [6]. As for properties of the solution that
are generated by properties of the kernel K(t, s) as a function of the second argument, those are
studied in [7], where in particular some conditions are formulated under which the function ϑ( · )
iherits the corresponding properties of K(t, · ) (being of bounded variation, continuous, absolutely
continuous). Define the functional H : [0, T ]× (Ln)∗ × (Ln)∗ ×Rr → R by the equality

H
(
t, v( · ), w( · ), u

)
= F ∗(v − w)(t) · u− λ(t) · u.

Here the symbol ∗ stands for adjoint spaces and operators.
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Theorem. The control u(t) solves problem (6) if and only if the equality

H
(
t, ϑ( · ), φ( · ), u(t)

)
= max

u∈V
H
(
t, ϑ( · ), φ( · ), u

)
holds almost everywhere on [0, T ].

Remark 3. In the case where the matrix C(t, s) of the system ẋ = T x + f is known the function
ϑ(t) can be written in the following explicit form:

ϑ(t) =

T∫
t

φ(τ)C ′
τ (τ, t) dτ.

Let us give three explicit forms of the functional H, which correspond to the following cases
of F .

Case 1. (Fu)(t) = F (t)u(t). For such a case we have

H
(
t, v( · ), w( · ), u

)
= (v(t)− w(t)) · F (t) · u− λ(t) · u.

Here the columns of (n× r)-matrix F ( · ) are from Ln
2 .

Case 2. (Fu)(t) =
t∫
0

F (t, τ)u(τ) dτ . For this case, H has the representation

H
(
t, v( · ), w( · ), u

)
=

T∫
t

(v(s)− w(s)) · F (s, t) ds · u− λ(t) · u.

Here the kernel F (t, τ) provides the continuous action of the integral operator F from Lr
2 into Ln.

Case 3. (Fu)(t) =

{
F (t)u(t−∆) if t ∈ [∆, T ],

0 otherwise,
where ∆, 0 < ∆ < T , is a constant delay. In

such a case the functional H is defined by the equality

H
(
t, v( · ), w( · ), u

)
= χ

[0,T−∆]
(t)

(
v(t+∆)− w(t+∆)

)
· F (t+∆) · u− λ(t) · u,

χ
[0,T−∆]

( · ) is the characteristic function of the segment [0, T −∆].
It should be noted that an approach to derivation of the maximum principle on the base of the

variational derivatives, covering nonlinear systems with aftereffect, is thoroughly treated in [4]. Our
approach is based on the use of the Cauchy matrix of the linear system and allows one to formulate
the maximum principle in the terms of control only. In this case the role of the adjoint equation
is played by equation (7) whose form is unified and common for all possible kinds of aftereffect in
the frame of problem (6). The case of a functional differential system with continuous time only is
considered in [8].
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