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As it is known the magnetic field diffusion process in the medium can be modeled by Maxwell’s
system of partial differential equations [1]. Assume that coefficients of thermal heat capacity and
electroconductivity of the substance depend on temperature. In this case, as it is shown in [2], the
system of Maxwell’s equation can be reduced to the following integro-differential form

∂H

∂t
= − rot

[
a

( t∫
0

| rotH|2 dτ
)
rotH

]
, (1)

where H = (H1,H2,H3) is a vector of the magnetic field and function a = a(S) is defined for
S ∈ [0,∞).

In the work [3] some generalization of equations of type (1) is proposed. In particular, if the
temperature is kept constant throughout the material, the same process of penetration of a magnetic
field into a substance can be rewritten in the following integro-differential form [3]:

∂H

∂t
= a

( t∫
0

∫
Ω

| rotH|2 dx dτ
)
∆H, (2)

where x ∈ Ω ⊂ R3.
Note that integro-differential parabolic models of (1) and (2) type are complex and still yield

to the investigation only for special cases (see, for example, [2], [4]–[17] and references therein).
Investigations mainly are done for one-dimensional case, i.e., when components of magnetic field
H depend on one space variable.

The existence of a weak solution to the first boundary value problem for the one component
magnetic field and one dimensional spatial version for the case a(S) = 1+S and uniqueness results
for some general cases of model (1) were proved in [2]. The same questions for model (2) has been
discussed in [8].

The theorems and discussions of a large time behavior to the solutions of the initial-boundary
value problems for the one-dimensional analog of (2) type models for the different cases of function
a = a(S) are studied in [4], [8]–[14], [16]. The multidimensional case for (1) type model is considered
in [6]. The questions of numerical solution of corresponding initial-boundary value problems for
(2) type models are discussed in [7], [12]–[17].

Purpose of this note is to study asymptotic behavior as t → ∞ of a solution of the Dirichlet
problem for model (2) in one component magnetic field and two-dimensional spatial case. Assume
that the magnetic field has the following form H = (0, 0, U) and U = U(x, y, t). Then we have

rotH =
(∂U
∂y

,−∂U

∂x
, 0
)

and equation (2) takes the following form

∂U

∂t
= a(S)

(∂2U

∂x2
+

∂2U

∂y2

)
, (x, t) ∈ Q = Ω× (0,∞), (3)
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where

S(t) =

t∫
0

∫
Ω

[(∂U
∂x

)2
+

(∂U
∂y

)2
]
dx dy dτ, (4)

and Ω = (0, 1)× (0, 1).
In the domain Q, let us consider the following initial-boundary value problem for equation (3),

(4):

U(x, y, t) = 0, (x, y) ∈ ∂Ω, t ≥ 0, (5)

U(x, y, 0) = U0(x, y), (x, y) ∈ Ω, (6)

where U0 = U0(x, y) is a given function.
Recall the L2-inner product and norm:

(u, v) =

∫
Ω

u(x, y)v(x, y) dx dy, ∥u∥ = (u, u)1/2.

The following statements take place.

Theorem 1. If a(S) = (1 + S)p, p > 0; U0 ∈ H1
0 (Ω), then for the solution of problem (3)–(6) the

following estimate is true ∥∥∥∂U
∂x

∥∥∥2 + ∥∥∥∂U
∂y

∥∥∥2 ≤ C exp(−2t).

Here and below we use usual Sobolev spaces Hk(Ω) and Hk
0 (Ω) and constant C which denotes

various positive values independent of t.
Note that Theorem 1 gives exponential stabilization of the solution of problem (3)–(6) in the

norm of the space H1(Ω).

Theorem 2. If a(S) = (1 + S)p, p > 0; U0 ∈ H1
0 (Ω) ∩ H2(Ω), then for the solution of problem

(3)–(6) the following estimate is true∥∥∥∂U(x, t)

∂t

∥∥∥ ≤ C exp
(
− t

2

)
.

The algorithm of an approximate solution is constructed by using of which numerous numerical
experiments for problem (3)–(6) with different kind of initial-boundary value problems are carried
out. Results of numerical experiments agree with the theoretical ones obtained in Theorems 1
and 2.
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