The Infinite Version of Perron's Effect of Value Change in Characteristic Exponents in the Neighbourhood of Integer Points

N. A. Izobov

Department of Differential Equations, Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus E-mail: izobov@im.bas-net.by

A. V. Il'in

Moscow State University, Moscow, Russia E-mail: iline@cs.msu.su

Just as in our previous report [1], we consider here both the linear differential systems

$$\dot{x} = A(t)x, \ x \in \mathbb{R}^n, \ t \ge t_0 \tag{1}$$

with bounded infinitely differentiable on the semi-axis $[t_0, +\infty)$ coefficients and characteristic exponents $\lambda_1(A) \leq \cdots \leq \lambda_n(A) < 0$, and the nonlinear systems

$$\dot{y} = A(t)y + f(t,y), \quad y \in \mathbb{R}^n, \quad t \ge t_0 \tag{2}$$

with infinitely differentiable in time t and variables y_1, \ldots, y_n so-called *m*-perturbations f(t, y). These perturbations have the order m > 1 of smallness in the neighbourhood of the origin and admissible growth outside of it, satisfying the inequality

$$||f(t,y)|| \le C_f ||y||^m, \quad C_f = const > 0, \quad y \in \mathbb{R}^n, \quad t \ge t_0.$$
(3)

The well-known (partial) Perron's effects of sign and value changes [1], [2, pp. 50–61] in characteristic exponents claimed the existence of such two-dimensional system (1) with specific characteristic exponents $\lambda_1(A) = \lambda_1 < \lambda_2(A) = \lambda_2 < 0$ and the 2-perturbation (3) f(t, y) that all solutions $y(t, c), c \in \mathbb{R}^2$ of the two-dimensional perturbed system (2) turned out to be infinitely extendable to the right and had characteristic exponents

$$\lambda [y(\cdot, c)] = \begin{cases} \lambda_2 < 0, & c = (0, c_2) \neq 0, \\ \lambda_2 > 0, & c_1 \neq 0. \end{cases}$$

The equal to λ_2 coincidence of characteristic exponents of solutions x(t, c) and y(t, c), $c = (c_1, c_2)$ of systems (1) and (2), respectively, on the axis $c_1 = 0$ (for $c_2 \neq 0$) of the plane R^2 as well as the lack of arbitrariness in the parameters $\lambda_1 \leq \lambda_2 < 0$, m > 1, and in the set $\beta = \{\lambda[y(\cdot, c)] : 0 \neq c \in R^2\}$ just right stipulates its partiality.

To the construction of various complete analogues of Perron's effect of value change in characteristic exponents of differential systems is devoted a cycle of our works, including those written jointly with S. K. Korovin. In particular, in our previous report, for arbitrary parameters m > 1, $\lambda_1 \leq \lambda_2 < 0$ and for bounded closed from the above countable set

$$\beta \subset [\lambda_1, +\infty), \ \lambda_2 \leq \sup \beta \in \beta,$$

we have stated that there exist the two-dimensional linear system (1) with exponents $\lambda_1(A) = \lambda_1 \leq \lambda_2 = \lambda_2(A)$ and the nonlinear system (2) with *m*-perturbation (3) such that all its nontrivial

solutions y(t,c), $c \in \mathbb{R}^2$, are infinitely extendable to the right, and their characteristic exponents form the set $\Lambda(A, f) = \beta$ which coincides for $p = 0 \in \mathbb{R}^2$ with its limiting subset

$$\Lambda_p(A, f) \equiv \lim_{r \to +0} \left\{ \lambda \left[y(\cdot, c) \right] : \ 0 < \|c - p\| \le r \right\}, \ p \in \mathbb{R}^2,$$

of characteristic exponents of nontrivial solutions of system (2) starting in any arbitrarily small neighbourhood of the point $p \in \mathbb{R}^2$.

In this connection, there arises the problem on the existence of another, different from the origin (0,0), points $p \in \mathbb{R}^2$ of the space of initial solutions for which the equality

$$\Lambda(A, f) = \Lambda_p(A, f) = \beta \tag{4}$$

would be fulfilled for an infinite number of points $p = (p_1, p_2) \in \mathbb{R}^2$ and for any bounded countable (not necessarily closed from the above) set β of positive, in particular, numbers. Its solution is involved in the following theorem.

Theorem. For any parameters m > 1, $\lambda_1 \leq \lambda_2 < 0$ and for any finite or bounded countable set

$$\beta \subset [\lambda_1, +\infty), \quad \beta \cap [\lambda_2, +\infty) \neq \emptyset,$$

there exist:

- 1) the two-dimensional system (1) with characteristic exponents $\lambda_1(A) = \lambda_1 \leq \lambda_2 = \lambda_2(A)$;
- 2) the infinitely differentiable with respect to the variables t, y₁, y₂, and satisfying the condition
 (3) perturbation f: [1, +∞) × R² → R² of order m > 1 such that all nontrivial solutions of the nonlinear two-dimensional system (2) with linear approximation (1) are infinitely extendable to the right, and their characteristic exponents form the set Λ(A, f) = β which takes at the points p = (p₁, p₂) ∈ R² with integer coordinates its limiting values

$$\Lambda_p(A, f) = \begin{cases} \beta & \text{if } p_1 \in Z, \ p_2 = 0, \\ \beta \cap [\lambda_2, +\infty) & \text{if } p_1 \in Z, \ p_2 \in Z \setminus \{0\}. \end{cases}$$
(5)

Statement (5) and condition (4) result in the following

Corollary 1. In the case of a finite or bounded countable set $\beta \subset (0, +\infty)$ of positive numbers, the representation

$$\Lambda(A, f) = \Lambda_p(A, f), \ p_1 \in Z, \ p_2 \in Z$$

is valid.

When proving the theorem in the case, where

$$\beta \cap [\lambda_2, +\infty) \neq \beta,$$

we have obtained a stronger compared with the second statement in (5)

Corollary 2. For the limiting at the point $p = (p_1, p_2) \in \mathbb{R}^2$ set $\Lambda_p(A, f)$ of characteristic exponents of solutions of the perturbed system (2), the representation

$$\Lambda_p(A, f) = \beta \cap [\lambda_2 + \infty) \neq \beta, \ p_1 \in R, \ p_2 \in Z \setminus \{0\}$$

is valid.

The results obtained in the present report are published in [1]-[3].

References

- A. V. Il'in and N. A. Izobov, The infinite analogues of Perrons effect of value change in characteristic exponents. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2014, Tbilisi, Georgia, December 18-20, 2014, pp. 51-52; http://www.rmi.ge/eng/QUALITDE-2014/workshop_2014.htm.
- [2] A. V. Il'in and N. A. Izobov, Countable analogue of Perron's effect of value change in characteristic exponents in any neighbourhood of the origin. (Russian) *Differentsial'nye Uravneniya* 51 (2015), No. 8, 1115–1117.
- [3] N. A. Izobov and A. V. Il'in, The Perron's effect of infinite value change in characteristic exponents in any neighbourhood of the origin. (Russian) *Differentsial'nye Uravneniya* 51 (2015), No. 11, 1420–1432.