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Just as in our previous report [1], we consider here both the linear differential systems

ẋ = A(t)x, x ∈ Rn, t ≥ t0 (1)

with bounded infinitely differentiable on the semi-axis [t0,+∞) coefficients and characteristic ex-
ponents λ1(A) ≤ · · · ≤ λn(A) < 0, and the nonlinear systems

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ t0 (2)

with infinitely differentiable in time t and variables y1, . . . , yn so-called m-perturbations f(t, y).
These perturbations have the order m > 1 of smallness in the neighbourhood of the origin and
admissible growth outside of it, satisfying the inequality

∥f(t, y)∥ ≤ Cf∥y∥m, Cf = const > 0, y ∈ Rn, t ≥ t0. (3)

The well-known (partial) Perron’s effects of sign and value changes [1], [2, pp. 50–61] in charac-
teristic exponents claimed the existence of such two-dimensional system (1) with specific character-
istic exponents λ1(A) = λ1 < λ2(A) = λ2 < 0 and the 2-perturbation (3) f(t, y) that all solutions
y(t, c), c ∈ R2 of the two-dimensional perturbed system (2) turned out to be infinitely extendable
to the right and had characteristic exponents

λ
[
y(·, c)

]
=

{
λ2 < 0, c = (0, c2) ̸= 0,

λ2 > 0, c1 ̸= 0.

The equal to λ2 coincidence of characteristic exponents of solutions x(t, c) and y(t, c), c = (c1, c2)
of systems (1) and (2), respectively, on the axis c1 = 0 (for c2 ̸= 0) of the plane R2 as well as the lack
of arbitrariness in the parameters λ1 ≤ λ2 < 0, m > 1, and in the set β = {λ[y(·, c)] : 0 ̸= c ∈ R2}
just right stipulates its partiality.

To the construction of various complete analogues of Perron’s effect of value change in charac-
teristic exponents of differential systems is devoted a cycle of our works, including those written
jointly with S. K. Korovin. In particular, in our previous report, for arbitrary parameters m > 1,
λ1 ≤ λ2 < 0 and for bounded closed from the above countable set

β ⊂ [λ1,+∞), λ2 ≤ supβ ∈ β,

we have stated that there exist the two-dimensional linear system (1) with exponents λ1(A) =
λ1 ≤ λ2 = λ2(A) and the nonlinear system (2) with m-perturbation (3) such that all its nontrivial
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solutions y(t, c), c ∈ R2, are infinitely extendable to the right, and their characteristic exponents
form the set Λ(A, f) = β which coincides for p = 0 ∈ R2 with its limiting subset

Λp(A, f) ≡ Lim
r→+0

{
λ
[
y(·, c)

]
: 0 < ∥c− p∥ ≤ r

}
, p ∈ R2,

of characteristic exponents of nontrivial solutions of system (2) starting in any arbitrarily small
neighbourhood of the point p ∈ R2.

In this connection, there arises the problem on the existence of another, different from the origin
(0, 0), points p ∈ R2 of the space of initial solutions for which the equality

Λ(A, f) = Λp(A, f) = β (4)

would be fulfilled for an infinite number of points p = (p1, p2) ∈ R2 and for any bounded countable
(not necessarily closed from the above) set β of positive, in particular, numbers. Its solution is
involved in the following theorem.

Theorem. For any parameters m > 1, λ1 ≤ λ2 < 0 and for any finite or bounded countable set

β ⊂ [λ1,+∞), β ∩ [λ2,+∞) ̸= ∅,

there exist:

1) the two-dimensional system (1) with characteristic exponents λ1(A) = λ1 ≤ λ2 = λ2(A);

2) the infinitely differentiable with respect to the variables t, y1, y2, and satisfying the condition
(3) perturbation f : [1,+∞)×R2 → R2 of order m > 1 such that all nontrivial solutions of the
nonlinear two-dimensional system (2) with linear approximation (1) are infinitely extendable
to the right, and their characteristic exponents form the set Λ(A, f) = β which takes at the
points p = (p1, p2) ∈ R2 with integer coordinates its limiting values

Λp(A, f) =

{
β if p1 ∈ Z, p2 = 0,

β ∩ [λ2,+∞) if p1 ∈ Z, p2 ∈ Z \ {0}.
(5)

Statement (5) and condition (4) result in the following

Corollary 1. In the case of a finite or bounded countable set β ⊂ (0,+∞) of positive numbers, the
representation

Λ(A, f) = Λp(A, f), p1 ∈ Z, p2 ∈ Z

is valid.

When proving the theorem in the case, where

β ∩ [λ2,+∞) ̸= β,

we have obtained a stronger compared with the second statement in (5)

Corollary 2. For the limiting at the point p = (p1, p2) ∈ R2 set Λp(A, f) of characteristic exponents
of solutions of the perturbed system (2), the representation

Λp(A, f) = β ∩ [λ2 +∞) ̸= β, p1 ∈ R, p2 ∈ Z \ {0}

is valid.

The results obtained in the present report are published in [1]– [3].
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