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We consider the differential equation

y" = aop(t)e(y) (1)

where ag € {—1,1}, p : [a,w]—]0,+00[ is a continuous function, ¢ : Ay, —]0;+oo] (i = 1,n) is a
continuously differentiable function satisfying the conditions
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where Ay, is some one-sided neighborhood of the points Yy, Yj is equal to either 0 or foo.
From the identity
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The function ¢ in the equation (1) and its derivative of the first order are (see, Seneta E. [1,
Ch. 3, § 3.4, pp. 91-92]) rapidly varying as y — Y.

The most simple example of such a function is the function ¢(y) = e?¥ (o # 0) as Yy = +o0. In
case of such function ¢ the asymptotic behaviour of solutions of the differential equation (1) was
studied in [2-6].

Under conditions (2) in the monography by V. Maric [7, Ch. 3, § 3, pp. 90-99] for the case when
apg =1, w = 400, Yy = 0 and p-regularly varying function as t — +o00, and in [8] for the general
case, asymptotic representations for some classes of solutions of the differential equation (1) have
been established. Thus in [8] a class of studied solutions was defined through the function ¢.

Naturally, however, it is represented for the equation (1) to investigate the same class of so-
lutions, which was studied earlier (see, for example, [9]) in case of regularly varying as y — Yj
nonlinearity .

Definition. A solution y of the equation (1) is called a P,,(Yy, Ag)-solution, where —oo < A\g < +00,
if it is defined on some interval [to,w[C [a,w] and satisfies the following conditions:
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The aim of the paper is to derive necessary and sufficient conditions for the existence of P,,(Ag)-
solutions of the equation (1) when Ao € R\ {0;1}, and also to establish asymptotic formulas for
such solutions and their derivatives of the first order.

Let

Av — [yo, Yo[, if Ay, is a left neighborhood of Yy,
Yo 1Y0,y0], if Ay, is a right neighborhood of Yy,

where [yo| < 1,if Yo =0, and yo > 1 (yo < —1), if Yo = +o00 (Yp = —o0).
We set

vo = signyo, po = sign¢’(y),
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With use of properties of rapidly varying functions (see, Bingham N. H., Goldie C. M., Teugels J.
L. [10, Ch. 3, 3.10, pp. 174-178]) and the results from [11] on the existence of systems of quasilinear

differential equations with vanishing solutions in singular point, the following two theorems are
established.

Theorem 1. Let \g € R\ {0;1}. Then for the existence of P,,(Ag)-solutions of the equation (1) it
s necessary that

appro > 0,  aguo(ro —1)J(t) <0 at t €la,wl, (3)
w(t)J (t A
lim (D) = +o0, 1#2 q(t) = " E T (4)

ttw J(t)

Moreover, each solution of this kind admits the following asymptotic representation:

o)

(1) = 8 (a0l = DIO) 1+ Fro

)\0 <I>_1(a0()\0 — 1)J(t))
Ao —1 T (t)

] at t 1 w, (5)

y'(t) =

[1+0(1)] at t 1 w. (6)

Theorem 2. Let \g € R\ {0;1}, conditions (3), (4) be satisfied and there exist a final or equal to
infinity
so/(y))/

lim (o ‘ ye' (y) ‘ '
S (p((;/;) ¢(y)

Then:



International Workshop QUALITDE — 2015, December 27 — 29, 2015, Tbilisi, Georgia 57

1) if
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the differential equation (1) has a one-parametric family of P, (Yo, \o)-solutions with asymp-
totic representations (5), (6), and the derivative of such solutions admits the representation

)\0 <I>_1(a0(>\0 — 1)J(t))
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where tg — some number from [a,w], the differential equation (1) as w = +o0o has a one-
parametric family of P, (Yo, Ao)-solutions admitting the asymptotic representations

y(0) = 2 (a0~ IO 1+ (1) / Hr 'dT) ofn)] at 11

y(t) = )\OA31 v (ao(:;(sl [1+ </ Hr |§d7) o(1 )} at t 1w,

and for w < +00, a two-parametric families of P,,(Yo, Ao)-solutions with such representations.
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