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On the interval [a, b], we consider the multi-point boundary value problem

u′(t) = ℓ(u)(t) + q(t), (1)
n∑

i=1

αiu(ti) = c, (2)

where ℓ : C([a, b];R) → L([a, b];R) is a linear bounded operator, q ∈ L([a, b];R), αi ∈ R \ {0},
a ≤ t1 < t2 < · · · < tn ≤ b (i = 1, . . . , n), and c ∈ R. Here and in what follows, C([a, b];R) and
L([a, b];R) stand for Banach spaces of continuous and Lebesgue integrable functions defined on
[a, b], respectively, with standard norms; C([a, b];R+) and L([a, b];R+) are subsets of non-negative
functions of the corresponding spaces; AC([a, b];R) is a set of absolutely continuous functions
defined on [a, b].

A linear bounded operator ℓ : C([a, b];R) → L([a, b];R) is called an a-Volterra operator, resp.
a b-Volterra operator, if for arbitrary c ∈ ]a, b], resp. c ∈ [a, b[ , and v ∈ C([a, b];R) such that

v(t) = 0 for t ∈ [a, c], resp. v(t) = 0 for t ∈ [c, b],

the equality

ℓ(v)(t) = 0 for a.e. t ∈ [a, c], resp. ℓ(v)(t) = 0 for a.e. t ∈ [c, b],

is fulfilled.

Notation. Let ℓ : C([a, b];R) → L([a, b];R) be a linear bounded operator. Then ℓ ∈ Pab iff it
transforms a set C([a, b];R+) into a set L([a, b];R+); ℓ ∈ P+

ab iff it transforms the non-negative
non-decreasing absolutely continuous functions to the non-negative functions; ℓ ∈ Sab(a), resp.
ℓ ∈ Sab(b), iff every absolutely continuous function u satisfying

u′(t) ≥ ℓ(u)(t) for a.e. t ∈ [a, b], u(a) ≥ 0,

resp.
u′(t) ≤ ℓ(u)(t) for a.e. t ∈ [a, b], (b) ≥ 0,

admits the inequality u(t) ≥ 0 for t ∈ [a, b].
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Remark 1. In the case when ℓ(u)(t)
def
= p(t)u(τ(t)) − g(t)u(µ(t)) with p, g ∈ L([a, b];R+), τ, µ :

[a, b] → [a, b] measurables functions, it can be shown that ℓ ∈ P+
ab iff p(t) ≥ g(t) and g(t)(τ(t) −

µ(t)) ≥ 0 for a.e. t ∈ [a, b].
The efficient conditions guaranteeing the inclusions ℓ ∈ Sab(a) and ℓ ∈ Sab(b) can be found

in [2].

The proofs of the following theorems are based on the results established in [1].

Theorem 1. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab and let ℓ0 ∈ Sab(a).

Let, moreover, there exist ij ∈ {1, . . . , n} (j = 1, . . . , k) such that

n > i1 > i2 > · · · > ik ≥ 1, (3)

and either
(−1)rαz > 0 for z = ir+1 + 1, . . . , ir (r = 0, . . . , k) (4)

or
(−1)rαz < 0 for z = ir+1 + 1, . . . , ir (r = 0, . . . , k), (5)

where i0 = n, ik+1 = 0. Let, in addition,

i2r∑
z=i2r+1+1

|αz| ≥
i2r+1∑

z=i2r+2+1

|αz|, r = 0, . . . ,
[k − 1

2

]
. (6)

If either at least one of the inequalities in (6) is strict, or k is even, or

∫
I

ℓ(1)(t) dt ̸= 0, I =

[ k−1
2

]∪
r=0

[ti2r+2+1, ti2r ], (7)

then the problem (1), (2) is uniquely solvable.

Theorem 2. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0−ℓ1 with ℓ0, ℓ1 ∈ Pab and let −ℓ1 ∈ Sab(b).

Let, moreover, there exist γ ∈ AC([a, b];R) satisfying

γ(t) > 0 for t ∈ [a, b], (8)

γ′(t) ≥ ℓ(γ)(t) for a.e. t ∈ [a, b], (9)

and let there exist ij ∈ {1, . . . , n} (j = 1, . . . , k) such that (3) holds and either (4) or (5) is satisfied,
where i0 = n, ik+1 = 0. Let, in addition, (6) be fulfilled. If either at least one of the inequalities in
(6) is strict, or k is even, or (7) holds, then the problem (1), (2) is uniquely solvable.

Theorem 3. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab and let ℓ0 ∈ Sab(a).

Let, moreover, there exist ij ∈ {1, . . . , n} (j = 1, . . . , k) such that (3) holds, and either (4) or (5)
be fulfilled where i0 = n, ik+1 = 0. Let, in addition,

γ(tn)

γ(a)

n∑
z=i1+1

|αz| ≤
ik∑
z=1

|αz| if k is odd, (10)

γ(tn)

γ(a)

n∑
z=i1+1

|αz|+
ik∑
z=1

|αz| ≤
ik−1∑

z=ik+1

|αz| if k is even, (11)

and
i2r+2∑

z=i2r+3+1

|αz| ≤
i2r+1∑

z=i2r+2+1

|αz|, r = 0, . . . ,
[k − 3

2

]
if k ≥ 3, (12)
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where γ ∈ AC([a, b];R) is a function satisfying (8) and (9)1. If either at least one of the inequalities
in (10)–(12) is strict, or there exists I ⊆ [a, tn] with meas I > 0 such that

γ′(t) ̸= ℓ(γ)(t) for a.e. t ∈ I, (13)

or
n∑

i=1

αiγ(ti) ̸= 0, (14)

or ∫
I

ℓ(1)(t)dt ̸= 0, (15)

where
I = [ti1 , tn] ∪ I1 ∪ I2,

I1 = [a, tik ] if k is odd, I1 = [a, tik−1
] if k is even,

I2 =

[ k−3
2

]∪
r=0

[ti2r+3+1, ti2r+1 ] if k ≥ 3, I2 = ∅ if k < 3,

(16)

then the problem (1), (2) is uniquely solvable.

Theorem 4. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0−ℓ1 with ℓ0, ℓ1 ∈ Pab and let −ℓ1 ∈ Sab(b).

Let, moreover, there exist γ ∈ AC([a, b];R) satisfying (8) and (9), and let there exist ij ∈ {1, . . . , n}
(j = 1, . . . , k) such that (3) holds, and either (4) or (5) be fulfilled where i0 = n, ik+1 = 0. Let,
in addition, (10)–(12) be satisfied. If either at least one of the inequalities in (10)–(12) is strict,
or there exists I ⊆ [a, tn] with meas I > 0 such that (13) holds, or (14), or (15) is fulfilled with I
defined by (16), then the problem (1), (2) is uniquely solvable.

Theorem 5. Let ℓ admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab, ℓ(1)(t) ≥ 0 for a.e.
t ∈ [a, b], and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Let, moreover, there exist γ ∈ AC([a, b];R)
satisfying (8) and (9). Let, in addition, t1 = a and

α1αi < 0 (i = 2, . . . , n), |α1| ≤
n∑

i=2

|αi|.

If either

|α1| <
n∑

i=2

|αi|

or
tn∫
a

ℓ(1)(t) dt ̸= 0,

then the problem (1), (2) is uniquely solvable.

Theorem 6. Let ℓ admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab, ℓ(1)(t) ≥ 0 for a.e.
t ∈ [a, b], and let ℓ0 ∈ Sab(a) be a b-Volterra operator. Let, moreover, tn = b and

|αn| ≥
n−1∑
i=1

σi|αi|,

where

σi =
1

2

(
1− sgn(αiαn)

)
(i = 1, . . . , n− 1).

Let, in addition, at least one of the following items be fulfilled:

1The existence of such a function is guaranteed by [2, Theorem 1.1].
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(a)

|αn| >
n−1∑
i=1

σi|αi|;

(b) there exists i0 ∈ {1, . . . , n− 1} such that αi0αn > 0;

(c)
b∫

t1

ℓ(1)(t) dt ̸= 0.

Then the problem (1), (2) is uniquely solvable.

Remark 2. Results analogous to Theorems 1–6 can be derived by a standard transformation in the
case when ℓ ∈ N−

ab, i.e. when ℓ transforms the non-negative non-increasing absolutely continuous
functions to the non-positive functions, and when ℓ(1)(t) ≤ 0 for a.e. t ∈ [a, b], respectively.
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