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For linear second order functional differential equations, the periodic boundary value problem
is investigated (see, for example, [1–5]). We will find unimprovable conditions for the existence of
a positive solution in two cases:

1. the Green function of the periodic problem can change its sign (Theorems 2, 3, 4, Corollary 1);

2. right-hand side functions f of the equations are not necessary non-negative or non-positive
(Theorems 2, 5, 6, Corollary 2).

Consider the periodic boundary value problem{
ẍ(t) = (Tx)(t) + f(t) for almost all t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),
(1)

where T : C[0, 1] → L[0, 1] is a linear bounded operator, f ∈ L[0, 1], a solution x : [0, 1] → R has
an absolutely continuous derivative, C[0, 1] is the space of all continuous functions x : [0, 1] → R
with the norm ∥x∥C = max

t∈[0,1]
|x(t)|, L[0, 1] is the space of all integrable functions z : [0, 1] → R with

the norm ∥x∥L =
1∫
0

|z(t)| dt.

Assumption 1. Let non-negative functions q, r ∈ L[0, 1] be given,

p ≡ q − r,

P ≡
1∫

0

p(t) dt ̸= 0, p̃ ≡ p/P.

We suppose that the operator T has a representation

T = T+ − T−,

where T+, T− : C[0, 1] → L[0, 1] are linear bounded operators such that

T+1 = q, T−1 = r,

1 is the unit function, the operators T+, T− are positive (that is, they map nonnegative functions
from C[0, 1] into almost everywhere non-negative functions from L[0, 1]).

Definition 1. For every t1, t2 (0 ≤ t1 ≤ t2 ≤ 1), define the piecewise linear function

gt1,t2(s) ≡ G(t2, s)−G(t1, s), s ∈ [0, 1],
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where

G(t, s) =

{
t(s− 1) if 0 ≤ t ≤ s ≤ 1,

s(t− 1) if 0 ≤ s < t ≤ 1,

is the Green function of the Dirichlet problem ẍ(t) = z(t), t ∈ [0, 1], x(0) = 0, x(1) = 0.
For every function z ∈ L[0, 1], we denote

gt1,t2,z(s) ≡ gt1,t2(s)−
1∫

0

z(τ)gt1,t2(τ) dτ, s ∈ [0, 1],

[z]+(s) ≡ z(s) + |z(s)|
2

, [z]−(s) ≡ |z(s)| − z(s)

2
, s ∈ [0, 1].

Theorem 1. Let

max
0≤t1≤t2≤1

1∫
0

(
q(t)[gt1,t2,p̃]

+(t) + r(t)[gt1,t2,p̃]
−(t)

)
dt < 1. (2)

Then periodic problem (1) has a unique solution.

Assumption 2. Suppose further that
1∫
0

f(s) ds ̸= 0. Define F ≡
1∫
0

f(s) ds, f̃ ≡ f/F .

Theorem 2. Let inequality (2) be fulfilled.
If

max
0≤t1≤t2≤1

1∫
0

(
q(t)[g

t1,t2,f̃
]+(t) + r(t)[g

t1,t2,f̃
]−(t)

)
dt < 1 (3)

and

max
0≤t1≤t2≤1

1∫
0

(
q(t)[g

t1,t2,f̃
]−(t) + r(t)[g

t1,t2,f̃
]+(t)

)
dt < 1, (4)

then a unique solution to problem (1) satisfies the inequality

− sgn(FP)x(t) > 0 for all t ∈ [0, 1]. (5)

Definition 2. Let µ ≥ 1. Define the set

Sµ ≡
{
h ∈ L[0, 1] : vrai supt∈[0,1] h(t) ≤ µ vrai inft∈[0,1] h(t) > 0

}
.

Theorem 3. Let inequality (2) be fulfilled, f ∈ Sµ.
If

min
{
vrai supt∈[0,1] q(t), vrai supt∈[0,1] r(t)

}
+

+ µmax
{
vrai supt∈[0,1] q(t), vrai supt∈[0,1] r(t)

}
≤ 8(1 +

√
µ)2,

and
q + µr ̸≡ 8(1 +

√
µ)2, r + µq ̸≡ 8(1 +

√
µ)2,

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].



38 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

Theorem 4. Let inequality (2) be fulfilled, f ∈ Sµ.
If

min

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
+

√
µmax

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
≤ 4(1 +

√
µ),

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].

Corollary 1. Let q ≡ 0 or r ≡ 0.
If

vrai supt∈[0,1] |p(t)| ≤ 32
(
1−

√
µ− 1

2
√
µ

)2
, |p| ̸≡ 32

(
1−

√
µ− 1

2
√
µ

)2
,

or
1∫

0

|p(t)| dt ≤ 8
(
1−

√
µ− 1

2
√
µ

)
,

then for each f ∈ Sµ a unique solution to problem (1) satisfies the inequality

− sgn(P )x(t) > 0 for all t ∈ [0, 1].

Definition 3. Let ρ > 1. Define the set

Λρ ≡
{
h ∈ L[0, 1] : h ̸≡ 0,

1∫
0

[h]+(t) dt ≥ ρ

1∫
0

[h]−(t) dt

}
.

Theorem 5. Let inequality (2) be fulfilled, f ∈ Λρ.
If

max
{
vrai supt∈[0,1] q(t), vrai supt∈[0,1] r(t)

}
≤ 8

ρ− 1

ρ+ 1
, r ̸≡ 8

ρ− 1

ρ+ 1
, q ̸≡ 8

ρ− 1

ρ+ 1
,

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].

Theorem 6. Let inequality (2) be fulfilled, f ∈ Λρ.
If

ρ max

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
−min

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
≤ 4 (ρ− 1),

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].

Corollary 2. Let q ≡ 0 or r ≡ 0.
If

vrai supt∈[0,1] |p(t)| ≤ 8
ρ− 1

ρ+ 1
, |p| ̸≡ 8

ρ− 1

ρ+ 1
,

or
1∫

0

|p(t)| dt ≤ 4
(
1− 1

ρ

)
,

then for each f ∈ Λρ a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].
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Remark. All inequalities in all these theorems and corollaries are sharp. In particular, if inequality
(2) is not fulfilled, then there exists an operator T such that Assumption 1 is satisfied and problem
(1) does not have a unique solution. If inequality (3) or (4) is not fulfilled, then there exist an
operator T and a function f such that Assumption 1 is satisfied and problem (1) has a solution
which does not satisfy (5).
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