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We consider the initial boundary-value problem for the 1D nonlinear Generalized Benjamin—
Bona—Mahony-Burgers (GBBM-Burgers) equation
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uw(0,t) =u(l,t) =0, t €[0,7), wu(x,0)=p(x), xz€[0,1], (2)

where u(z, t) represents the velocity of fluid in the horizontal direction x, @ = (0,1) x (0,7, o > 0,
[ are constants and m > 2 is an integer.

Assume that the solution of this problem belongs to the fractional-order Sobolev space W5 (Q),
k > 1, whose norms we denote by || - ||W2k(Q).

In [1], Che et al. have investigated a three-level unconditionally stable difference scheme for
the problem (1), (2) and ascertained second-order convergence under assumption that the exact
solution belongs to C*3(Q).

In this article, two-level scheme is constructed to find the values of the unknown function on the
first level, besides the term d(u)?/dz is approximated by the offered in [2, 3] way. For the upper
layers, as in [1], the known approximations are used for derivatives. The error estimate is derived
using certain well-known techniques (see, e.g. [4, 5]).

The finite domain [0, 1] x [0, 7] in plane is divided into rectangle grids by the points (z;,t;) =
(ih,j7), i = 0,1,...,n, j = 0,1,2,...,J, where h = 1/n and 7 = T/J denote the spatial and
temporal mesh sizes, respectively.

The value of mesh function U at the node (x;,¢;) is denoted by U/, that is U(ih, j7) = Uj.
For the sake of simplicity sometimes we use notations without subscripts: U/ = U, Uij+1 =U ,

Ul-j_1 = U. Moreover, let
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We define the difference quotients in x and ¢ directions as follows:
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We approximate the problem (1), (2) with the help of the three-level finite-difference scheme:

LU =0, i=1,2,...,n—1, j=0,1,...,J —1, (3)
Ul=Ul=0, j=0,1,2,...,J, UY=op(x), i=0,1,2,...,n, (4)
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where
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Letw={z;:i=0,1,2,...,n}, w={z; :i=1,2,...,n—1} w™ ={z; :i=1,2,...,n}.
By La(w) we denote the set of functions defined on the mesh @ and equal to zero at x = zp and
x = x,,. We define the following inner product and norms:

(U, V)= hU()V(z), |U|=UU)"2.
reEw
Let, moreover,
U, V]= > W(a)V(), |Ull=@UI (Ul = I
rz€wt

Theorem 1. Difference scheme (3),(4) is uniquely solvable and the following estimates hold for
its solution: - - , )
IT715+ U211 < llell® + llesll”, 7=1,2,....

Theorem 2. Difference scheme (3), (4) is absolutely stable with respect to initial data.

Theorem 3. Let the exact solution of the initial-boundary value problem (1), (2) belong to WH(Q).
Then, the convergence rate of the finite difference scheme (3),(4) is determined by the estimate

107 = |y < (7 + B Dllullypg), 1<k <3,

where ¢ = c(u) denotes positive constant, independent of h and T.
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