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We consider the initial boundary-value problem for the 1D nonlinear Generalized Benjamin–
Bona–Mahony–Burgers (GBBM-Burgers) equation
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∂x2∂t
= 0, (x, t) ∈ Q, (1)

u(0, t) = u(1, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ [0, 1], (2)

where u(x, t) represents the velocity of fluid in the horizontal direction x, Q = (0, 1)× (0, T ], α > 0,
β are constants and m ≥ 2 is an integer.

Assume that the solution of this problem belongs to the fractional-order Sobolev space W k
2 (Q),

k > 1, whose norms we denote by ∥ · ∥Wk
2 (Q).

In [1], Che et al. have investigated a three-level unconditionally stable difference scheme for
the problem (1), (2) and ascertained second-order convergence under assumption that the exact
solution belongs to C4,3(Q).

In this article, two-level scheme is constructed to find the values of the unknown function on the
first level, besides the term ∂(u)2/∂x is approximated by the offered in [2, 3] way. For the upper
layers, as in [1], the known approximations are used for derivatives. The error estimate is derived
using certain well-known techniques (see, e.g. [4, 5]).

The finite domain [0, 1]× [0, T ] in plane is divided into rectangle grids by the points (xi, tj) =
(ih, jτ), i = 0, 1, . . . , n, j = 0, 1, 2, . . . , J , where h = 1/n and τ = T/J denote the spatial and
temporal mesh sizes, respectively.

The value of mesh function U at the node (xi, tj) is denoted by U j
i , that is U(ih, jτ) = U j

i .

For the sake of simplicity sometimes we use notations without subscripts: U j
i = U , U j+1

i = Û ,

U j−1
i = Ǔ . Moreover, let
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0
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2
, j = 1, 2, . . . .

We define the difference quotients in x and t directions as follows:
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h
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,
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τ
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t
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2τ
, (U j)tt =
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.

We approximate the problem (1), (2) with the help of the three-level finite-difference scheme:

LU j
i = 0, i = 1, 2, . . . , n− 1, j = 0, 1, . . . , J − 1, (3)

U j
0 = U j

n = 0, j = 0, 1, 2, . . . , J, U0
i = φ(xi), i = 0, 1, 2, . . . , n, (4)
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where
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Let ω = {xi : i = 0, 1, 2, . . . , n}, ω = {xi : i = 1, 2, . . . , n − 1}, ω+ = {xi : i = 1, 2, . . . , n}.
By L2(ω) we denote the set of functions defined on the mesh ω̄ and equal to zero at x = x0 and
x = xn. We define the following inner product and norms:

(U, V ) =
∑
x∈ω

hU(x)V (x), ∥U∥ = (U,U)1/2.

Let, moreover,

(U, V ] =
∑
x∈ω+

hU(x)V (x), ∥U ]| = (U,U ]1/2, ∥U∥W 1
2 (ω)

= ∥Ux]|.

Theorem 1. Difference scheme (3), (4) is uniquely solvable and the following estimates hold for
its solution:

∥U j∥2 + ∥U j
x ]|

2 ≤ ∥φ∥2 + ∥φx]|2, j = 1, 2, . . . .

Theorem 2. Difference scheme (3), (4) is absolutely stable with respect to initial data.

Theorem 3. Let the exact solution of the initial-boundary value problem (1), (2) belong to W k
2 (Q).

Then, the convergence rate of the finite difference scheme (3), (4) is determined by the estimate

∥U j − uj∥W 1
2 (ω)

≤ c(τk−1 + hk−1)∥u∥Wk
2 (Q), 1 < k ≤ 3,

where c = c(u) denotes positive constant, independent of h and τ .
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