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1 Introduction

The problem of asymptotic behavior of solutions to nonlinear differential equations with an expo-
nentially small or power-law small right-hand sides is investigated.

Consider the equation

y(n) + p(x)|y|k sgn y = F (x), n ≥ 2, k > 1, (1)

with continuous functions p(x) and F (x).
Equation (1) with F (x) = 0 was investigated from different points of view (see, for example, [8],

[4] and the bibliography therein). In particular, the asymptotic behavior of its solutions vanishing
at infinity is described. If the function F (x) is sufficiently small, it is possible to describe the
asymptotic behavior of vanishing at infinity solutions to equation (1), too. Previous results are
published in [1]– [6]. Results of this type for ordinary differential equations and their systems can
be useful also to investigate some problems for partial differential equations (see, for example, [7]).

Note that there exist notions of asymptotic equivalence different from the one used here (cf. [10]–
[17]).

2 Main results

In this section results on asymptotic equivalence of solutions to differential equations with different
right-hand sides are formulated.

1 Exponentially equivalent right-hand sides

Theorem 2.1 (see [6]). Let f(x), g(x), and p(x) be bounded continuous functions defined in a
neighborhood of +∞. Suppose y(x) is a solution to the equation

y(n) + p(x)|y|k sgn y = f(x) e−βx (2)

with n > 2, k > 1, β > 0 and y(x) → 0 as x → +∞. Then there exists a unique solution z(x) to
the equation

z(n) + p(x)|z|k sgn z = g(x) e−βx (3)

such that |z(x)− y(x)| = O(e−βx) as x → +∞.

To prove this result we use the following lemmas.

Lemma 2.1. If a function y(x) and its n-th derivative y(n)(x) both tend to zero as x → +∞, then

the same is true for all of its lower-order derivatives y(j)(x), 0 < j < n.

Lemma 2.2. Suppose a function y(x) satisfies the inequality |y(j)(x)| ≥ W > 0 on a segment I of
length ∆. Then there exists a segment I ′ ⊂ I of length 4−j∆ with |y(x)| ≥ W (2−1−j∆)j satisfied
for all x ∈ I ′.
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Lemma 2.3. Let y(x) be a solution to equation (2) tending to zero as x → +∞. Then

y(x) = Jn
[
e−βxf(x)− p(x)|y(x)|k sgn y(x)

]
,

where the operator J takes each sufficiently rapidly decreasing function φ(x) to its primitive function
vanishing at infinity:

J[φ](x) = −
∞∫
x

φ(ξ) dξ.

Corollary 2.1. Suppose the function F (x) in equation (1) satisfies the condition

|F (x)| ≤ Ce−βx, C > 0, β > 0, (4)

and p(x) is a bounded continuous function. Then for any solution y(x) to equation (1) tending to
zero as x → ∞ there exists a solution z(x) to equation (1) with F(x)=0 such that

|y(x)− z(x)| = O(e−βx), x → ∞.

Remark 2.1. Note that if p(x) → p0 ̸= 0 as x → ∞, for n = 2 [8] and n ∈ {3, 4} ( [3] and [4],
Ch.I, Section 5.4) asymptotic behavior of all solutions to equation (1) with F (x) = 0 is described.
In particular, if (−1)np0 < 0, then all nontrivial vanishing at infinity solutions z(x) to equation (1)
with F (x) = 0 satisfy

z(x) = C x−α(1 + o(1)), x → ∞, withα =
n

k − 1
, C =

( 1

p0

n−1∏
j=0

(α+ j)
) 1

k−1
.

As for n ≥ 5, solutions with the above asymptotic behavior also exist if p(x) tends to p0 quickly

enough. This was proved in [4] (Ch.I, Theorem 5.3) for the function p depending on x, y, y′, . . . , y(n−1)

and satisfying rather cumbersome conditions, which are reduced, in the case p(x), to the condition
p(x) = p0 +O(x−γ) with some γ > 0.

So, we can obtain asymptotic behavior of solutions to equation (1) vanishing at +∞.

Theorem 2.2. Suppose 2 ≤ n ≤ 4, p(x) → p0 ̸= 0 as x → ∞, (−1)np0 < 0, and f(x) satisfies
condition (4). Then any solution y(x) to equation (1) tending to zero as x → ∞ behaves as

y(x) = C x−α(1 + o(1)), x → ∞. (5)

If n ≥ 5 and p(x) = p0+O(x−γ) as x → ∞ with γ > 0, then there exists a solution to equation (1)
satisfying (5).

The following theorems, which were formulated in [1]– [6], can proved similarly.

Theorem 2.3 (see [2, Ch. 2, pp. 15–16]). Consider the equations

y(2n) + (−1)nxσ|y|k sgn y = F (x), (6)

z(2n) + (−1)nxσ|z|k sgn z = 0 (7)

with σ > 0, n ≥ 1, k > 1.
Suppose |F (x)| = O(e−βx), β > 0, x → ∞, and y(x) is a solution to equation (6) with

lim
x→∞

y(x) = 0. Then there exists a unique solution z(x) to equation (7) such that

|y(x)− z(x)| = O(e−βx), x → ∞.
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Straightforward calculations show that the function y(x) = C(x − x0)
−α with α = n

k−1 , C =

(
n−1∏
j=0

(α+ j))
1

k−1 , and arbitrary x0 is a solution to the equation

y(n) + (−1)n−1|y(x)|k sgn y = 0, n ≥ 2, k > 1. (8)

It was proved for this equation with n = 2 [8] and 3 ≤ n ≤ 4 [3] that all its Kneser solutions, i.e.

those satisfying y(x) → 0 as x → ∞ and (−1)j y(j)(x) > 0 for 0 ≤ j < n, have the above power
form. However, it was also proved [9] that for any N and K > 1 there exist an integer n > N and
k ∈ (1;K) such that equation (1) has a solution y(x) = (x − x0)

−α h(log (x − x0)), where h is a
positive periodic non-constant function on R.

In [5] existence of that type of solutions was investigated for some fixed n.

Theorem 2.4. Suppose 12 ≤ n ≤ 14. Then there exists k > 1 such that equation (8) has a solution
y(x) satisfying

y(j)(x) = (x− x0)
−α−jhj

(
log(x− x0)

)
, j = 0, 1, . . . , n− 1,

with periodic positive non-constant functions hj on R and arbitrary x0 ∈ R.

So, the following Theorem is proved.

Theorem 2.5. If 12 ≤ n ≤ 14, f(x) satisfies (4), then there exist k > 1 and a solution to the
equation

y(n) + (−1)n−1|y(x)|k sgn y = F (x),

satisfying the condition∣∣y(x)− (x− x0)
−αh

(
log(x− x0)

)∣∣ = O(e−βx), x → ∞,

with some periodic positive non-constant function h on R.

2 Power-law small potential

Theorem 2.6. Suppose the function F (x) in equation (1) satisfies the condition

|F (x)| ≤ Cx−σ, C > 0, σ > n, (9)

and p(x) is a bounded continuous function.
Then for any solution y(x) to equation (1) tending to zero as x → ∞ there exists a solution

z(x) to equation (1) with F (x) = 0 such that

|y(x)− z(x)| = O(xn−σ), x → ∞.
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