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1 Introduction

The problem of asymptotic behavior of solutions to nonlinear differential equations with an expo-
nentially small or power-law small right-hand sides is investigated.
Consider the equation

with continuous functions p(x) and F(z).

Equation (1) with F'(x) = 0 was investigated from different points of view (see, for example, [8],
[4] and the bibliography therein). In particular, the asymptotic behavior of its solutions vanishing
at infinity is described. If the function F'(x) is sufficiently small, it is possible to describe the
asymptotic behavior of vanishing at infinity solutions to equation (1), too. Previous results are
published in [1]- [6]. Results of this type for ordinary differential equations and their systems can
be useful also to investigate some problems for partial differential equations (see, for example, [7]).

Note that there exist notions of asymptotic equivalence different from the one used here (cf. [10]-
[17]).

2 Main results

In this section results on asymptotic equivalence of solutions to differential equations with different
right-hand sides are formulated.

1 Exponentially equivalent right-hand sides
Theorem 2.1 (see [6]). Let f(z), g(x), and p(x) be bounded continuous functions defined in a
neighborhood of +00. Suppose y(x) is a solution to the equation

y™ + p(a)lyl* sgny = f(a) e (2)

withn > 2, k> 1, >0 and y(x) = 0 as © — +o00. Then there exists a unique solution z(x) to
the equation

2" 4 p(x)|2[  sgn 2 = g(a) e (3)
such that |z(z) — y(z)| = O(e™P*) as x — +oo.
To prove this result we use the following lemmas.

Lemma 2.1. If a function y(z) and its n-th derivative y"™ (x) both tend to zero as x — 400, then
the same is true for all of its lower-order derivatives y\9) (), 0<j<n.

Lemma 2.2. Suppose a function y(x) satisfies the inequality |y (x)] > W >0 on a segment I of
length A. Then there exists a segment I' C I of length 4=3A with |y(z)| > W(2717IA) satisfied
forallz el
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Lemma 2.3. Let y(x) be a solution to equation (2) tending to zero as x — +o0co. Then

y(z) = I"[e 7" f(z) — p(z)|y(z)|* sgny(z)],

where the operator J takes each sufficiently rapidly decreasing function p(x) to its primitive function

vanishing at infinity:
oo

Ilgl(@) = - / () de.

T

Corollary 2.1. Suppose the function F(x) in equation (1) satisfies the condition
|F(z)| < Ce P2, C >0, B>0, (4)

and p(z) is a bounded continuous function. Then for any solution y(x) to equation (1) tending to
zero as x — 0o there exists a solution z(x) to equation (1) with F(z)=0 such that

ly(z) — z(z)| = O(e™P%), = — oo.

Remark 2.1. Note that if p(z) — po # 0 as © — oo, for n = 2 [8] and n € {3,4} ( [3] and [4],
Ch.I, Section 5.4) asymptotic behavior of all solutions to equation (1) with F'(z) = 0 is described.
In particular, if (—1)"py < 0, then all nontrivial vanishing at infinity solutions z(x) to equation (1)
with F'(z) = 0 satisfy

. T T R
z(x) =Cz “(14+0(1)), = — oo, Wltha—m, C—(m]l_l(a+])) .

As for n > 5, solutions with the above asymptotic behavior also exist if p(z) tends to py quickly
enough. This was proved in [4] (Ch.I, Theorem 5.3) for the function p depending on z, 3,7/, ...,y
and satisfying rather cumbersome conditions, which are reduced, in the case p(z), to the condition
p(z) = po+ O(z™7) with some v > 0.

So, we can obtain asymptotic behavior of solutions to equation (1) vanishing at ~+oc.

Theorem 2.2. Suppose 2 < n < 4, p(x) = po # 0 as x — oo, (—1)"py < 0, and f(x) satisfies
condition (4). Then any solution y(x) to equation (1) tending to zero as x — oo behaves as

y() =Czx *(1+o0(1)), x— oo. (5)

Ifn>5 and p(x) = po+ O(x™7) as x — oo with v > 0, then there exists a solution to equation (1)
satisfying (5).

The following theorems, which were formulated in [1]- [6], can proved similarly.

Theorem 2.3 (see [2, Ch. 2, pp. 15-16]). Consider the equations
y )+ (=1)"2|y|Fsgny = F(a), (6)

2% 4 (=1)"2% |2 sgnz = 0 (7)

witho >0, n>1, k>1.

Suppose |F(z)| = O(e™P*), B > 0, x — oo, and y(zx) is a solution to equation (6) with
lim y(x) = 0. Then there exists a unique solution z(x) to equation (7) such that
T—00

ly(x) — 2(z)| = O(e™P%), 2 — oo.



18 International Workshop QUALITDE — 2015, December 27 — 29, 2015, Tbilisi, Georgia

Straightforward calculations show that the function y(z) = C(z — x)™® with a = 4, C =
n—1
(I] (e + j))ﬁ, and arbitrary z is a solution to the equation
=0
y™ + ()" y(@)Fsgny =0, n>2, k> 1. (8)

It was proved for this equation with n = 2 [8] and 3 < n < 4 [3] that all its Kneser solutions, i.e.

those satisfying y(z) — 0 as  — oo and (—1)? yU)(z) > 0 for 0 < j < n, have the above power
form. However, it was also proved [9] that for any N and K > 1 there exist an integer n > N and
k € (1; K) such that equation (1) has a solution y(z) = (z — z9)~® h(log (z — x0)), where h is a
positive periodic non-constant function on R.

In [5] existence of that type of solutions was investigated for some fixed n.

Theorem 2.4. Suppose 12 < n < 14. Then there exists k > 1 such that equation (8) has a solution
y(z) satisfying
y(j)(az) = (z— :po)_a_jhj (log(x — xo)), ji=0,1,...,n—1,

with periodic positive non-constant functions h;j on R and arbitrary xo € R.

So, the following Theorem is proved.

Theorem 2.5. If 12 < n < 14, f(x) satisfies (4), then there exist k > 1 and a solution to the
equation

y™ + (1) My () |Fsgny = F(x),
satisfying the condition

}y(x) — (z — 20) " *h(log(z — z0))| = O(e™P%), z — oo,

with some periodic positive non-constant function h on R.

2 Power-law small potential
Theorem 2.6. Suppose the function F(x) in equation (1) satisfies the condition
|F(z)] < Cz™, C>0, 0>n, (9)

and p(zx) is a bounded continuous function.
Then for any solution y(x) to equation (1) tending to zero as x — oo there exists a solution
z(x) to equation (1) with F(x) =0 such that

ly(x) — z(z)| = O(z"77), x — .
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