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Let A0 ∈ BVloc(I;Rn×n), f0 ∈ BVloc(I;Rn), c0 ∈ Rn and t0 ∈ I, where I ⊂ R is an arbitrary
interval non-degenerated in the point. Consider the Cauchy problem

dx(t) = dA0(t) · x(t) + df0(t), x(t0) = c0. (1)

Let x0 be the unique solution of problem (1).
Along with the Cauchy problem (1) consider the sequence of the Cauchy problems

dx(t) = dAk(t) · x(t) + dfk(t), x(tk) = ck (k = 1, 2, . . . ), (1k)

where Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ), tk ∈ I (k = 1, 2, . . . )
and ck ∈ Rn (k = 1, 2, . . . ).

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has been stimulated also by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from the unified viewpoint.

In [2–4] the sufficient conditions are given for problem (1k) to have a unique solution xk for
sufficiently large k and

lim
k→+∞

∥xk − x0∥s = 0. (2)

In the present paper, the necessary and sufficient conditions are established for the sequence
of the Cauchy problems (1k) (k = 1, 2, . . . ) to have the above-mentioned property. Obtained here
results are based on the concept given in [8] and they differ from the analogous ones given in [3].

Moreover, we consider the question of relationship between the Lyapunov stability of system
given in (1) and the well-possedness of the Cauchy problem (1). Presented below results are more
general than analogous ones obtained in [4].

The following notations and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ .

Rn×m is the space of all real n×m-matricesX = (xij)
n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

On×m is the zero n×m matrix.
In is an identity n× n matrix.
b
∨
a
(X) is the sum of total variations of the components xij (i = 1, . . . ,m; j = 1, . . . ,m) of the

matrix-function X : [a, b] → Rn×m;
a
∨
b
(X) = −

b
∨
a
(X).

X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t ∈ I;
d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

BV(I;Rn×m) is the space of all bounded variation matrix-functions X : I → Rn×m with the
norm ∥X∥s = sup{∥X(t)∥ : t ∈ I}.

BVloc(I;Rn×m) is the set of all matrix-functions X : I → Rn×m for which the restriction on
[a, b] belong to BV([a, b];Rn×m) for every closed interval [a, b] ⊂ I.
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C̃loc(I;Rn) is the set of all vector-functions x : I → Rn which are absolutely continuous on
every closed interval [a, b] from I.

L(I;Rn×m) is the set of all matrix-functions X : I → Rn×m whose components are Lebesgue-
integrable;

Lloc(I;Rn×m) is the set of matrix-functions X : I → Rn×m whose components are Lebesgue
integrable on every closed interval from I.

We introduce the operators. If X ∈ BVloc(I,Rl×n) and Y : I → Rn×m, then we put

B(X,Y )(t) ≡ X(t)Y (t)−X(t0)Y (t0)−
t∫

t0

dX(τ) · Y (τ),

I(X,Y )(t) ≡
t∫

t0

d(X(τ) + B(X,Y )(τ)) ·X−1(τ).

If X ∈ BV(I ;Rn×n), det(In+(−1)jdjX(t)) ̸= 0 for t ∈ I (j = 1, 2), and Y ∈ BV([a, b] ;Rn×m),
then A(X,Y )(t0) ≡ On×m,

A(X,Y )(t) ≡ Y (t)− Y (t0)+

+
∑

t0<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)−
∑

t0≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ).

A vector-function x ∈ BVloc(I;Rn) is said to be a solution of the generalized differential system
given in (1) if

x(t)− x(s) =

t∫
s

dA0(τ) · x(τ) + f0(t)− f0(s) for s < t; s, t ∈ I,

where integral is understand in the Kurzweil sense [9].
Without loss of generality, we assume that either tk < t0 (k = 1, 2, . . . ) or tk = t0 (k = 1, 2, . . . )

or tk > t0 (k = 1, 2, . . . ).

Definition 1. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S(A0, f0; t0)
if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying the condition

lim
k→+∞

ck = c0, (3)

problem (1k) has a unique solution xk for any sufficient large k and condition (2) holds.

Theorem 1. Let Ak ∈ BV(I;Rn×n) (k = 0, 1, . . . ), fk ∈ BV(I;Rn) (k = 0, 1, . . . ), t0 ∈ I and the
sequence of points tk ∈ I (k = 1, 2, . . . ) be such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 and for

t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 (k = 1, 2, . . . ),
(4)

lim
k→+∞

tk = t0. (5)

Then (
(Ak, fk; tk)

)+∞
k=1

∈ S(A0, f0; t0) (6)
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if and only if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n) (k = 0, 1, . . . ) such
that

inf
{
| det(H0(t))| : t ∈ I

}
> 0, (7)

lim
k→+∞

Hk(tk) = H0(t0), (8)

lim
k→+∞

∥Hk −H0∥s = 0, (9)

lim
k→+∞

sup
t∈I

{∥∥(I(Hk, Ak)(t)− I(H0, A0)(t))
∥∥(1 + ∣∣ t

∨
t0
(I(Hk, Ak))

∣∣)} = 0 (10)

and

lim
k→+∞

sup
t∈I

{∥∥(I(Hk, fk)(t)− I(H0, f0)(t)
∥∥(1 + ∣∣ t

∨
t0
(I(Hk, Ak))

∣∣)} = 0. (11)

Definition 2. The Cauchy problem (1) is called well-possed if condition (6) holds for every sequence
(Ak, fk; tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence Hk (k = 0, 1, . . . )
such that conditions (4), (5) and (7)–(11) hold.

The statements of Theorem 1 mean that the Cauchy problem (1) is well-possed.

Definition 3. The Cauchy problem (1) is called weakly well-possed if condition (6) holds for every
sequence (Ak, fk; tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence Hk

(k = 0, 1, . . . ) such that conditions (4), (5), (7)–(9) and

lim
k→+∞

(∥∥I(Hk, Ak)− I(H0, A0)
∥∥
s
+
∥∥I(Hk, fk)− I(H0, f0)

∥∥
s

)
= 0

hold.

Consider now the Lyapunov stability question on the set I = [0,+∞[ .

Definition 4. A solution x0 of the system given in (1) is called uniformly stable if for every ε > 0
there exists a positive number δ = δ(ε) such that an arbitrary solution x of system (1), satisfying
the inequality

∥x(t0)− x0(t0)∥ < δ (12)

for some t0 ∈ R+, admits the estimate ∥x(t)− x0(t)∥ < δ for t ≥ t0.

Definition 5. Let ξ : R+ → R+ be a nondecreasing function such that lim
t→+∞

ξ(t) = +∞. A

solution x0 of the system given in (1) is called ξ-exponentially asymptotically stable if there exists
a positive number η such that for every ε > 0 there exists a positive number δ = δ(ε) such that an
arbitrary solution x of system (1), satisfying inequality (12) for some t0 ∈ R+, admits the estimate

∥x(t)− x0(t)∥ < ε exp
(
− η(ξ(t)− ξ(t0))

)
for t ≥ t0.

Note that the exponentially asymptotic stability (see [3]) is a particular case of the ξ-exponentially
asymptotic stability if we assume ξ(t) ≡ t.

Definition 6. The system given in (1) is called stable in one or another sense if every its solution
is stable in the same sense.

Definition 7. The matrix-function A0 is called stable in one or another sense if the system dx(t) =
dA0(t) · x(t) is stable in the same sense.

Theorem 2. Let A0 ∈ BVloc(R+;Rn×n) and f0 ∈ BVloc(R+;Rn) be such that

lim
t→+∞

sup
ν(ξ)(t)
∨
t

A(A0, A0) < +∞ and lim
t→+∞

ν(ξ)(t)
∨
t

A(A0, f0) = 0,

where ν(ξ)(t) = sup{τ ≥ t : ξ(τ) ≤ ξ(t) + 1}. Then ξ-exponentially asymptotically stability of A0

guarantees the well-possedness of problem (1) on R+.
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Theorem 3. Let A0 ∈ BVloc(R+;Rn×n) and f0 ∈ BV(R+;Rn). Then uniformly stability of A0

guarantees the weakly well-possedness of problem (1) on R+.

We realize the above-given results for the Cauchy problem for ordinary differential systems.
Given here results are more general than obtained in [1, 5–8].

Let P0 ∈ Lloc(I,Rn×n) and q0 ∈ Lloc(I,Rn). Let x0 ∈ C̃loc(I;Rn) be the unique solution of the
Cauchy problem

dx

dt
= P0(t)x+ q0(t), x(t0) = c0. (13)

Consider the sequence of the Cauchy problems

dx

dt
= Pk(t)x+ qk(t), x(tk) = ck (k = 1, 2, . . . ). (13k)

The system (13k) is the particular case of system (1k) if we assume that Ak(t) ≡
t∫

t0

Pk(τ) dτ

and fk(t) ≡
t∫

t0

qk(τ) dτ for every k ∈ {0, 1, . . . }. Therefore, the results given below immediately

follow from the analogous ones presented above.

Definition 8. We say that the sequence (Pk, qk, tk) (k = 1, 2, . . . ) belongs to the set S(P0, q0, t0)
if condition (2) holds for every c0 ∈ Rn and ck ∈ Rn (k = 1, 2, . . . ) satisfying the condition (3),
where xk is the unique solution problem (13k).

Theorem 4. Let Pk ∈ L(I,Rn×n) (k = 0, 1, . . . ), qk ∈ L(I;Rn) (k = 0, 1, . . . ), and the sequence of
points tk ∈ I (k = 1, 2, . . . ) satisfy condition (5). Then(

(Pk, qk, tk)
)+∞
k=1

∈ S(P0, q0, t0) (14)

if and only if there exists a sequence of matrix-functions Hk ∈ C̃([a, b];Rn×n) (k = 0, 1, . . . ) such
that conditions (7)–(9),

lim
k→+∞

sup
t∈I

{∥∥∥∥
t∫

t0

(P∗
k(τ)− P∗

0 (τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

t0

∥P∗
k(τ)∥ dτ

∣∣∣∣)
}

= 0 (15)

and

lim
k→+∞

sup
t∈I

{∥∥∥∥
t∫

t0

(q∗k(τ)− q∗0(τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

t0

∥P∗
k(τ)∥ dτ

∣∣∣∣)
}

= 0 (16)

hold, where

P∗
k(t) ≡

(
H ′

k(t) +Hk(τ)Pk(t)
)
H−1

k (t), q∗k(t) ≡
(
H ′

k(t) +Hk(τ)qk(t)
)
H−1

k (t).

Definition 9. The Cauchy problem (13) is called well-possed if condition (14) holds for every
sequence (Pk, qk, tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence Hk

(k = 0, 1, . . . ) such that conditions (7)–(9), (15) and (16) hold, where P∗
k and q∗k are matrix- and

vector-functions defined in Theorem 4.

Definition 10. The Cauchy problem (1) is called weakly well-possed if condition (14) holds for
every sequences (Pk, qk, tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence
Hk (k = 0, 1, . . . ) such that conditions (7)–(9) and

lim
k→+∞

sup
t∈I

{∥∥∥∥
t∫

t0

(
P∗
k(τ)− P∗

0 (τ)
)
dτ

∥∥∥∥+

∥∥∥∥
t∫

t0

(
q∗k(τ)− q∗0(τ)

)
dτ

∥∥∥∥
}

= 0

hold, where P∗
k and q∗k are the matrix- and vector-functions defined in Theorem 4.
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Theorem 5. Let P0 ∈ Lloc(R+,Rn×n) and q0 ∈ Lloc(R+,Rn) be such that

lim
t→+∞

sup

ν(ξ)(t)∫
t

∥P0(τ)∥ dτ < +∞ and lim
t→+∞

ν(ξ)(t)∫
t

∥q0(τ)∥ dτ = 0,

where ν(ξ)(t) = sup{τ ≥ t : ξ(τ) ≤ ξ(t) + 1}. Then ξ-exponentially asymptotically stability of P0

guarantees the well-possedness of problem (13) on R+.

Theorem 6. Let P0 ∈ Lloc(R+,Rn×n) and q0 ∈ L(R+,Rn). Then uniformly stability of P0 guar-
antees the weakly well-possedness of problem (13) on R+.
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