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1 Introduction

The paper is devoted to the existence of oscillatory and non-oscillatory quasi-periodic, in some
sense, solutions to the higher-order Emden–Fowler type differential equation

y(n) + p0 |y|k sgn y = 0, n > 2, k ∈ R, k > 1, p0 6= 0. (1)

A lot of results about the asymptotic behavior of solutions to (1) are described in detail in [1].
Results about the existence of solutions with special asymptotic behavior are contained in [2]–[8].

2 On Existence of Quasi-Periodic Oscillatory Solutions

Put
α =

n

k − 1
. (2)

Theorem 1. For any integer n > 2 and real k > 1 there exists a non-constant periodic function
h(s) such that for any p0 > 0 and x∗ ∈ R the function

y(x) = p
1

k−1

0 (x∗ − x)−αh(log(x∗ − x)), −∞ < x < x∗ (3)

is a solution to equation (1).

Corollary 1. For any integer even n > 2 and real k > 1 there exists a non-constant periodic
function h(s) such that for any p0 > 0 and x∗ ∈ R the function

y(x) = p
1

k−1

0 (x− x∗)−αh(log(x− x∗)), x∗ < x < ∞ (4)

is a solution to equation (1).

Corollary 2. For any integer odd n > 2 and real k > 1 there exists a non-constant periodic
function h(s) such that for any p0 < 0 and x∗ ∈ R the function

y(x) = |p0|
1

k−1 (x− x∗)−αh(log(x− x∗)), x∗ < x < ∞ (5)

is a solution to equation (1).

3 On Existence of Positive Solutions with Non-power Asymptotic Behavior

The existence of such non-oscillatory solutions was also proved.
For equation (1) with p0 = −1 it was proved [4] that for any N and K > 1 there exist an integer

n > N and k ∈ R such that 1 < k < K and equation (1) has a solution of the form

y = (x∗ − x)−αh(log(x∗ − x)), (6)

where α is defined by (2) and h is a positive periodic non-constant function on R.
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A similar result was also proved [4] about Kneser solutions, i.e. those satisfying y(x) → 0 as
x → ∞ and (−1)jy(j)(x) > 0 for 0 ≤ j < n. Namely, if p0 = (−1)n−1, then for any N and K > 1
there exist an integer n > N and k ∈ R such that 1 < k < K and equation (1) has a solution of
the form

y(x) = (x− x∗)−α h(log(x− x∗)),

where h is a positive periodic non-constant function on R.
Still it was not clear how large n should be for the existence of that type of positive solutions.

Theorem 2 ([8]). If 12 ≤ n ≤ 14, then there exists k > 1 such that equation (1) with p0 = −1
has a solution y(x) such that

y(j)(x) = (x∗ − x)−α−jhj(log(x∗ − x)), j = 0, 1, . . . , n− 1,

where α is defined by (2) and hj are periodic positive non-constant functions on R.

Remark. Computer calculations give approximate values of α. They are, with the correspond-
ing values of k, as follows:

if n = 12, then α ≈ 0.56, k ≈ 22.4;

if n = 13, then α ≈ 1.44, k ≈ 10.0;

if n = 14, then α ≈ 2.37, k ≈ 6.9.

Corollary 3 ([8]). If 12 ≤ n ≤ 14, then there exists k > 1 such that equation (1) with
p0 = (−1)n−1 has a Kneser solution y(x) satisfying

y(j)(x) = (x− x0)−α−jhj(log(x− x0)), j = 0, 1, . . . , n− 1,

with periodic positive non-constant functions hj on R.
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