ÝÉÔÉÒÄÁÉÓ ÉÍÃÄØÓÉ (1994-2003 ßËÄÁÉ)
ÖÝáÏÖÒ ÓÀÌÄÝÍÉÄÒÏ ÂÀÌÏÝÄÌÄÁÛÉ ÝÉÔÉÒÄÁÀÈÀ ÒÀÏÃÄÍÏÁÀ (1994-2003 ßËÄÁÉ) - 5
ÓÀØÀÒÈÅÄËÏÓ ÓÀÌÄÝÍÉÄÒÏ ÂÀÌÏÝÄÌÄÁÛÉ ÝÉÔÉÒÄÁÀÈÀ ÒÀÏÃÄÍÏÁÀ (1994-2003 ßËÄÁÉ) - 20
ãÀÌÖÒÉ ÉÍÃÄØÓÉ - 25
ÝÉÔÉÒÄÁÀÈÀ ÍÖÓáÀ (1994-2003 ßËÄÁÉ)
1. L. V. Zhizhiashvili, Some problems of multidimensional harmonic analysis. (Russian) Tbilisi University Press, Tbilisi, 1996.
[1, 2, 24, 27, 33]
2. S. B. Topuria, Boundary properties of Poisson integral differentials in a half-space and presentation of the functions of two variables. Dokl. Akad. Nauk 353 (1997), No. 3, 306-309.
[26, 34]
3. S. Topuria,
Boundary properties of first-order partial derivatives of the Poisson integral
for the half-space . Georgian Math. J. 4 (1997), No. 6,
585-600.
[26, 33, 35]
4. G. Lepsveridze, On the divergence of Fourier-Haar double series. Bull. Georgian Acad. Sci. 156 (1997), No. 3, 369-370.
[1]
5. G. G. Oniani, Differentiation of the Lebesgue integrals. (Russian) Tbilisi University Press, Tbilisi, 1998.
[35]
6. K. G. Grosse-Erdmann, Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 36 (1999), No. 3, 345-381.
[2, 4]
7. D. H. Armitage, Harmonic monsters. J. Approx. Theory 123 (2003), No. 1, 110-116.
[4]
8. C. B. Topuria, Boundary properties of the Poisson differentiated integral for different areas and its applications. (Russian) Tbilisi Technical University Press, Tbilisi, 2003.
[1, 5, 7, 19, 20, 22, 26, 27, 33, 35]