щитирдаис имцдьси (1994-2003 ъкдаи)
жщАожр сюлдщмидро бюлощдлдаши щитирдаюхю рюоцдмоаю (1994-2003 ъкдаи) - 10
сюьюрхедкос сюлдщмидро бюлощдлдаши щитирдаюхю рюоцдмоаю (1994-2003 ъкдаи) - 0
Цюлжри имцдьси - 10
щитирдаюхю мжсАю (1994-2003 ъкдаи)
1. H. A. Matevossyan, On uniqueness of solution of the 2nd boundary-value problem for the system of elasticity theory in unbounded-domains. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1994, 71-74.
[10]
2. L. Jentsch and D. Natroshvili, Nonclassical interface problems for piecewise homogeneous anisotropic elastic bodies. Math. Methods Appl. Sci. 18 (1995), No. 1, 27-49.
[10]
3. O. O. Chkadua, The nonclassical boundary-contact problems of elasticity for homogeneous anisotropic media. Math. Nachr. 172 (1995), 49-64.
[10]
4. R. Duduchava and W. L. Wendland, The Wiener-Hopf method for systems of pseudodifferential- equations with an application to crack problems. Integral Equations Operator Theory 23 (1995), No. 3, 294-335.
[10]
5. L. Jentsch and D. Natroshvili, Non-classical mixed interface problems for anisotropic bodies. Math. Nachr. 179 (1996), 161-186.
[10]
6. O. Chkadua, The Dirichlet, Neumann and mixed boundary value problems of the theory of elasticity in n-dimensional domains with boundaries containing closed cuspidal edges. Math. Nachr. 189 (1998), 61-105.
[9, 10]
7. R. Duduchava and D. Natroshvili, Mixed crack type problem in anisotropic elasticity. Math. Nachr. 191 (1998), 83-107.
[10]
8. H. Hayakawa, Slow viscous flows in micropolar fluids. Phys. Rev. E 61 (2000), No. 5, 5477-5492.
[18]
9. O. A. Matevossyan, A uniqueness criterion for solutions of the robin problem for the system of elasticity theory in exterior domains. Russian Math. Surveys 58 (2003), No. 2, 381-383.
[10]