ÞÉÒÉÈÀÃÉ ÓÀÌÄÝÍÉÄÒÏ ÍÀÛÒÏÌÄÁÉÓ ÍÖÓáÀ

(i) ÌÏÍÏÂÒÀ×ÉÄÁÉ

  1. On differentials of a spectral sequence. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 51 (1976), 1-106.

(ii) ÓÀÌÄÝÍÉÄÒÏ ÓÔÀÔÉÄÁÉ

  1. On direct and inverse spectra of topological groups. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 15 (1954), 257-264.

  2. On duality theorems for arbitrary sets. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 15 (1954), 407-414.

  3. On the homology groups of a space with a compact coefficient group. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 16 (1955), 753-760.

  4. On the generalized duality theorem of Steenrod. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 17 (1956), 385-392.

  5. Axiomatic theory of group spectra. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 18 (1957), No. 6, 641-646.

  6. On the axiomatic spectral theory and the duality rules for arbitrary sets. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 24 (1957), 409-484.

  7. On the index of systems of singular integral equations on two-dimensional manifolds. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 34 (1964), 257-264.

  8. On the fundamental group of a space. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 36 (1964), 261-265.

  9. Stable homotopy groups of polyhedra. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 49 (1968), 513-516.

  10. The differentials of a spectral sequence. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 51 (1968), 9-14.

  11. On the homology theory of spaces. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 59 (1970), 13-16.

  12. On the homology theory of continuous mappings. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 59 (1970), 285-287.

  13. A homology theory of spaces. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 86 (1977), No. 3, 529-532.

  14. The Steenrod-Sitnikov homology theory on the category of compact spaces. (Russian) Dokl. Akad. Nauk SSSR 254 (1980), No. 6, 1289-1291.

  15. Axiomatics of the Steenrod-Sitnikov homology theory on the category of compact Hausdorff spaces. (Russian) Topology (Moscow, 1979). Trudy Mat. Inst. Steklov. 154 (1983), 24-37.

  16. On the uniqueness of homology theory on the category of compact spaces. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze 83 (1986), 19-25.

  17. On the homology theory of fiber spaces. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 125 (1987), No. 2, 257-259.

  18. Obstruction theory in fiber spaces. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 125 (1987), No. 3, 473-475.

  19. On the homology theory of fiber spaces. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 129 (1988), No. 3, 465-467.

  20. On a bigraded model of the chain complex of a fibration. Soobshch. Akad. Nauk Gruzin. SSR 136 (1989), No. 3, 549-552.

  21. On the homology theory of fibrations. Soobshch. Akad. Nauk Gruzin. SSR 139 (1990), No. 1, 17-19.

  22. High-level models of fibrations. Soobshch. Akad. Nauk Gruzin. SSR 139 (1990), No. 2, 253-255.

  23. High-level multiplicative models of fibrations. Soobshch. Akad. Nauk Gruzin. SSR 139 (1990), No. 3, 465-468.

  24. An algebraic model of Postnikov construction. Bull. Georgian Acad. Sci. 152 (1995), No. 3, 476-480.

  25. An algebraic model of fibration with the fiber K(p,n)-space. Georgian Math. J. 3 (1996), No. 1, 27-48.

  26. On the obstruction functor. Bull. Georgian Acad. Sci. 153 (1996), No. 1, 11-15.

  27. On the criterion of the secondary cross section. Bull. Georgian Acad. Sci. 154 (1996), No. 1, 37-39.

  28. On the obstruction functor (with S. Khazhomia, T. Kadeishvili, D. Makalatia, M. Mikiashvili, and S. Saneblidze). Bull. Georgian Acad. Sci. 153 (1996), No. 2, 172-176.

  29. The multiplicative version of twisted tensor product theorem (with D. Makalatia). Bull. Georgian Acad. Sci. 154 (1996), No. 3, 327-329.

  30. Zur homologietheorie der faserungen. I. Proc. A. Razmadze Math. Inst. 116 (1998), 1-29.

  31. Zur homologietheorie von faserungen. II. Proc. A. Razmadze Math. Inst. 116 (1998), 31-99.

  32. From symplex to cube. Bull. Georgian Acad. Sci. 166 (2002), No. 2, 213-217.

  33. The predifferential of path fibration (with M. Mikiashvili). Georgian Math. J. 11 (2004), No. 1 (accepted).