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ON THE CONSTRUCTION OF SOLUTIONS OF CERTAIN
SPATIAL AXISYMMETRIC MIXED PROBLEMS OF

FILTRATION WITH PARTIALLY UNKNOWN BOUNDARIES

The axis of symmetry is assumed to be the x-axis directed downwards, the
distance to the x-axis is denoted by y, and the velocity vector is expressed as

follows: ~V (u, v) = grad ϕ. The conditions for incompressibility and potentiality

of a moving liquid are of the form div (y~V ) = 0 (1), ∂u
∂y
− ∂v

∂x
= 0 (2). The stream-

line equation vdx− udy = 0 multiplied by y becomes the exact differential of the
stream function ψ(x, y), where u = ∂ϕ

∂x
= y−1 ∂ψ

∂y
(3), v = ∂ϕ

∂y
= −y−1 ∂ψ

∂x
(4).

The functions ϕ(x, y) and ψ(x, y) with respect to y are even functions (surface

of rotation). Therefore y−1 ∂ϕ
∂y

and y−1 ∂ψ
∂y

tend to finite limits, as y → ∞. The

domain S(z) with the boundary `(z), occupied by a moving liquid we combine
with the plane z = x + iy. The boundary `(z) consists of an unknown curve and
known segments, lines and of their portions. We seek for the functions ω(z) =
ϕ(x, y)+ iψ(x, y), w(z) = u(x, y)+ iv(x, y), where ϕ(x, y) and ψ(x, y) must satisfy
equations (3),(4) and also the following boundary conditions: ψ(x, y) = const
along nonpermeable boundaries; ϕ(x, y) = const along water boundaries; ϕ(x, y)−
kx = const, ψ(x, y) = Q, k = const, Q = const along an unknown curve; ϕ(x, y)−
kx = const along the leaking interval; ψ(x, y) = 0, (x, y) ∈ `(z), along the axis
of symmetry. To the above-mentioned conditions are added to the corresponding
equations of curves.

Let us consider the right half of the plane axisymmetric domain S0(z) with
the boundary `0(z) which coincides with the domain S(z) with the boundary
`(z) and respectively with the boundary conditions. The equation of depression
curve in the plane problem must be the function y2. Assume that to the do-
main S0(z) there correspond the domains S(ω0) and S(w0) of a complex potential

ω0(z) = ϕ0(x, y) + iψ0(x, y) and of a complex velocity w0(z) = dω0(z)
dz

. Geo-
metrical characteristics respectively of the domains S(z) = S(z0), S(ω) = S(ω0),
S(w) = S(w0) and boundaries `(z) = `(z0), `(ω) = `(ω0), `(w) = `(w0) coincide.
The boundary conditions are likewise coincide. Here we emphasize that the func-
tions ω0(z) and w0(z) are holomorphic, while the functions ω(z) and w(z) are
analytic ones.

The half-plane Im (ζ) > 0 of the plane ζ = ξ + iη is conformally mapped onto

the domains S(z0), S(ω0) and S(w0). Conformally mapping functions we denote

by z0(ζ), ω0(ζ) and w0(ζ). Generalized functions ϕ(ξ, η) and ψ(ξ, η) must satisfy

the equations ∂ϕ
∂ξ

= y−1 ∂ψ
∂η

(5), ∂ϕ
∂η

= y−1 ∂ψ
∂ξ

(6), or ∆ϕ(ξ, η) + y−1( ∂y
∂ξ

∂ϕ
∂ξ

+
∂y
∂η

∂ϕ
∂η

) = 0 (7), ∆ψ(ξ, η) − y−1( ∂y
∂ξ

∂ψ
∂ξ

+ ∂y
∂η

∂ψ
∂η

) = 0 (8). We consider it possible

to construct holomorphic functions z0(ζ), ω0(ζ), w0(ζ) efficiently. A solution of

(7) (analogously, of (8)) is sought in the form ϕ(ξ, η) =
∞P

k=0

ϕk(ξ, η) (9), where

ϕ0(ξ, η) (analogously, ψ0(ξ, η)) is known, ϕk(ξ, η) is defined by the Poisson formula

ϕk(ξ, η) =
RR

Im(ζ)≥0
G(ξ, η; ξ1, η1)ϕk−1(ξ,1 , η1)dξ1dη1, k = 1,∞ (10), where G is

Green’s function for the half-plane with a coefficient. It remains to prove the

convergence of series (9). Equation (8) is treated analogously.


