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describing the vibration of a beam with hinged ends, is considered in the
Timoshenko model. Here a, b, c, d, T are the given positive constants,
cd− a > 0, and ws(x), ψs(x) are the given functions, s = 0, 1.

Assuming that ws(x) and ψs(x) are analytic functions of the forms
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and applying S. Bernstein’s approach, it is proved that there exist functions
w(x, t) and ψ(x, t) which are a solution of problem (1)–(3) and which are
analytic functions with respect to x for all 0 < t ≤ T .

Further, a numerical algorithm of finding a solution of problem (1)–(3)
is proposed. This algorithm consists in representing the solution as
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and using Galerkin’s method. As a result, we obtain the Cauchy problem for
a system of ordinary differential equations with respect to functions wni(t)
and ψnj(t), i = 1, 2, . . . , n, j = 0, 1, . . . , n, which is solved by means of
the Crank–Nicholson implicit difference scheme. Therefore on the time grid
layers we have to solve a system of nonlinear algebraic equations. For this
we use the Picard iteration method. The error of each of three constituent
parts of the algorithm is estimated.


