L. Giorgashvili and G. Karseladze

Georgian Technical University Tbilisi, Georgia

A GENERAL REPRESENTATION FORMULA FOR A SOLUTION OF THE SYSTEM OF STATICS OF ELASTIC MIXTURES

The system of differential equations of statics of the linear theory of elastic mixtures (in the case of two-dimensions) reads as follows

$$a_1 \Delta u' + b_1 \operatorname{grad} \operatorname{div} u' + c \Delta u'' + d \operatorname{grad} \operatorname{div} u'' = 0,$$

$$c \Delta u' + d \operatorname{grad} \operatorname{div} u' + a_2 \Delta u'' + b_2 \operatorname{grad} \operatorname{div} u'' = 0,$$
(1)

where $u' = (u'_1, u'_2)$ and $u'' = (u''_1, u''_2)$ are the partial displacement vectors,

$$a_1 = \mu_1 - \lambda_5, \ a_2 = \mu_2 - \lambda_5, \ c = \mu_3 + \lambda_5, \ b_1 = \mu_1 + \lambda_5 + \lambda_1 - \frac{\rho_2}{\rho} \alpha_2',$$

$$b_2 = \mu_2 + \lambda_2 + \lambda_5 + \frac{\rho_1}{\rho} \alpha_2', \ d = \mu_3 + \lambda_3 - \lambda_5 - \frac{\rho_1}{\rho} \alpha_2', \ \alpha_2' = \lambda_3 - \lambda_4,$$

 $\rho = \rho_1 + \rho_2$, ρ_1 and ρ_2 are the partial densities, $\lambda_1, \lambda_2, \dots, \lambda_5, \mu_1, \mu_2, \mu_3$ are elastic constants.

The following result is proved: a solution to the system (1) can be represented by means of four harmonic functions

$$u'(x) = \operatorname{grad} \Phi_{1}(x) +$$

$$+ r^{2} \operatorname{grad} \left[\alpha_{1} + \frac{1}{2} r \frac{\partial}{\partial r} + 2 - 1 \right] \Phi_{2}(x) + \beta_{1} r \frac{\partial}{\partial r} + 2 \Phi_{3}(x) -$$

$$- xr \frac{\partial}{\partial r} (2\alpha_{1} - 1)\Phi_{2}(x) + 2\beta_{1}\Phi_{3}(x) + \chi'(x),$$

$$u''(x) = \operatorname{grad} \Phi_{4}(x) +$$

$$+ r^{2} \operatorname{grad} \alpha_{2} r \frac{\partial}{\partial r} + 2 \Phi_{2}(x) + \left[\beta_{2} + \frac{1}{2} r \frac{\partial}{\partial r} + 2 - 1 \right] \Phi_{3}(x) -$$

$$- xr \frac{\partial}{\partial r} 2\alpha_{2}\Phi_{2}(x) + (2\beta_{2} - 1)\Phi_{3}(x) + \chi''(x),$$

where $\Delta \Phi_j(x) = 0$, j = 1, 2, 3, 4, $r \frac{\partial}{\partial r} = (x \cdot \text{grad})$,

$$\chi'(x) = \begin{cases} A_0 x + B_0 \widetilde{x}, & x \in \Omega^+, \\ 1/r^2 (A_0 x + B_0 \widetilde{x}), & x \in \Omega^-, \end{cases} \chi''(x) = \begin{cases} C_0 x + D_0 \widetilde{x}, & x \in \Omega^+, \\ 1/r^2 (C_0 x + D_0 \widetilde{x}), & x \in \Omega^-, \end{cases}$$

 $x=(x_1,x_2),\ \widetilde{x}=(-x_2,x_1),\ A_0,\ B_0,\ C_0,\ {\rm and}\ D_0$ are arbitrary constants, Ω^+ is a bounded domain, $\Omega^-=\mathbb{R}^2\setminus\overline{\Omega^+}$,

$$\alpha_1 = \frac{1}{2\Delta_1}(cd - b_1a_2 - \Delta_1), \quad \beta_1 = \frac{1}{2\Delta_1}(cb_2 - a_2d),$$

$$\alpha_2 = \frac{1}{2\Delta_1}(cb_1 - a_1d), \quad \beta_2 = \frac{1}{2\Delta_1}(cd - a_1b_2 - \Delta_1), \quad \Delta_1 = a_1a_2 - c^2.$$