KAKUTANI DUALITY FOR GROUPS

Based on a joint work V. Marra

Luca Spada

Department of Mathematics
University of Salerno
http://logica.dipmat.unisa.it/lucaspada

Tolo VI — Tbilisi, 2 July 2018.

Kakutani duality for groups Luca Spada

The problem

Motivations

Embedding spaces

It is well known that every compact Hausdorff space X can be embedded in some hypercube $[0,1]^J$ for some index set J.

Suppose that X is now endowed with a function $\delta \colon X \to \mathbb{N}$.

Problem

Given a pair $\langle X, \delta \rangle$, is there a continuous embedding $\iota \colon X \to [0,1]^J$ in such a way that the denominators of the points in $\iota[X]$ agree with δ ?

Let us assume that "agree" means that $\delta(x) = \text{den}(\iota(x))$.

Kakutani duality for groups Luca Spada

The problem

Motivations

Denominators

Recall that \mathbb{N} forms a complete lattice under the divisibility order: the top being 0 and the bottom being 1.

Let J be a set and $\overline{p} \in [0,1]^J$. If $\overline{p} \in \mathbb{Q}^J$ we define its denominator to be the natural number

$$\operatorname{den}(\overline{p}) = \operatorname{lcd}\{p_i \mid i \in J\}$$

where lcd stands for the least common denominator. If $\overline{p} \notin \mathbb{Q}^J$ we set $\text{den}(\overline{p}) = 0$.

- **1.** A function $f: [0,1]^J \to [0,1]$ preserves denominators if for any $\overline{x} \in [0,1]^J$, $\operatorname{den}(f(x)) = \operatorname{den}(x)$.
- 2. A function $f: [0,1]^J \to [0,1]$ respects denominators if for any $\overline{x} \in [0,1]^J$, $\operatorname{den}(f(x)) \mid \operatorname{den}(x)$.

Kakutani duality for groups Luca Spada

The problem

Motivations

An easy counter-example

Consider $\mathbf{X} = [0,1]$ with its Euclidean topology and endow it with a constant δ :

$$\forall x \in X \quad \delta(x) = 1.$$

The only points with denominator equal 1 in $[0,1]^J$ are the so-called lattice points i.e., points whose coordinates are either 0 or 1.

The only way ι could agree with δ is to send all points in one lattice point —failing injectivity— or by sending the points in different lattice points —failing continuity.

Kakutani duality for groups Luca Spada

The problem

Motivations

MV-algebras

The above mentioned problem is crucial in the duality theory of MV-algebras —the equivalent algebraic semantics of Łukasiewicz logic.

An MV-algebra is a structure $\langle A, \oplus, \neg, 0 \rangle$ such that

- **1**. $\langle A, \oplus, 0 \rangle$ is a commutative monoid,
- **2**. $\neg \neg x = x$,
- **3.** $\neg 0 \oplus x = \neg 0$
- **4.** $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$.

Example

The interval [0,1] in the real numbers has a natural MV-structure given by the truncated sum $x \oplus y = \min\{x+y,1\}$ and $\neg x = 1-x$. The importance of this structure comes from the fact that it generates the whole variety of MV-algebras.

Kakutani duality for groups

Luca Spada

The problem

Motivations Mv-algebras

Normcomplete MV-algebras

MV-algebras and compact spaces

Theorem (Marra, S. 2012)

Semisimple MV-algebras with their homomorphisms form a category that is dually equivalent to the category of compact Hausdorff spaces embedded in some hypercube, with \mathbb{Z} -maps among them.

Definition

For I, J arbitrary sets, a map from \mathbb{R}^I into \mathbb{R}^J is called \mathbb{Z} -map if it is continuous and piecewise (affine) linear map, where each (affine) linear piece has integer coefficients.

Remark

Since every \mathbb{Z} -map f acts on each point as an linear function with integer coefficients, it respect denominators i.e.,

 $den(f(x)) \mid den(x).$

Kakutaní dualíty for groups

Luca Spada

The problem

Motívatíons MV-algebras

Normcomplete MV-algebras

Mundici's functor

An abelian ℓ -group with order unit ($u\ell$ -group, for short), is a partially ordered Abelian group G whose order is a lattice, and that possesses an element u such that

for all
$$g \in G$$
, there exists $n \in \mathbb{N}$ such that $(n)u \ge g$.

The functor Γ that takes an $\mathfrak{u}\ell$ -group $\langle \mathcal{G},+,-,0,u\rangle$ to its unital interval [0,u] with operation \oplus and \neg defined as follows:

$$x \oplus y = \min\{u, x + y\}$$
 and $\neg x = u - x$,

is full, faithful, and dense hence it has a quasi-inverse $\boldsymbol{\Xi}$ and

Theorem (Mundici 1986)

The pair Γ, Ξ gives an equivalence of categories between the category of MV-algebras with their morphisms, and the category of $u\ell$ -groups with ordered group morphisms preserving the order unit.

Kakutani duality for groups

Luca Spada

The problem

Motivations MV-algebras

Normcomplete MV-algebras

Norm induced by the order unit

for groups

Luca Spada

The problem

Motivations

Normcomplete MV-algebras

a-normal

Definition

Let (G, u) be a $u\ell$ -group. The order unit u induces a seminorm $\| \|_{\mathcal{U}}$ defined as follows:

$$\|g\|_u := \inf \left\{ rac{p}{q} \in \mathbb{Q} \mid p,q \in \mathbb{N}, q
eq 0 ext{ and } q|g| \leq pu
ight\}$$

The seminorm $\| \|_{u} \colon G \to R^{+}$ is in fact a norm if, and only if, G is archimedean. Any semisimple MV-algebra A inherits a norm from its enveloping (archimedean) group $\Xi(A)$.

Definition

An norm-complete MV-algebra is a semisimple MV-algebra which is Cauchy-complete w.r.t. its induced norm.

Kakutani duality

Theorem (Kakutaní-Yosída dualíty 1941)

A unital real vector lattice (V,u) is isomorphic to (C(X),1) for some compact Hausdorff space X, if, and only if, V is Archimedean and norm-complete (with respect to the norm $\|\cdot\|_u$ induced by the unit).

Question

What if we want to substitute $u\ell$ -group for real vector lattice in the above statement?

Remark

An answer was already given by Stone: compact Hausdorff spaces correspond to Archimedean, complete and divisible $u\ell$ -groups.

Kakutani duality for groups Luca Spada

The problem

Motivations

Normcomplete MV-algebras

Denominator preserving maps

for groups Luca Spada

Theorem (Goodearl-Handelman 1980)

Let X be a compact Hausdorff space. For each $x \in X$ choose A_x to be either $A_x = \mathbb{R}$ or $A_x = (\frac{1}{n})\mathbb{Z}$. Then, the algebra of functions

$$\{f \in C(X) \mid f(x) \in A_x \text{ for all } x \in X\},\$$

is a norm-complete $u\ell$ -group and every such a group can be represented in this way.

As a corollary we obtain

Corollary

The norm-completion of the algebra of \mathbb{Z} -maps is given by all continuous maps which respect denominators.

The problem

Motivations

Normcomplete MV-algebras

A duality for norm-complete MV-algebras

Kakutani duality for groups Luca Spada

The problem

Motivations Mv-algebras

Normcomplete MV-algebras

a-normal

The category MV

Let \mathbb{MV} be the category whose objects are semisimple \mathbb{MV} -algebras and arrows are \mathbb{MV} -homomorphisms.

The category A

Let $\mathbb A$ be the category whose objects are pairs $\langle X,\delta\rangle$, where X is a compact Hausdorff space and δ is a map from X into $\mathbb N$. An arrow between two objects $\langle X,\delta\rangle$ and $\langle Y,\delta'\rangle$ is a continuous map $f\colon X\to Y$ that respects denominators, i.e.,

 $\delta'(f(x)) \mid \delta(x).$

A duality for norm-complete MV-algebras

Kakutani duality for groups Luca Spada

The problem

Motivations

MV-algebras

Normcomplete MV-algebras

a-normal

The functor $\mathcal L$

Let $\mathscr{L}\colon \mathbb{A} \to \mathbb{MV}$ be the assignment that associates to every object $\langle X, \delta \rangle$ in \mathbb{A} the MV-algebra

$$\mathscr{L}\left(\langle X,\delta\rangle\right):=\{g\in \mathtt{C}(X)\mid \forall x\in X\quad \mathtt{den}(g(x))\mid \delta(x)\},$$

and to any \mathbb{A} -arrow $f: \langle X, \delta \rangle \to \langle Y, \delta' \rangle$ the \mathbb{MV} -arrow that sends each $h \in \mathcal{L}(\langle Y, \delta' \rangle)$ into the map $h \circ f$.

The functor M

Let $\mathscr{M} \colon \mathbb{MV} \to \mathbb{A}$ be the assignment that associates to each MV-algebra A, the pair $\langle \mathtt{Max}(A), \delta_A \rangle$, where $\mathtt{Max}(A)$ is maximal spectrum of A and, for any $\mathfrak{m} \in \mathtt{Max}(A)$,

$$\delta_{\mathcal{A}}(\mathfrak{m}) := \begin{cases} n & \text{if } \mathcal{A}/\mathfrak{m} \text{ has } n+1 \text{ elements} \\ 0 & \text{otherwise.} \end{cases}$$

Let also \mathscr{M} assign to every MV-homomorphism $h\colon A\to B$ the map that sends every $\mathfrak{m}\in\mathscr{M}(B)$ into its inverse image under h, in symbols $\mathscr{M}(h)(\mathfrak{m})=h^{-1}[\mathfrak{m}]\in \operatorname{Max}(A)$.

A duality for norm-complete MV-algebras

Kakutani duality for groups Luca Spada

The problem

Motivations

MV-algebras

Normcomplete MV-algebras

a-normal

Theorem

The functors $\mathcal L$ and $\mathcal M$ form a contravariant adjunction.

So, what is left to do in order to find a duality is to characterise the fixed points on each side.

It is quite easy to see the the fixed points on the algebraic side are exactly the norm-complete MV-algebras. What are the fixed points on the topological side?

An object $\langle X, \delta \rangle$ in A is said a-normal (for arithmetically normal) if for any pair of points $x, y \in X$ such that $x \neq y$,

- **1.** if $\delta(y) \neq 0$, then, letting $d := \frac{1}{\delta(y)}$, there exists a family of open sets $\{O_a \mid q \in (0, d) \cap \mathbb{Q}\}$
- 2. if $\delta(y) = 0$, then there are infinitely many $d \in [0, 1]$ such that for each of those there exists a family of open sets $\{O_q \mid q \in (0, d) \cap \mathbb{Q}\}\$

the families $\{O_p\}$ are such for any $p, q \in (0, d) \cap \mathbb{Q}$ and $n \in \mathbb{N}$

- **1.** p < q implies $\{x\} \subseteq O_p \subseteq \overline{O_p} \subseteq O_q \subseteq \overline{O_q} \subseteq \{y\}^c$.
- 2. $\delta^{-1}[\{n\}] \subseteq \bigcup \{O_p \mid \operatorname{den}(p) \mid n\}.$

The problem

Motivations

A-normal spaces

Kakutani duality for groups Luca Spada

The problem

Motivations

a-normal spaces

Theorem

For any set I, the a-space $\langle [0,1]^I, den \rangle$ is a-normal.

Lemma (A-normality is weakly hereditary)

If an a-space $\langle X, \delta \rangle$ is a-normal, then so are all its closed a-subspaces.

Theorem

An a-space $\langle X, \delta \rangle$ is a-normal if, and only if, there exist a set I and an a-iso from X into an a-subspace of $\langle [0,1]^I, \text{den} \rangle$.

Sketch of the proof

The key step in the proof is to show that there are enough good functions to separate points:

Theorem

Let $\langle X, \delta \rangle$ be an a-normal space. For any pair of distinct points $x, y \in X$,

- 1. if $\delta(y) \neq 0$, then there exists a denominator respecting, continuous function $f \colon X \to [0,1]$ such that f(x) = 0 and $f(y) = \frac{1}{\delta(y)}$
- 2. if $\delta(y) = 0$, then there are infinitely many $d \in [0,1]$ such that for each of them there is a denominator respecting, continuous function $f \colon X \to [0,1]$ such that f(x) = 0 and f(y) = d

Kakutani duality for groups Luca Spada

The problem

Motivations

Sketch of the proof

for groups
Luca Spada

The problem

Motivations

a-normal spaces

Then we can use

Theorem (Kelley's Embedding lemma)

Let X and Y be topological spaces and \mathcal{F} be a family of functions from X to Y. Suppose that all functions in \mathcal{F} are continuous and that they separate points. Then the evaluation map $\operatorname{ev}: X \to Y^{\mathcal{F}}$ given by

$$\operatorname{ev}(x) = (\mathit{f}(x))_{\mathit{f} \in \mathcal{F}}$$

is continuous and injective.

Sketch of the proof

Luca Spada

It is immediate to see that if all functions in \mathcal{F} respect denominators, then so does ev. Additionally, if $x \in X$, then

- **1.** if $\delta(x) \neq 0$, then the value $\frac{1}{\delta(x)}$ is attained by some f on x, so the function ev actually preserves $\delta(x)$;
- 2. if $\delta(x)=0$, then there infinitely a-maps f that on x attain infinitely different values, hence den(ev(x))=0.

The problem

for aroups

Motivations

Kakutaní duality, for groups

Kakutani duality for groups Luca Spada

Corollary

The category of norm-complete archimedean $u\ell$ -groups is dually equivalent to the full subcategory of $\mathbb A$ given by all a-normal spaces.

The problem

Motivations

a-normal spaces

Corollary

The category of norm-complete MV-algebras is dually equivalent to the full subcategory of \mathbb{A} given by all a-normal spaces.

Thanks for your attention!