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A logic L is k-tabular if up to the equivalence in L, there exist only finitely many
k-variable formulas.

L is locally tabular if it is k-tabular for all k < ω.

Theorem (Maksimova, 1975)

For a logic L ⊇ S4, 1-tabularity implies local tabularity.

In other words:

For L ⊇ S4, if 1-generated free L-algebra is finite, then all finitely generated
L-algebras are finite (i.e., the variety of L-algebras is locally finite).

Two questions (1970s)

Does 1-tabularity imply local tabularity for every modal logic?

Does 2-tabularity imply local tabularity for every intermediate logic?

This talk:

There exists a 1-tabular but not locally tabular modal logic

k-tabularity, the top heavy property of canonical frames, and variants of
Glivenko’s theorem
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Preliminaries

Language: a countable set Var (propositional variables), Boolean connectives,
a unary connective ♦ (� abbreviates ¬♦¬).

Definition

A set of modal formulas L is a normal
modal logic if L contains

all tautologies

♦⊥ ↔ ⊥, ♦(p ∨ q) ↔ ♦p ∨ ♦q

and is closed under the rules of MP,
substitution and monotonicity:
if (ϕ→ ψ) ∈ L, then (♦ϕ→ ♦ψ) ∈ L.

Definition’

A set of modal formulas L is a normal
modal logic if L = {ϕ | A � ϕ = >} for
some modal algebra A.

TFAE:

L is k-tabular, i.e., up to
the equivalence in L,
there exist only finitely
many k-variable formulas.

The free algebra
AL(k) is finite.

Every k-generated
L-algebra is finite.

TFAE:

L is locally tabular, i.e., it
is k-tabular for all k < ω.

All AL(k) are finite
(k < ω).

The variety of L-algebras
is locally finite, i.e., every
finitely generated
L-algebra is finite.



Preliminaries

L is Kripke complete if it is the logic of a class of frames.

L has the finite model property if it is the logic of a class of finite
frames/algebras.

For every L,
L = Log{AL(k) | k < ω}.

L is locally tabular iff all AL(k), k < ω, are finite.

It follows that:

If a logic is locally tabular, then it has the finite model property (thus, it is
Kripke complete).

Every extension of a locally tabular logic is locally tabular (thus, it has the
finite model property).

Every finitely axiomatizable extension of a locally tabular logic is
decidable.



Some locally tabular modal logics (locally finite varieties of modal algebras)

B0 = ⊥, B1 = p1 → �♦p1, Bi+1 = pi+1 → �(♦pi+1 ∨ Bi )

(Segerberg, 1971) Bh is valid in a preorder F iff the height of F ≤ h.

(Segerberg, 1971; Maksimova, 1975)

For a logic L ⊇ S4, TFAE:

L is locally tabular

L is of finite height, i.e., contains some Bh

L is the logic of a class F of preorders s.t. ∃h < ω ∀F ∈ F ht(F) ≤ h

L is 1-tabular

(Nagle, 1981; Nagle, Thomason, 1985) K5 = [♦p → �♦p] is locally tabular.

This logic is non-transitive. It is a 2-transitive logic of height 2.

(Gabbay, Shehtman, 1998; Shehtman, 2014). Kn + �s⊥ is locally tabular (n > 0, �s

is a non-empty sequence of boxes).

(N. Bezhanishvili, 2002) Every proper extension of S5× S5 is locally tabular.

(Shehtman, Sh, 2016) The criterion of Segerberg and Maksimova holds for extensions
of logics much weaker than S4. In particular, it holds if, for some m ≥ 2, L contains

♦ . . .♦︸ ︷︷ ︸
m times

p → ♦p ∨ p
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Part 1. There exists a 1-tabular but not locally tabular modal logic.
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L is pretransitive, and

L is of finite height.
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A logic L is pretransitive if there exists a one-variable formula ♦∗(p) (‘master
modality’) s.t. L contains

♦∗(♦∗(p))→ ♦∗(p), p → ♦∗(p), and ♦p → ♦∗(p).

Put �∗ϕ = ¬♦∗(¬ϕ). At a point of a model of L it expresses the trues of ϕ
‘everywhere in the point-generated submodel’.

Synonyms: EDPC-logics (Blok and Pigozzi), logics with expressible master modality
(Kracht), conically expressive logics (Shehtman).

Theorem (Kowalski and Kracht, 2006) L is pretransitive iff L is m-transitive for some
m ≥ 0, i.e., contains ♦m+1p → p ∨ ♦p ∨ . . . ∨ ♦mp

This means that the ‘master modality’ operator ♦∗ϕ is always of form
ϕ ∨ ♦ϕ ∨ . . . ∨ ♦mϕ
(The same it true in the polymodal language ♦1, . . . ,♦n: write ♦p for ∨♦ip.)

In Kripke semantics, the formula of m-transitivity says

“if y is accessible from x in m + 1 steps, then y is accessible from x in ≤ m steps”

Some pretransitive examples

K4,wK4 = [♦♦p → ♦p ∨ p] 1-transitive
K5 = [♦p → �♦p] 2-transitive
[♦np → ♦mp], n > m (n − 1)-transitive
[¬♦m>], m > 0 (m-1)-transitive
The (expanding) product of two transitive logics 2-transitive
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L is pretransitive iff L contains ♦m+1p → p ∨ ♦p ∨ . . . ∨ ♦mp

Another pretransitive example

The logic of a finite frame (tabular logic) is pretransitive.

L is 1-tabular ⇒ L is pretransitive.

Proof.

Consider the 1-generated canonical frame of L.
This frame is finite.
Thus, it validates some m-transitivity formula.
This formula is one-variable, thus L contains it.



Frames of finite height

A poset F is of finite height ≤ h if its every chain contains at most h elements.

R∗ denotes the transitive reflexive closure of R:

R∗ = Id ∪ R ∪ R2 ∪ . . .

An equivalence class w.r.t. ∼R= R∗ ∩ R∗−1 is called a cluster (so clusters are
maximal subsets where R∗ is universal).

The skeleton of (W ,R) is the poset (W /∼R ,≤R), where for clusters C , D,

C ≤R D iff x R∗y for some x ∈ C , y ∈ D.

Height of a frame is the height of its skeleton.

Remark: In the polymodal case, the height of (W ,R1, . . . ,Rn) is the height of
(W ,∪Ri ).



B0 = ⊥, B1 = p1 → �♦p1, Bi+1 = pi+1 → �(♦pi+1 ∨ Bi )

A pretransitive logic is of finite height if it contains a formula B∗
h for some h,

where B∗
h is obtained from Bh by replacing ♦ with ♦∗ and � with �∗

Proposition. For a pretransitive frame F, F � B∗
h iff ht(F) ≤ h.

Examples

S5 : height=1
K5 : height=2

S5× S5 : height=1

L is 1-tabular ⇒ L is of finite height.

Proof.

The ∗-fragment ∗L of L is a logic containing S4.
If L is 1-tabular, then ∗L is.
Then ∗L is locally tabular (Maksimova’s theorem).
Then ∗L is of finite height (Maksimova and Segerberg criterion).
Thus, L contains some B∗

h .



If L is 1-tabular, then for some m, h, L is the logic of a class of m-transitive
frames of height ≤ h.

In general, pretransitive logics of height 1 are not locally tabular (and not
1-tabular):

The logic of reflexive symmetric frames (W ,R) such that

R ◦ R = W ×W

is not locally tabular (Byrd, 1978).

Moreover, its one-variable fragment is infinite (Makinson, 1981).

This logic is 2-transitive; its height is 1.



Locally tabular logics are Kripke complete.

What can we say about their frames?



Let F = (W ,R) be a frame. A partition A of W is
tuned if for every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition A of
F admits a tuned finite refinement B.

Proposition (Franzen, Fine, 1970s)

F is tunable iff every finitely generated subalgebra of the algebra of F is finite.

Proof.

For a finite partition B of W ,
B is tuned iff {∪x | x ⊆ B} forms a subalgebra of (P(W ),R−1).

Log(ω,≤) has the FMP (1960s?)

Proof. (ω,≤) is tunable (this is a very simple exercise: refine A in such a way that all
elements of B are infinite or singletons, and singletons cover an initial segment of ω).
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A spinoff

Let (ωn,�) be the direct product of n < ω instances of (ω,≤)

Theorem. For all finite n, (ωn,�) has the FMP.

Proof. (ωn,�) is tunable (more entertaining exercise...).

Question. Is (ωn,�) finitely axiomatizable for n > 1? Is it decidable?



Let F = (W ,R) be a frame. A partition A of W is
tuned if for every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition A of
F admits a tuned finite refinement B.
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Proof.

For a finite partition B of W ,
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Log(ω,≤) has the FMP (1960s?)

Proof. (ω,≤) is tunable (this is a very simple exercise: refine A in such a way that all
elements of B are infinite or singletons, and singletons cover an initial segment of ω).

While the algebra of (ω,≤) is locally finite, Log(ω,≤) is not locally tabular: (ω,≤) is
of infinite height.
A hint: the size of B can be arbitrary large even for the case |A| = 2.



Let F = (W ,R) be a frame. A partition A of W is
tuned if for every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition A of
F admits a tuned finite refinement B.

A class of frames F is ripe, if there exists f : ω → ω s.t. for every finite partition A of
a frame F ∈ F there exists a tuned refinement B of A such that |B| ≤ f (|A|).

Theorem (Shehtman, Sh)

The following are equivalent:

(1) L is locally tabular.

(2) L is the logic of a ripe class of frames.

(3) L is a Kripke complete pretransitive logic of finite height and Clust(L) is ripe.

Here Clust(L) is the class of clusters occurring in L-frames:
Clust(L) = {F�C | F � L and C is a cluster in F}.
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Theorem (G. Bezhanishvili, 2001)

If, for all finite k, the size of all k-generated algebras in a class of algebras is uniformly
bounded by a finite n(k), then the variety generated by this class is locally finite.

Since tuned partitions relate to subalgebras, (1) ⇐⇒ (2) can be obtained as a
corollary.
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Proof If (W ,R) is a cluster in a preorder, then R = W ×W and so any partition of
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(If you do not like tuned partitions, there is another explanation: all S4 + Bh are
locally tabular, because S5 is locally tabular.)
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Let F = (W ,R) be a frame. A partition A of W is
tuned if for every U,V ∈ A,

∃u ∈ U ∃v ∈ V uRv ⇒ ∀u ∈ U ∃v ∈ V uRv .

F is said to be tunable if every finite partition A of
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The following are equivalent:

(1) L is locally tabular.

(2) L is the logic of a ripe class of frames.
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Here Clust(L) is the class of clusters occurring in L-frames:
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Weird corollary...

If the logic of a frame is locally tabular, then the logic of any its subframe is locally
tabular.
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The counterexample

Take the ‘simplest’ structure of infinite height

(ω,≤)

and make it a pretransitive cluster:

F = (ω + 1,R),

where
xRy iff x ≤ y or x = ω.

Theorem

The logic of F is one-tabular but not locally tabular.

Proof.

1-tabularity:

The logic of a frame is one-tabular iff there exists c ∈ ω such that for every
two-element partition A there exists its tuned refinement B with |B| ≤ c.

If {U0,U1} is a two-element partition of ω + 1, then there exists its tuned refinement
B with |B| ≤ 3. Thus, the logic of F is one-tabular.

Non-local finiteness: The restriction of (ω + 1,R) onto ω is the frame (ω,≤), which is
of infinite height. Thus Log (ω + 1,R) is not locally tabular (by Weird Corollary).
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xRy iff x ≤ y or x = ω.

Theorem

The logic of F is one-tabular but not locally tabular.

Proof.

1-tabularity:

The logic of a frame is one-tabular iff there exists c ∈ ω such that for every
two-element partition A there exists its tuned refinement B with |B| ≤ c.

If {U0,U1} is a two-element partition of ω + 1, then there exists its tuned refinement
B with |B| ≤ 3. Thus, the logic of F is one-tabular.

Non-local finiteness: The restriction of (ω + 1,R) onto ω is the frame (ω,≤), which is
of infinite height. Thus Log (ω + 1,R) is not locally tabular (by Weird Corollary).
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Problems

1 Does k-tabularity imply local tabularity, for some fixed k for all modal
logics? For k = 2?

2 The same questions for intermediate logics.

Possible reformulation of Question 1

Suppose that we can “tune” three-element partitions of a cluster, i.e.

there exists c s.t. for every 3-element partition A there exists its tuned
refinement B with |B| < c.

Can we “tune” all finite ones?

When we can tune 3-element partitions, every subframe is of finite height...
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Part 2. k-tabularity, the top heavy property of canonical frames, and variants of
Glivenko’s theorem



Glivenko’s theorem (h=1)

Formulas of finite height

modal: B0 = ⊥, B1 = p1 → �♦p1, Bi+1 = pi+1 → �(♦pi+1 ∨ Bi )

intermediate: B ’
0 = ⊥, B ’

1 = p1 ∨ (p1 → ⊥), B ’
i+1 = pi+1 ∨ (pi+1 → B ’

i )

L[h] is the extension of L with the formula of height h.

CL = Int[1], S5 = S4[1]

Theorem (Glivenko, 1929) CL ` ϕ iff Int ` ¬¬ϕ.

Proof. Int has the FMP: it is the logic of posets. Every point in a finite poset sees a
model of CL — a maximal point.

Theorem (Matsumoto, 1955; Rybakov, 1992) S5 ` ϕ iff S4 ` ♦�ϕ.

Proof. S4 has the FMP: it is the logic of finite preorders. Every point in a finite
preorder sees a model of S5 — a maximal cluster.

Theorem (Kudinov, Sh) For all pretransitive L, L[1] ` ϕ iff L ` ♦∗�∗ϕ.

Proof. The Esakia-Fine maximality lemma holds in pretransitive canonical frames.
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Maximality lemma in pretransitive canonical frames

For k ≤ ω, the k-canonical frame (W ,R) of L is built from maximal L-consistent sets
of k-formulas (in variables pi , i < k);
xRy iff {♦ϕ | ϕ ∈ y} ⊆ x .
For a k-formula ϕ, put ‖ϕ‖ = {x ∈W | ϕ ∈ x}.

ϕ ∈ L iff ‖ϕ‖ = W

Lemma

In the pretransitive case, if ϕ ∈ x ∈W , then R∗(x) ∩ ‖ϕ‖ has a maximal (w.r.t. the
preorder R∗) element.

Proof.

For y ∈W ,

R∗(y) =
⋂
{‖α‖ | �∗α ∈ y};

thus the set R∗(y) ∩ ‖ϕ‖ is closed in the Stone topology on W .
By the compactness,

⋂
{R∗(y) ∩ ‖ϕ‖ | y ∈ Σ} is non-empty for any R∗-chain Σ in

R∗(x) ∩ ‖ϕ‖; thus Σ has an upper bound in ‖ϕ‖.

Corollary

In the pretransitive case, L[1] ` ϕ iff L ` ♦∗�∗ϕ.

Proof. Put k = ω, ϕ = >. Every point in W sees (via R∗) a model of L[1] — an
R∗-maximal cluster.



Glivenko’s theorem (h < ω)

L[1] ` ϕ iff L ` ♦∗�∗ϕ.

L[2] ` ϕ iff L `???

L[3] ` ϕ iff L `???

. . .

If L[h] is k-tabular, then there exists a Glivenko-type translation from L[h + 1]
to L for k-formulas:

L[h + 1] ` ϕ iff L ` trh,k(ϕ)

The proof is based on the top-heavy property of finitely generated pretransitive
canonical frames.
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The depth of x in a frame F = (W ,R) is the height of the point-generated frame F[x].

W [≤h] is the set of points of depth ≤ h.

F is h-heavy if every its element x which is not in W [≤h] sees a point of depth h.
F is top-heavy, if it is h-heavy for all finite h > 0.

Theorem (Shehtman, 1979)

All finitely generated canonical S4-frames are top-heavy.

Historical remarks

(Esakia, Grigolia, 1975):
Description of 1-generated canonical frames for S4.3 and Grz.3

The term ‘top-heavy’ is due to (Fine, 1985)



The depth of x in a frame F = (W ,R) is the height of the point-generated frame F[x].

W [≤h] is the set of points of depth ≤ h. F[≤h] is the restriction of F on W [≤h].

F is h-heavy if every x ∈W which is not in W [≤h] sees (via R∗) a point of depth h.

Lemma In the k-canonical frame F of L, F[≤h] is the k-canonical frame of L[h].

Theorem

Let F = (W ,R) be the k-canonical frame of L, L[h] be k-tabular (h, k < ω).

1 For i ≤ h, the set W [≤i ] is definable in F: there is a formula Bi such that

Bi ∈ x iff x ∈W [≤i ].

2 F is (h + 1)-heavy.

3 For all k-formulas ϕ,

L[h + 1] ` ϕ iff L ` C0(ϕ) ∧ . . . ∧ Ch(ϕ),

where Ci(ϕ) = �∗(�∗ϕ→ Bi)→ Bi.
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1: For a in F[≤h], let α(a) define a in F[≤h].

Then a is defined in F by the conjunction of α(a) with the following frame-like formula

�∗ ∧
{α(b1)→ ♦α(b2) | b1, b2 ∈W [≤h], (b1, b2) ∈ R} ∧

�∗ ∧
{α(b1)→ ¬♦α(b2) | b1, b2 ∈W [≤h], (b1, b2) /∈ R} ∧

�∗ ∨ {α(b) | b ∈W [≤h]}



The depth of x in a frame F = (W ,R) is the height of the point-generated frame F[x].

W [≤h] is the set of points of depth ≤ h. F[≤h] is the restriction of F on W [≤h].

F is h-heavy if every x ∈W which is not in W [≤h] sees (via R∗) a point of depth h.

Lemma In the k-canonical frame F of L, F[≤h] is the k-canonical frame of L[h].

Theorem

Let F = (W ,R) be the k-canonical frame of L, L[h] be k-tabular (h, k < ω).

1 For i ≤ h, the set W [≤i ] is definable in F: there is a formula Bi such that

Bi ∈ x iff x ∈W [≤i ].

2 F is (h + 1)-heavy.

3 For all k-formulas ϕ,

L[h + 1] ` ϕ iff L ` C0(ϕ) ∧ . . . ∧ Ch(ϕ),

where Ci(ϕ) = �∗(�∗ϕ→ Bi)→ Bi.

2: Follows from (1) and the maximality lemma: if x is not in W [≤h], then there
exists a maximal y in R∗(x) \W [≤h]. The depth of y in F is h + 1, as required.

3: Straightforward from (2).



The depth of x in a frame F = (W ,R) is the height of the point-generated frame F[x].

W [≤h] is the set of points of depth ≤ h. F[≤h] is the restriction of F on W [≤h].

F is h-heavy if every x ∈W which is not in W [≤h] sees (via R∗) a point of depth h.

Lemma In the k-canonical frame F of L, F[≤h] is the k-canonical frame of L[h].
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1 For i ≤ h, the set W [≤i ] is definable in F: there is a formula Bi such that
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2 F is (h + 1)-heavy.

3 For all k-formulas ϕ,

L[h + 1] ` ϕ iff L ` C0(ϕ) ∧ . . . ∧ Ch(ϕ),

where Ci(ϕ) = �∗(�∗ϕ→ Bi)→ Bi.

S5 ` ϕ iff S4 ` ♦�ϕ

The strangest explanation: the inconsistent logic S4[0] is k-tabular for all k,

B0 is always ⊥, and C0(ϕ) is �(�ϕ→ ⊥)→ ⊥.



We know that all S4[h] are locally tabular.

Thus, for all finite k, h there exists a formula trh,k (s) in variables pi , i < k and s, s.t.
for any k-variable ϕ

S4[h + 1] ` ϕ iff S4 ` trh,k (ϕ)

Theorem (Kuznetsov, 1971; Komori,1975)

All Int[h] are locally tabular.

Theorem (Shehtman, 1983)

All finitely generated canonical Int[h]-frames are top-heavy.

Likewise, for all finite k, h there exists trh,k (ϕ) s.t. for any k-variable ϕ

Int[h + 1] ` ϕ iff Int ` trh,k (ϕ)

Remark

In these cases, trh,k can be effectively constructed from k and h.
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Concluding remarks

Finite height is not a necessary condition for local tabularity of intermediate
logics.

What can an analog of Gliveko’s translation be in the case of a locally tabular
intermediate logic with no finite height axioms?

MIPC, or IS5 (the logic of monadic Heyting algebras):

Int
�p → p p → ♦p
(�p ∧�q)→ �(p ∧ q) ♦(p ∨ q)→ ♦p ∨ ♦q
♦p → �♦p ♦�p → �p
�(p → q)→ (♦p → ♦q)
Rules: MP, Sub, necessitation

(G. Bezhanishvili, 2001): For all L between MIPC and
WS5 = MIPC + ♦p ↔ ¬�¬p, we have WS5 ` ϕ iff L ` ¬¬�ϕ.

(G. Bezhanishvili, R.Grigolia, 1998): Locally tabular extensions of MIPC.

Can we use these results on local finiteness to obtain ‘finite height’ variants of
Glivenko’s theorem in the context of intuitionistic modal logic?
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Thank you!


