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Introduction

I will discuss how to construct topological representations for certain

categories, i.e. faithful functors X→ Top.

Purpose: characterise/axiomatise the category KH of compact Hausdorff

spaces and continuous maps between them.

The characterisation that I will present hinges on the fact that KH has

both a spatial and an algebraic nature.
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The spatial side of KH

The spatial nature of KH has proved rich from the duality theoretic

viewpoint:

• starting in the 1940s, several dualities for KH: Gelfand-Naimark,

Kakutani, Krein-Krein, Yosida, Stone. Later, also Banaschewski,

Isbell, de Vries;

• Duskin (1969): KHop is monadic over Set;

• Banaschewski, Rosický (1980s): several (negative) results on the

axiomatisability of KHop;

• Marra, L. R. (2017): finite axiomatisation of a variety of infinitary

algebras equivalent to KHop.
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The algebraic side of KH

Surprisingly, KH has also an algebraic nature:

• Linton (1966): KH is monadic over Set (in fact, it is varietal);

• Manes (1967): explicit description of compact Hausdorff spaces as

the algebras for the ultrafilter monad on Set;

• Herrlich-Strecker (1971): exploit this algebraic nature to give a

characterisation of KH (as the unique non-trivial full epireflective

subcategory of Hausdorff spaces which is varietal).
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We seek a characterisation of KH which is not relative to a particular

fixed category. An example of such a characterisation, for the category

Set, was provided by Lawvere.

Theorem (Lawvere’s ETCS, 1964)

If C is a complete category satisfying the eight axioms below, then C is

equivalent to Set.

Ax. 1 C is finitely complete and cocomplete;

Ax. 2 for any two objects A,B in C, there exists BA s.t.. . .;

Ax. 3 C admits a natural number object;

· · ·
Ax. 8 there exists an object with more than one element.
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The topological representation



Given two subobjects m1 : S1 � X and m2 : S2 � X , set

m1 ≤ m2 ⇔ ∃h : S1 → S2 with m2 ◦ h = m1.

X

S1 S2

m1

h

m2

Write ≡ for the equivalence relation induced by the preorder ≤. The set

of ≡-equivalence classes of subobjects of X , with the partial order ≤, is

denoted by SubX .

In the presence of finite limits, SubX is a ∧-semilattice and, ∀ f : X → Y ,

the associated pullback functor is a ∧-semilattice homomorphism:

f ∗ : SubY → SubX .
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Coherent categories are

• a categorical generalisation of distributive lattices;

• the categorical semantics for coherent logic (⊥,>,∨,∧,∃).
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Definition

A coherent category is a

• regular category, i.e.,

• finitely complete,

• with stable image factorisations,

• in which each SubX is a ∨-semilattice and, for every f : X → Y , the

pullback functor

f ∗ : SubY → SubX

is a ∨-semilattice homomorphism (hence a lattice homomorphism).
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For every f : X → Y and S ∈ SubX , denote by ∃f (S) the image of S

through f . The map

∃f : SubX → SubY , S 7→ ∃f (S)

is lower adjoint to the pullback functor

f ∗ : SubY → SubX .

Lemma

For every X , SubX is a (bounded) distributive lattice.

Proof.

Let m : S � X be a subobject.

S ∧ (T ∨ U) = (S ∧ T ) ∨ (S ∧ U)

SubX SubX

SubS
m∗

S∧−

∃m
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(non-)Examples

• Setf , Set, BStone and KH are coherent categories;

• every (elementary) topos is a coherent category;

• Top is not coherent (regular epis are not stable);

• any Abelian category (more generally, any pointed category) with

two non-isomorphic objects is not coherent;

• for every equational theory T in an algebraic signature containing at

least one constant symbol, ModT is not coherent.
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Points

10

Let X be a category admitting a terminal object 1, and X an object of X.

A point of X is a morphism

p : 1→ X .



Points

Define the functor of points

pt = homX(1,−) : X→ Set

(Throughout, we assume X is locally small, hence well-powered.)
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Let X be a category admitting a terminal object 1, and X an object of X.

A point of X is a morphism

p : 1→ X .



Idea: give a topological representation of the category X by lifting

pt : X→ Set to a functor X→ Top.

Definition

The category X is well-pointed if, given any two distinct morphisms

f , g : X ⇒ Y in X, there is a point p : 1→ X such that

f ◦ p 6= g ◦ p.

Observe that:

• X is well-pointed ⇔ pt : X→ Set is faithful;

• if X is well-pointed and
∑

pt X 1 exists in X, then the following is an

epimorphism: ∑
pt X

1→ X .
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Lemma

Let X be a well-pointed category with initial object 0 and terminal object

1. Suppose the unique morphism 0→ 1 is an extremal mono. Then,

• every non-initial object has at least one point;

• the points of X are precisely the atoms of SubX .

Remark:

• A mono m is extremal if m = f ◦ e, with e epi, implies e iso;

• 0→ 1 is an extremal mono iff for every non-initial object X there is

an object Y , and two distinct morphisms f , g : X ⇒ Y .
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For every object X and subobject S ∈ SubX , define

V(S) = {p : 1→ X | p factors through the subobject S → X},

“the set of all points which belong to the subobject S”.

The operator V : SubX → ℘(ptX ) preserves all infima existing in the

poset SubX . Hence, if SubX is complete, V has a lower adjoint

I : ℘(ptX )→ SubX given by

I(T ) =
∧
{S ∈ SubX | each p ∈ T factors through S}.

I(T ) is “the smallest subobject of X containing (all the points of) T”.

℘(ptX ) > SubX

I

V ◦ I

V
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Lemma

Let X be a non-trivial, well-pointed, coherent category in which each

poset SubX is complete. If 0→ 1 is an extremal mono, then the

following statements hold.

• For each X ∈ X, the closure operator V ◦ I on ℘(ptX ) is

topological.

• For each f : X → Y in X, the function pt f : ptX → ptY is

continuous and closed.

• If SubX is atomic, then each S ∈ SubX is a fixed point of the

operator V ◦ I.

Obs.: SubX is atomic for every X ∈ X ⇔ pt : X→ Set is conservative.

The two equivalent conditions are satisfied if, e.g., every mono in X is

regular, or every epi is regular.
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Under the hypotheses of the previous lemma, the functor of points

pt : X→ Set

can be lifted to a (faithful) functor

Spec : X→ Top,

which sends an object X to the set ptX equipped with the topology

induced by the operator V ◦ I.

This yields a topological representation of X.

Question: when does the functor Spec land in KH?
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Filtrality



VARIETA A QUOZIENTI FILTRALI 

R O B E R T O  M A G A R I  * * *  

1. PREMES SA. 

In alcuni recenti lavori (R. MAGAaI [7 ] ,  [8] ,  [9] )  1) ho studiato la variet~t 
V generata da una data algebra W sotto clue distinte ipotesi: 

1) che W sia/unzionalmente completa (finita o infinita)2); 

2) che W abbia due elementi. 

Molti risultati ottenuti in [7] ,  [8]  possono essere generalizzati assumenclo 
l'ipotesi che W sia semptice e che ogni congruenza di ogni potenza sottodiretta 
di W sia associata a un filtro dell'insieme degIi indici nel modo indicato nel 
successivo n. 2. 

Nella presente nota saranno studiate pifi in generale le classi/iltrali, ossia le 
classi K di algebre simili tall che ogni congruenza di ogni prodotto sottodiretto 
di elementi di K sia associata a un filtro dell'insieme degli indici. 

I risultati principali sono dati dai teorr. 1, 3, 4, 6, 7, 8 e dal cor 1. 
II risultato di semicategoricit~ nel caso K ={  W} con W ~inita si pub rica- 

vare dai risultati eli .A. ASTROMOFF [1]  e di A. L. FOSTER e A. F. PIXLEY [6]  
e viene dimostrato direttamente per completezza. 

Gli usuali concetti di algebra universale vengono usati senza particolari 
richiami e sono reperibili in P. M. COHN [2].  (Per una breve esposizione in 
lingua italiana vecl. anche R. MAGARI [10]) .  

* La presente stesura definitiva con qualche modifica ~ pervenuta il 24 ottobre 1968. 
** Lavoro eseguito nell'ambito dell'attivith del Comitato Nazionale per la Matemadca 

del C.N.R. (anno '68-'69, gruppo 37). 
1) Rimando ai lavori ci.tati per i concetti usati e per le convenzioni e notazioni. 
2) ~ funotionalIy strictly complete >> nel senso di A. L. FOSTER [4] in cui il concerto. 

riservato per6 alle algebre finite. 
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L a class of Birkhoff algebras of the same similarity type, and

{Ai | i ∈ I} ⊆ L. If B is a subalgebra of
∏

i∈I Ai , and F is a filter of
℘(I ), then the equivalence relation ϑF given by

∀b, b′ ∈ B, (b, b′) ∈ ϑF ⇔ {i ∈ I | bi = b′i} ∈ F

is a congruence on B. (If B =
∏

i∈I Ai , the map F 7→ ϑF is injective).

Definition (Magari, 1969)

L is filtral if, whenever B �
∏

i∈I Ai is a subdirect product of members

of L, F 7→ ϑF is a surjection onto the set of congruences of B.

L is semifiltral if the previous condition is satisfied whenever B is a direct

product of members of L. (Hence F 7→ ϑF is a bijection).

• If L is (semi)filtral, then each of its members is simple;

• L = {A} is filtral if A is the two-element Boolean algebra, or if A

has a reduct of finite distributive lattice.
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• The definition can be easily adapted to deal with regular subobjects,

which dualize congruences in a variety. If we do so, then:

• the condition above dualizes semifiltrality, in the sense of Magari, for

L = {A}, where A is initial in the variety that it generates.

19

Let X be a category with a terminal object 1 such that arbitrary copowers

of 1 exist in X, and SubX is complete for every X ∈ X.

Fix X ∈ X. Every filter F of ℘(ptX ) gives a subobject of
∑

pt X 1:

F 7−→ k(F ) =
∧
{S ∈ Sub

∑
pt X

1 | pt S ∩ ptX ∈ F}.

Definition

X is filtral if, for each X in X, the following map is bijective:

k : Filt(℘(ptX ))→ Sub
∑
pt X

1.
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• Set and Setf (relax assumption on the copowers of 1), are filtral.

• KH and BStone are filtral: for every discrete space I , the closed

subsets of the Stone-Čech compactification β(I ) of I are in bijection

with the filters of ℘(I ).
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Theorem (Marra, R.)

Let X be a non-trivial, well-pointed, coherent category s.t. 0→ 1 is

an extremal mono. Suppose X admits arbitrary copowers of 1, and

SubX is complete and atomic for every X ∈ X. Consider the conditions:

1. X is filtral;

2. SpecX ∈ KH for every X ∈ X.

Then 1⇒ 2 . That is, the functor Spec: X→ Top co-restricts to

Spec: X→ KH.

2⇒ 1 holds if every finite coproduct existing in X is disjoint.

Proof.

Sketch of 1⇒ 2. Filtrality of X implies that Spec
∑

pt X 1 ∼= β(ptX ). For

every X ∈ X, consider the epimorphism ε :
∑

pt X 1→ X . Then

Spec ε : Spec
∑

pt X 1 � SpecX exhibits SpecX as the image of a

compact Hausdorff space under a continuous closed map.
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A characterisation of KH



Definition

A pretopos is a coherent category which is

• positive, i.e., finite coproducts exist and are disjoint, and

• effective, i.e., every internal equivalence relation coincides with the

kernel pair of its coequaliser.

(Equivalently, a pretopos is an extensive and Barr-exact category).

(non-)Examples

• Setf , Set, are pretoposes;

• more generally, every elementary topos is a pretopos;

• KH is a pretopos (effectiveness follows, e.g., from monadicity);

• BStone is coherent and positive, but not effective. Hence it is not a

pretopos. Its pretopos completion is KH.
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Let X be a non-trivial, well-pointed, pretopos admitting all coproducts.
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Let X be a non-trivial, well-pointed, pretopos admitting all coproducts.

Then X is filtral if, and only if, Spec : X→ Top lands in KH.
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Theorem (Marra, R.)

Up to equivalence, KH is the unique non-trivial well-pointed pretopos

which admits all coproducts, and is filtral.
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Theorem (Marra, R.)

Up to equivalence, KH is the unique non-trivial well-pointed pretopos

which admits all coproducts, and is filtral.

Idea of the proof: The functor Spec : X→ KH is coherent (i.e., it

preserves finite limits, images, and finite joins of subobjects). Apply

Proposition (Makkai)

A coherent functor between pretoposes is an equivalence iff it is

conservative, full on subobjects, and it covers its codomain.



• because epi+mono=iso in a pretopos
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Theorem (Marra, R.)
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• this means that, for every X ∈ X, the lattice homomorphism

SubX → Sub SpecX is surjective. It follows from the fact that every

closed subset of SpecX is of the form V(S), for some S ∈ SubX .
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Theorem (Marra, R.)

Up to equivalence, KH is the unique non-trivial well-pointed pretopos

which admits all coproducts, and is filtral.

Idea of the proof: The functor Spec : X→ KH is coherent (i.e., it

preserves finite limits, images, and finite joins of subobjects). Apply

Proposition (Makkai)

A coherent functor between pretoposes is an equivalence iff it is

conservative, full on subobjects, and it covers its codomain.



• that is, for every Y ∈ KH there is X ∈ X and an epimorphism

SpecX � Y . Use the fact that, ∀X̃ ∈ X, Spec
∑

pt X̃ 1 ∼= β(pt X̃ ),

and every compact Hausdorff space is the continuous image of the

Stone-Čech compactification of a discrete space.
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Comments and questions

For varieties of Birkhoff algebras, filtrality is related to a certain

generalization of the inconsistency lemma

Γ ∪ {α} is inconsistent ⇔ Γ ` ¬α.

(Raftery, “Inconsistency lemmas in algebraic logic”, Math. Log. Quart. 59)

Is there a logical counterpart to “filtrality for categories”?
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Comments and questions

If X is a well-pointed, positive, coherent category which is filtral (+some

properties already discussed), there is a faithful functor Spec : X→ KH.

Where are finite sets and Boolean spaces, in this picture?

Definition

An object X is decidable if its diagonal is complemented. That is, if

δ : X → X × X denotes the diagonal morphism, there is ε : Y → X × X

such that the following is a coproduct diagram:

X X × X Y .δ ε

• Spec: X→ KH restricts to an equivalence Dec(X)→ Setf ;

• if X is complete, then taking inverse limits in X of decidable objects

yields a full subcategory equivalent to BStone.
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Comments and questions

Date: 6 August 1996

From: Peter Freyd

The phrase DISTRIBUTIVE CATEGORY is established as

referring to a category with finite products and. . .

. . .[LONG MESSAGE]. . .

Now the real question: how much of all this is already

in Johnstone?

Date: 7 August 1996

From: P. T. Johnstone

Not much of it, if you mean what is in Johnstone’s

published work, rather than in Johnstone’s mind.

31



Comments and questions

Date: 6 August 1996

From: Peter Freyd

The phrase DISTRIBUTIVE CATEGORY is established as

referring to a category with finite products and. . .

. . .[LONG MESSAGE]. . .

Now the real question: how much of all this is already

in Johnstone?

Date: 7 August 1996

From: P. T. Johnstone

Not much of it, if you mean what is in Johnstone’s

published work, rather than in Johnstone’s mind.

31



Thank you!
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