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Introduction

The semantic hierarchy

Kripke frames < Topological spaces < Locales < Heyting algebras

e Kuznetsov's problem (1975): Is every intermediate logic
complete with respect to some class of topological spaces?

e Variant: Is every intermediate logic complete with respect to
some class of cHA's (locales)?
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e Thanks to Shehtman(1980), we know that some intermediate
logics are Kripke incomplete.

e But topological spaces and cHA's are notoriously more
abstract than Kripke frames, and the corresponding semantics
remain much more obscure.



Introduction

The semantic hierarchy

Thanks to Shehtman(1980), we know that some intermediate
logics are Kripke incomplete.

But topological spaces and cHA's are notoriously more
abstract than Kripke frames, and the corresponding semantics
remain much more obscure.

However, it has recently been realized (G. Bezhanishvili &
Holliday, 2016) that a semantics for IPC in terms of
bi-relational structures was as general as locale semantics, yet
more concrete. This semantics had already been introduced
by Fairtlough and Mendler in 1997, although for a different
purpose.

My goal today is to present some results about this semantics,
and give you an intuitive grasp of how it compares to Kripke
semantics.
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Refined Regular Open Sets

Stone representation theorem
Theorem (Stone, 1936)

Every Boolean algebra B embeds into the powerset of its dual
Stone space.

Definition
Let B be a BA.
e The filter space of B is the topological space (Sg, ), where
Sg is the collection of all filters over B and 7 is the upset
topology induced by the inclusion ordering on Sg.

e the principal space of B is the topological space (Pg, 7),
where Pg is the collection of all principal filters over B and 7
is defined similarly.

Theorem
Every Boolean algebra B embeds into the regular open sets of its
filter space and into the regular open sets of its principal space.
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Topological representations of completions

Lemma
For any Boolean algebra B with dual Stone space Xg:

o P(Xg) is isomorphic to the canonical extension of B.

e RO(Xg) is isomorphic to the canonical extension of B.

Lemma (Holliday 2015)

For any Boolean algebra B with filter space Sg and principal space
PB N

e RO(Sg) is isomorphic to the canonical extension of B.

e RO(Pg) is isomorphic to the MacNeille completion of B.
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Representation of HAs

Theorem (Esakia)
Any HA L embeds into the upsets of its dual Esakia space.

Lemma
For any HA L with dual space X|, the canonical extension of L is
isomorphic to Up(Xy).

Theorem (G. Bezhanishvili & J. Harding, 2004)

For any HA L with dual Esakia space X, the MacNeille
completion of L is isomorphic to {S € OpUp(X,) ; JC(S) = S},
where J is the interior operator of the spectral topolgy on X;.

Conclusion
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Representation of HAs

Theorem (Esakia)
Any HA L embeds into the upsets of its dual Esakia space.

Lemma
For any HA L with dual space X|, the canonical extension of L is
isomorphic to Up(Xy).

Theorem (G. Bezhanishvili & J. Harding, 2004)

For any HA L with dual Esakia space X, the MacNeille
completion of L is isomorphic to {S € OpUp(X,) ; JC(S) = S},
where J is the interior operator of the spectral topolgy on X;.

e What about constructive versions of those results?

Conclusion
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Regular open sets and the double negation nucleus

Lemma (Tarski)

The regular open sets of any topological space form a cBA.

e A point-free argument: In any lattice of open sets 7,
U= —-C(U) forany U € 0.

e Therefore IC(U) = —C — C(U) = =—(U) for any U € 0.
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Regular open sets and the double negation nucleus

Lemma (Tarski)

The regular open sets of any topological space form a cBA.
e A point-free argument: In any lattice of open sets 7,
U= —-C(U) forany U € 0.
e Therefore IC(U) = —C — C(U) = =—(U) for any U € 0.

e Key idea: Modify the notion of regular open sets so that the
corresponding interior-closure operator is still a nucleus on a
lattice of open sets, but not necessarily the double negation
nucleus.

10 /42
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Nuclei on subframes

e Let A, B be frames such that A is a subframe of B. Define
v : B — A such that for all b € B,
v(b)=\V{ac A; a<p b}

e v is right-adjoint to the inclusion map ¢ : A — B (hence
preserve finite meets in A)
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Nuclei on subframes

Let A, B be frames such that A is a subframe of B. Define
v : B — A such that for all b € B,
v(b) =\V{a€ A; a<g b}.

v is right-adjoint to the inclusion map ¢ : A — B (hence
preserve finite meets in A)

Define a map j : A — A such that j(a) = v—g—pgi(a) for all
acA

J is the composition of monotone, multiplicative maps and is
increasing on A since a <g —g—gt(a). For idempotence:
v-g—pw-g-gl(a) <a v-gg-ggL(a) <av-g—pi(a)
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Refined Regular Open Sets

Nuclei on subframes

Let A, B be frames such that A is a subframe of B. Define
v : B — A such that for all b € B,
v(b) =\V{a€ A; a<g b}.

v is right-adjoint to the inclusion map ¢ : A — B (hence
preserve finite meets in A)

Define a map j : A — A such that j(a) = v—g—pgi(a) for all
acA

J is the composition of monotone, multiplicative maps and is
increasing on A since a <g —g—gt(a). For idempotence:

v=g—pw-g-gl(a) <av-g-g-g-gi(a) <av-pg—pi(a)

so j is a nucleus on A!
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Refined Regular Open Sets

Refined bi-topological spaces

Definition

A refined bi-topological space is a bi-topological space (X, 11, 72)
such that 7y C 7.

A bi-relational structure (bRS) is a refined bi-topological space
(X, 71, 72) such that both 71 and 7, are Alexandroff topologies.

Lemma

Let (X, T1,72) be a refined bi-topological space. Then the operator
lh Gy (Interior in 11, Closure in 12) is a nucleus on the frame of
opens in 11. Therefore RO12(X) is a cHA.

Proof.
This follows from the previous slide and the fact that
/1C2(U):/1/2C2(U) for all UQX L]
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Constructive representation theorem for HA

Definition
Let L be a lattice. A right pseudo-prime pair over L is a pair (F, )
such that:

e Fis a filter, | is an ideal, and F N/ = () (compatible pair);

e Foranyace F,belandcel,ifaAc<b, thencel
(Right Meet Property);

13 /42
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Constructive representation theorem for HA

Definition
Let L be a lattice. A right pseudo-prime pair over L is a pair (F, )
such that:

e Fis a filter, | is an ideal, and F N/ = () (compatible pair);

e Foranyace F,belandcel,ifaAc<b, thencel
(Right Meet Property);

Lemma (“Constructive PFT")

Let L be a lattice. Then L is distributive iff for any compatible pair
(F, 1) over L, there exists a right pseudo-prime pair (F*, 1*) such
that F C F* and | C I*.
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Refined Regular Open Sets

Constructive representation theorem for HA

Definition

Let L be a Heyting algebra. The canonical filter-ideal space is the
refined bitopological space (S;, 1, 72), where S; is the set of all
pseudo-prime pairs over L, and 71 and 7 are the upset topologies
induced by the filter inclusion ordering and the filter-ideal inclusion
ordering respectively.

Theorem
Let L be a Heyting algebra, and (S, 71, 72) its canonical filter-ideal
space. Then the Stone map: |-|: L — Z(S.) defined by

la| = {(F,1) € S, ; a€ F} is a HA-embedding of L into RO12(S;).

14 /42



Refined Regular Open Sets

A note on completions

e For any HA L with canonical filter-ideal space (S;, 1, 72),
RO12(S.) is isomorphic (under PFT) to the upsets of the dual
Kripke frame of L (i.e. to the canonical extension of L).

e But one can also slightly modify the definition of (S, 71, 72)
in order to represent other completions of L as RO12(S;).

e For example, letting P, = {(ta,la— b); a,bec L,a £ b},
we have that RO12(Py.) is the MacNeille completion of L.
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Refined Regular Open Sets

Semantic hierarchy

As a direct consequence, every cHA can be represented as the
refined regular opens of some bi-relational structure.

This implies that a semantics for /PC based on bi-relational
structures is as general as Dragalin or locale semantics (in
fact, this is precisely FM-semantics).

On the other hand, bRS are very concrete objects to work
with.

So how close are bi-relational and Kripke semantics to one
another?

16

42
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An example

e Consider the following Heyting algebra:

|
./ \.
N/
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An example

e Its dual Kripke frame is the 2-fork:
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An example

e Its dual Kripke frame is the 2-fork:

A4
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An example

e lts dual bRS, on the other hand, looks like the following:
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Refined Regular Open Sets

An example

e lts dual bRS, on the other hand, looks like the following:

4 A\
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Bi-Relational Semantics

Bi-relational semantics for IPC

Definition

A bRS model is a tuple (X, <3, <p, V) such that (X, <;,<») is a
bRS an V' : Prop — RO12(X) is a valuation function that assigns
refined regular opens to all propositional variables of IPC.

For any bRS model (X, <1, <s, V), satisfaction is defined
recursively as follows:

e xIF ¢ iff x € V(o) for ¢ € Prop;

e x Ik L never, x IF T always;

o x|l oA iff xIF ¢ and x IF 1

o x| ¢V iff for all y >1 x there is z >5 y such that z IF ¢ or
z -
o xl-¢ — o iff forall y >1 x, y IF ¢ implies y IF .

Validity is defined as usual.
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Bi-relational semantics for IPC

e Intuitive picture of the semantics: Points in a bRS are partial
descriptions of information states.

e Two levels of informativeness:
e states can be more or less informative about the world;
e descriptions can be more or less informative about the states.



Bi-Relational Semantics

Bi-relational semantics for IPC

Intuitive picture of the semantics: Points in a bRS are partial
descriptions of information states.

Two levels of informativeness:
e states can be more or less informative about the world;
e descriptions can be more or less informative about the states.

For any two points x, y, x <; y iff every state partially
described by y is more informative about the world than some
state partially described by x (the states described by y are
more informative about the world than the states described by

x).

On the other hand, x <, y iff every state partially described
by y is also partially described by x (y is a more informative
description than x).

N
N

)



Bi-Relational Semantics

Bi-relational semantics for IPC

e Kripke frames are precisely those bRS (X, <1, <) where
<o= Ax.

e Possibility frames, on the other hand, are those bRS
(X, <1, <2) where <1=<,.

e In more intuitive terms: Kripke frames are those frames where
the second informativeness level is trivial (every point
completely describes a state). Possibility frames are those
frames where the first informativeness level is trivial (every
state is maximally informative about the world).



Introduction Refined Regular Open Sets Bi-Relational Semantics Weak Directedness and Spatiality Conclusion

A glimpse into intermediate logics

(Joint work with Nick Bezhanishvili and Somayeh Chopoghloo)

e LC=IPC+(p— q)V(q— p) is the logic of right-linear
Kripke frames.

e KC =IPC + —pV ——p is the logic of directed Kripke frames.

e Can we characterize KC and LC bi-relational structures in a
similar manner?

24 /42
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A glimpse into intermediate logics

Definition
1. Let (X, <1,<5,V) be a bRS model. A point x € X refutes a
formula ¢ (noted x IF~ @) if y ¥ ¢ for all y >3 x.

2. A point x is independent from a point y (noted x_Ly) if
ToxN T1y = 0.

Lemma

1. Let (X, <1,<2,V) be a bRS model. For any x € X, and any
formulas ¢, v, x IF~ ¢V Y iff x -~ ¢ and x I~ 4. Moreover,
for any formula ¢, x W ¢ iff there is y >1 x such that y |-~ ¢.

2. For any x,y € X, xLy implies that x ¢ h Co(T1y).

25 /42
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A glimpse into intermediate logics

Theorem
1. LCis valid on a bRS (X, <1, <2) iff for all x € X there are no
fi, fr :Tox — X such that:

o for all z =5 x, i(z), H(z) =1 z, and
o forall z,7' =5 x, fi(2) Lf(Z') and f(z) LA(Z).

2. KCis valid on a bRS (X, <1, <2) iff for all x € X there are no
fi, f> : Tox — X such that:

o for all z =5 x, (fi(z), f(z) =1 z, and
o forall 2 =5 x, T1A(2)N T1H(Z") = 0.

26 /42
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Surprising examples of LC and KC bRS

SN AN s

LA VAL

| ] | ]
° ° ° °
° °
Figure 1: A non-linear LC-bRS Figure 2: A non-directed KC-bRS
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Bi-Relational Semantics

Global Subframes

e By contrast with Kripke frames, LC and KC bi-relational
structures do not have a first-order characterization.

e There is however another characterization of LC and KC
Kripke frames in terms of subframes:
1. LCis valid on a Kripke frame (X, <) iff the 2-fork is not a
subframe of (X, <).
2. KC is valid on a Kripke frame (X, <) iff the 2-fork is not a
cofinal subframe of (X, <).

e A similar characterization can be given in the bi-relational
setting, but it requires defining a more abstract notion of
subframe.



Bi-Relational Semantics

Global Subframes

Definition
Let (X, <1, <2) be a bi-relational structure. A global subframe of
X is a pair (S, (f;)iecs) such that:
1. & :=(S,<1,<y) is a bi-relational structure and (f;);¢; is a
collection of maps from S — X such that:
2. for each i € I, f; is injective;
3. foreach i€/, x,y € S, k€ {1,2}: fi(x) <« fi(y) iff x <k y;
4. foreach i€ l, x€ S and y € X, if fi(x) <2 y, then there is
J € I such that fi(x) = y;
5. foreach i,j €/, x,y € S, xLy implies fi(x)Lf;(y).



Bi-Relational Semantics

Global Subframes

Definition

A global subframe (&, (f;)ies is a cofinal global subframe if

condition 5 above is strengthened as follows:

5'. foreach i € I, and x € X, if there is y € S such that
fi(y) <1 x, then there is z € S such that x <1 fi(2).

Theorem
Let (X,=<1,=<2) be a bi-relational structure. Then:
1. LC is valid on (X, <1, <2) iff the fork is not a global subframe
of (X, <1, <2).

2. KC is valid on (X, =<1, <2) iff the fork is not a cofinal global
subframe of (X, X1, <2).

30 /42
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Plan

Weak Directedness and Spatiality
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Weak Directedness and Spatiality

A simple observation

For any bi-topological space (X, 71, 72), Co : 01 — %, and
I : €1 — 05 form a monotone Galois connection. Therefore
RO12(X) and RCy1(X) are order-isomorphic.

In particular, in a bRS (X, <1, <2), RGi(X) is a cHA.

Refined regular closed sets are always closed under arbitrary
unions, but not necessarily under finite intersections.

In the case of bRS, the latter is equivalent to the two
relations satisfying the following weak directedness condition:

Vx,y,z(x <oy Ax<pz—=3Jw(y g wAz<gwAx <y w)
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Weak Directedness Condition

Equivalently, every diagram of the form:

}/1\)(/)/2

can be completed as follows:

z

4N
A4

X

Y1 y2

33 /42
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A Characterization of Spatial Locales

Lemma
For every weakly directed bRS (X, <1,<2), RGy1(X) is a topology
on X.

Theorem
Every spatial locale is isomorphic to the refined regular closed sets
of some weakly-directed bRS.

34 /42
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A Characterization of Spatial Locales

Lemma
A locale L is spatial iff for any a & b € L, there is a meet-prime

element i € L such that a < i and b <.

Definition
Let L be spatial locale. The weakly-directed representation of L is
the bRS (M, <1, <») such that:

o My ={(f,i); f £i€L,i meet-prime};
o (Fi) <y (f,i")iff f > f,
o (F,i) <o (F,i")ifff>Fandi<i

35 /42



Weak Directedness and Spatiality

A Characterization of Spatial Locales

e Note that (M, <1, <») is weakly directed: if (f,i) < (f, 1),
(f2,i2), then fi, f» £ i, which implies that (i A f, £ i) since i
is meet-prime.

e Moreover, the map |- | : L — RCy1(M,) defined by
la| = {(f,i); a £ i} is an order-embedding.

e Moreover, for every U € RCp1(M,), U =\ B|, where
B={beL; |bl C B}. This means that |- | is an
isomorphism.

Corollary

A locale is spatial iff it is isomorphic to the refined regular closed
sets of a weakly directed bRS.
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Weak Directedness and Spatiality

EV semantics

e The previous result yields an alternative semantics for IPC

which is bi-relational, yet as general as topological semantics.

Definition

An Effective Verifiability model (EV model) is a tuple

(X, <1,<2, V) such that (X, <1, <3) is a weakly directed bRS,

and V : Prop — RGy1(X) is a valuation function that sends the
propositional variables of IPC to refined regular closed sets in X.

37 /42
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EV-semantics

Let (X, <1, <5, V) be an EV-model. Satisfaction is recursively
defined as follows:

x Ik ¢ iff x € V(¢) for ¢ € Prop;
e x|k L never, x IF T always;
xIF o A iff xIF ¢ and x I ;
x Ik ¢V iff xIF ¢ or x -,

x Ik ¢ — 1 iff there exists y >2 x such that for all z >; vy,
z - ¢ implies z I 1.

Validity is defined as usual.

38
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Weak Directedness and Spatiality

EV-semantics

Formulas in an EV-model (X, <1, <, V) are always evaluated
as refined regular closed sets.

Intuitive picture of the semantics: Points are states of
information. The first ordering corresponds to an increase in
information: x <j y iff y is more informative than x. On the
other hand, x <5 y iff y is a more informative state that can
effectively been reached from x.

A formula ¢ is verified at a state x iff x € 1(V(¢)). On the
other hand, ¢ is assertible at x iff ¢ can effectively be verified
at x, i.e. x € C2/1(\/(¢)).

One can then justify the weak directedness condition as
follows: a conjunction is effectively verifiable if each conjunct
is effectively verifiable.
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Conclusion

Open problems

e Can we adapt standard techniques from Kripke semantics to
bi-relational semantics?

e In particular, can we define topologically incomplete
intermediate logics?

e Can we characterize graph-theoretically some other algebraic
or topological properties? Example: join-prime generated
algebras, bi-Heyting algebras, Beth frames, separation
axioms, ...

41 /42



Introduction Refined Regular Open Sets Bi-Relational Semantics Weak Directedness and Spatiality Conclusion

Thank You!
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