▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Topological Completeness of Modal Logics for Spaces Constructed from Trees

Joel Lucero-Bryan, Khalifa University

Joint work:

Guram Bezhanishvili, New Mexico State University Nick Bezhanishvili, University of Amsterdam Jan van Mill, University of Amsterdam

> ToLo VI, Tbilisi, Georgia 2–6 July 2018

Setting the Scene

SIGNATURE

- Propositional letters: *p*, *q*, *r*, ..., *p*₀, *p*₁, *p*₂, ...
- Classical connectives: \neg and \rightarrow
- Modal connective: \Box
- Typical abbreviations: $\Diamond \varphi := \neg \Box \neg \varphi, \ \varphi \lor \psi := \neg \varphi \to \psi$, and $\varphi \land \psi := \neg (\varphi \to \neg \psi)$

TOPOLOGICAL INTERPRETATION

Given a space X:

- Letters \Rightarrow subsets of X
- Classical connectives \Rightarrow Boolean operations in $\wp(X)$
- Modal box ⇒ interior operator i of X; hence, diamond ⇒ closure operator c of X

Topological Semantics and ${\sf S4}$

VALID MODAL FORMULAS

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$.

Valid Formulas	Corresponding Property	
$\Box \top \leftrightarrow \top$	iX = X	
$\square p ightarrow p$	$\mathbf{i} A \subseteq A$	
$\square p ightarrow \square p$	$\mathbf{i} \mathcal{A} \subseteq \mathbf{i} \mathbf{i} \mathcal{A}$	
$\square(p \land q) \leftrightarrow (\squarep \land \squareq)$	$\mathbf{i}(A \cap B) = \mathbf{i}A \cap \mathbf{i}B$	

 $\mathsf{Put} \ \mathsf{Log}(X) = \{ \varphi \mid X \Vdash \varphi \}$

Theorem

For any space X, Log(X) is a normal extension of S4

Relating Topological and Kripke Semantics

GENERALIZING KRIPKE SEMANTICS FOR S4

- An S4-frame is $\mathfrak{F} = (W, R)$ where R is a reflexive and transitive relation on W
- An *R*-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and wRv imply $v \in U$
- The set of *R*-upsets forms the *Alexandroff* topology τ_R on *W*

A RESULT, A CONSEQUENCE, AND AN OBSERVATION

- For an S4-frame $\mathfrak{F} = (W, R)$, $\mathfrak{F} \Vdash \varphi$ iff $(W, \tau_R) \Vdash \varphi$
- A logic extending S4 that is Kripke complete is topologically complete
- Such topological completeness is typically not for spaces satisfying "nice" separation axioms; e.g. Tychonoff spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some Motivating Completeness Results I.1

McKinsey and Tarski 1944

For a separable crowded metrizable space X, Log(X) = S4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ED spaces

Some Motivating Completeness Results I.2

RASIOWA AND SIKORSKI 1963

For a crowded metrizable space X, Log(X) = S4

Some Motivating Completeness Results II

Abashidze 1987 and Blass 1990 (independently)

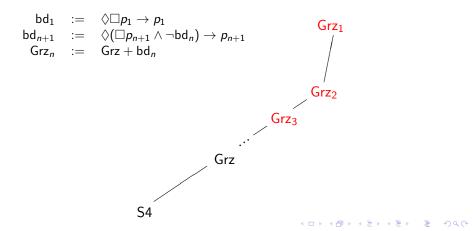
For any ordinal space $\alpha \geq \omega^{\omega}$, $Log(\alpha) = Grz$

 $\operatorname{Grz} := \operatorname{S4} + \Box(\Box(p \to \Box p) \to p) \to p$

Some Motivating Completeness Results III

ABASHIDZE 1987 (BEZHANISHVILI AND MORANDI 2010)

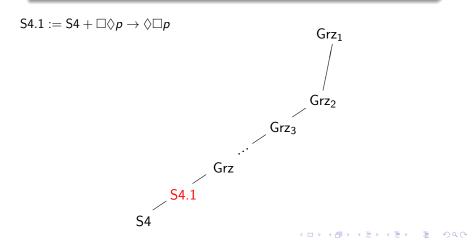
For an ordinal α such that $\omega^{n-1} + 1 \leq \alpha \leq \omega^n$, $Log(\alpha) = Grz_n$



Some Motivating Completeness Results IV

Bezhanishvili and Harding 2012

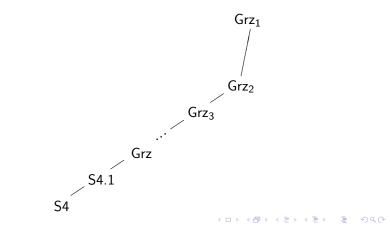
The logic of the Pelczynski compactification of ω is S4.1



Some Motivating Completeness Results V

Bezhanishvili, Gabelaia, and Lucero-Bryan 2015

Metrizable spaces yield exactly these logics: S4, S4.1, Grz, or Grz_n



A SHORT INTERLUDE

QUESTION

What sort of Tychonoff space X has Log(X) not listed above?

AN OBVIOUS ANSWER

Non-metrizable spaces... (as a typical example) **Our focus:** Extremally disconnected Tychonoff spaces

Definition

A space X is *extremally disconnected* (ED) provided the closure of each open set is open

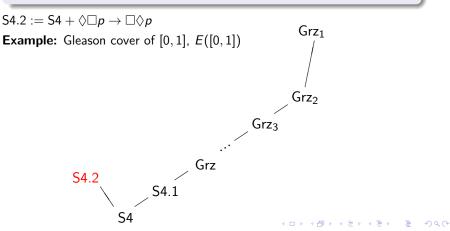
Lemma

X is ED iff $X \Vdash \Diamond \Box p \to \Box \Diamond p$

Some Motivating Completeness Results VI.1

BEZHANISHVILI AND HARDING 2012

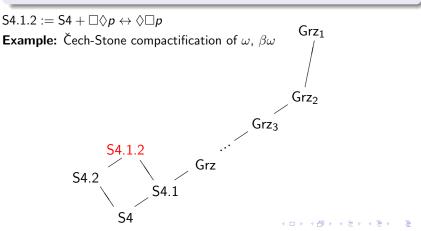
Let X be an infinite ED Stone space. If X is not weakly scattered, then Log(X) = S4.2



Some Motivating Completeness Results VI.2

BEZHANISHVILI AND HARDING 2012

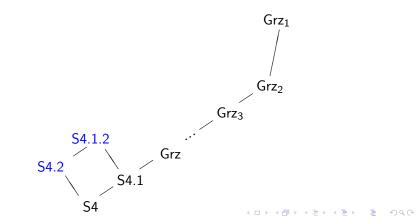
Let X be an infinite ED Stone space. If X is weakly scattered, then Log(X) = S4.1.2



Some Motivating Completeness Results VI.3

Bezhanishvili and Harding 2012

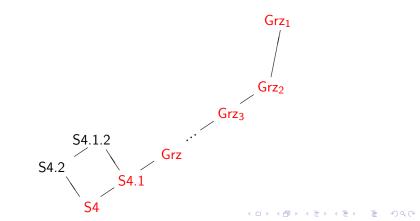
Note regarding the two previous results: require set theoretic axioms beyond ZFC (control cardinality of MAD families)



TO COME...

VIA A UNIFIED APPROACH TO TOPOLOGIZING TREES

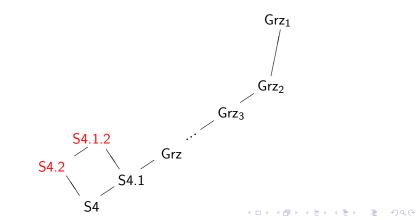
We realize many previous results regarding both metrizable and non-metrizable spaces for the highlighted logics



TO COME...

VIA A UNIFIED APPROACH TO TOPOLOGIZING TREES

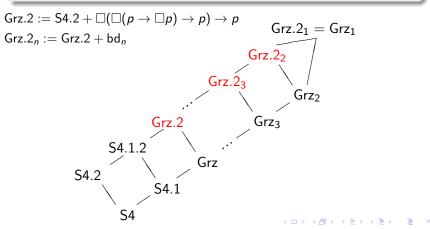
Within ZFC, extend to ED Tychonoff spaces yielding analogous results for the highlighted logics (but not for E([0,1]) or $\beta\omega$)



TO COME...

VIA A UNIFIED APPROACH TO TOPOLOGIZING TREES

Further extend to yield new completeness results with respect to Tychonoff spaces regarding the highlighted logics



FORMALIZATION

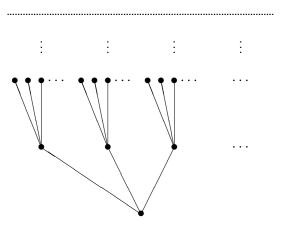
Definition

- κ nonzero cardinal (when infinite viewed as initial ordinal)
- A sequence in κ : $\sigma : \alpha \to \kappa$ for $\alpha \le \omega$
 - finite of length α when $\alpha < \omega$
 - infinite when $\alpha = \omega$
- The *initial segment order* on $L_{\kappa} := \{ \sigma \mid \sigma \text{ a sequence in } \kappa \}$:

 $\sigma \leq \varsigma$ iff $\sigma(n) = \varsigma(n)$ for all $n \in Dom(\sigma) \leq Dom(\varsigma)$

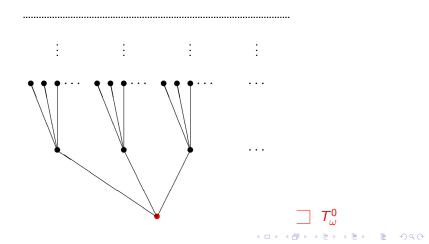
The κ-ary tree with limits is (L_κ, ≤)
 Note: the infinite sequences are the "limits" (also the leafs)

A PICTURE OF (L_{ω}, \leq) and Key Players

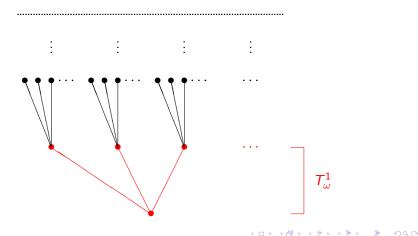


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

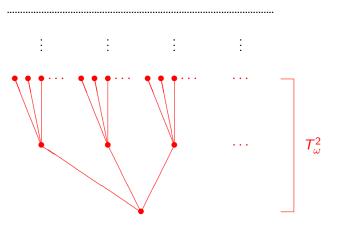
A PICTURE OF (L_{ω}, \leq) and Key Players: T_{ω}^{n} SEQUENCES OF LENGTH < n



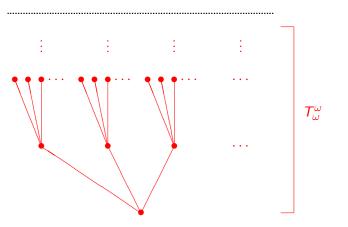
A PICTURE OF (L_{ω}, \leq) and Key Players: T_{ω}^{n} SEQUENCES OF LENGTH < n



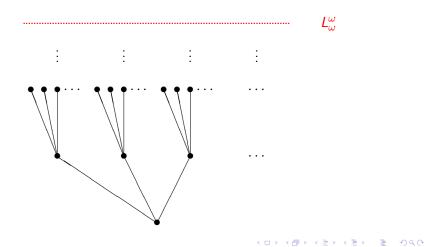
A PICTURE OF (L_{ω}, \leq) and Key Players: T_{ω}^{n} SEQUENCES OF LENGTH < n



A PICTURE OF (L_{ω}, \leq) and Key Players: T_{ω}^{ω} ALL FINITE SEQUENCES



A PICTURE OF $(\mathcal{L}_{\omega}, \leq)$ and Key Players: $\mathcal{L}_{\omega}^{\omega}$ ALL INFINITE SEQUENCES



Some Topologies on L_{κ}

DEFINITION

- $\uparrow \sigma := \{\varsigma \in L_{\kappa} \mid \sigma \leq \varsigma\}$
- τ_{\leq} —the Alexandroff topology of (L_{κ},\leq)

 $\tau <$

• (L_{κ}, au_{\leq}) is T_0 and compact, but not Tychonoff

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some Topologies on L_{κ}

DEFINITION

- $\mathscr{S} := \{\uparrow \sigma \mid \sigma \text{ is finite}\}$
- $\bullet \ \tau$ is the topology generated by $\mathscr S$
- (L_{κ}, τ) is a (non-Tychonoff) spectral space (sober & coherent)
- $\bullet\,$ Compact opens are finite unions of elements in $\mathscr S$

Some Topologies on L_{κ}

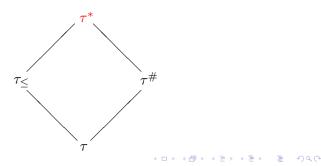
DEFINITION

- $\mathscr{S} := \{\uparrow \sigma \mid \sigma \text{ is finite}\}$
- $\bullet \ {\mathscr B}$ is the Boolean algebra generated by ${\mathscr S}$
- $\tau^{\#}$ is the topology generated by \mathscr{B} (patch topology of τ)
- $(L_{\kappa}, \tau^{\#})$ is a Stone space (compact, T_2 , and zero-dimensional)

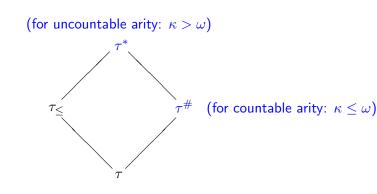
Some Topologies on L_{κ}

DEFINITION

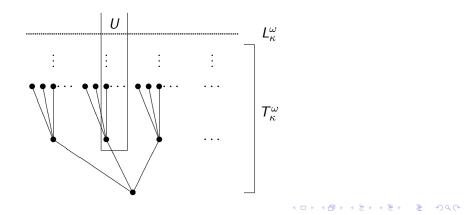
- $\mathscr{S} := \{\uparrow \sigma \mid \sigma \text{ is finite}\}$
- $\bullet \ \mathscr{A}$ is the Boolean $\sigma\text{-algebra}$ generated by \mathscr{S}
- au^* is the topology generated by \mathscr{A} (σ -patch topology of au)
- (L_{κ}, τ^*) is Tychonoff and $\bigcap_{n \in \omega} U_n \in \tau^*$ when each $U_n \in \tau^*$



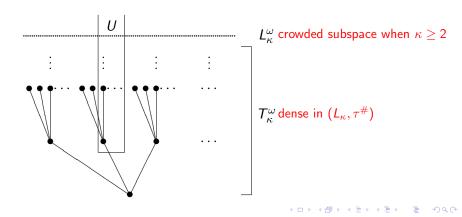
PRIMARY TOPOLOGIES OF INTEREST: $\tau^{\#}$ and τ^{*}



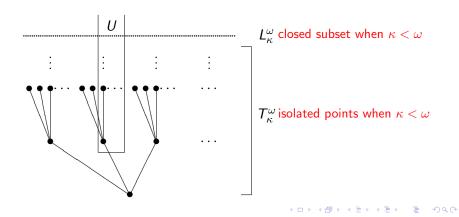
Theorem



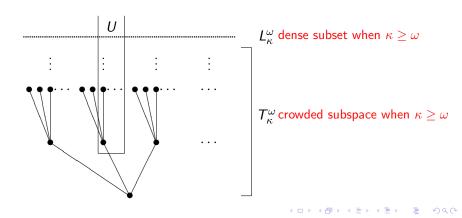
Theorem



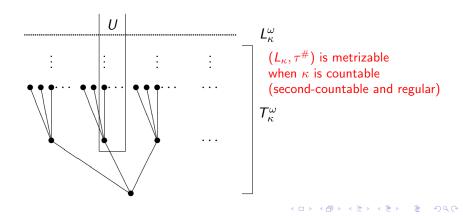
Theorem



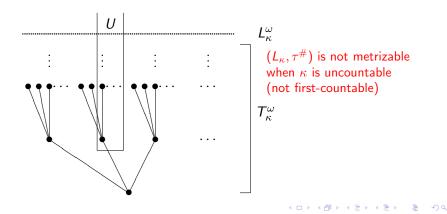
Theorem



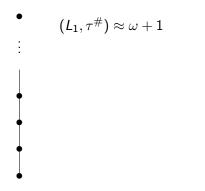
Theorem



Theorem



Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = 1$				



<□ > < @ > < E > < E > E のQ @

Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = 1$				

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

•
$$(L_1, \tau^{\#}) \approx \omega + 1$$

: $\log(L_1, \tau^{\#}) = \operatorname{Grz}_2$

Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = 1$				

$$(L_1, \tau^{\#}) \approx \omega + 1$$

$$Log(L_1, \tau^{\#}) = Grz_2$$

Subspaces L_1^{ω} , T_1^{ω} , and T_1^n are discrete

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のみの

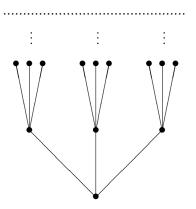
Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = 1$				

•
$$(L_1, \tau^{\#}) \approx \omega + 1$$

: $\log(L_1, \tau^{\#}) = \operatorname{Grz}_2$

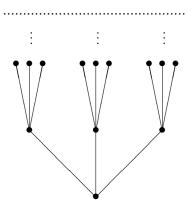
Subspaces L_1^{ω} , T_1^{ω} , and T_1^n are discrete $Log(L_1^{\omega}) = Log(T_1^{\omega}) = Log(T_1^n) = Grz_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



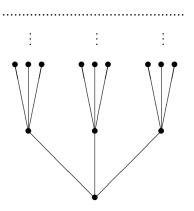
$L_{\kappa}^{\omega} \approx \mathbf{C}$ (Brouwer's Theorem)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



 $L_{\kappa}^{\omega} \approx \mathbf{C}$ (Brouwer's Theorem) $\log(L_{\kappa}^{\omega}) = S4$

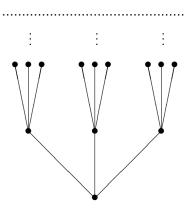
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



 $L_{\kappa}^{\omega} \approx \mathbf{C}$ (Brouwer's Theorem) $\log(L_{\kappa}^{\omega}) = S4$

Subspaces T_{κ}^{ω} and T_{κ}^{n} are discrete $Log(T_{\kappa}^{\omega}) = Log(T_{\kappa}^{n}) = Grz_{1}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

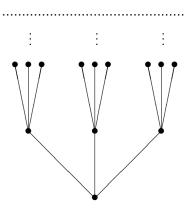


 $L_{\kappa}^{\omega} \approx \mathbf{C}$ (Brouwer's Theorem) $\log(L_{\kappa}^{\omega}) = S4$

Subspaces T_{κ}^{ω} and T_{κ}^{n} are discrete $Log(T_{\kappa}^{\omega}) = Log(T_{\kappa}^{n}) = Grz_{1}$

 $(L_{\kappa}, \tau^{\#})$ is homeomorphic to the Pelczynsky compactification of ω

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



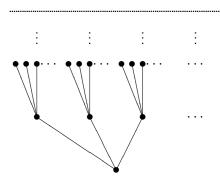
 $L_{\kappa}^{\omega} \approx \mathbf{C}$ (Brouwer's Theorem) $\log(L_{\kappa}^{\omega}) = S4$

Subspaces T_{κ}^{ω} and T_{κ}^{n} are discrete $Log(T_{\kappa}^{\omega}) = Log(T_{\kappa}^{n}) = Grz_{1}$

 $(L_{\kappa}, \tau^{\#})$ is homeomorphic to the Pelczynsky compactification of ω $\log(L_{\kappa}, \tau^{\#}) = S4.1$

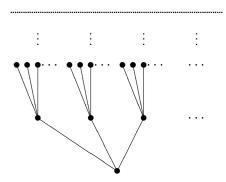
・ロト・雪ト・雪ト・雪・ 今日・

Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = 0$				



subspaces L_{ω} , L_{ω}^{ω} , and T_{ω}^{ω} are crowded

$\kappa = \omega$

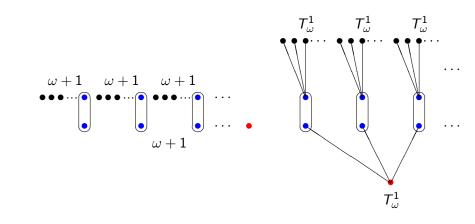


subspaces L_{ω} , L_{ω}^{ω} , and T_{ω}^{ω} are crowded $\text{Log}(L_{\omega}) = \text{Log}(L_{\omega}^{\omega}) = \text{Log}(T_{\omega}^{\omega}) = \text{S4}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

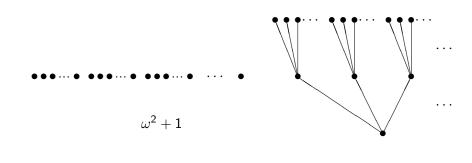
Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = \omega$	AND T_{ω}^{n}			

Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = \omega$	AND T^n_{ω}			



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces
$\kappa = \omega$.	AND T_{ω}^n			



 T_{ω}^2

$\kappa = \omega$ and T_{ω}^n

THEOREM

• $T_{\omega}^n \approx \omega^n + 1$

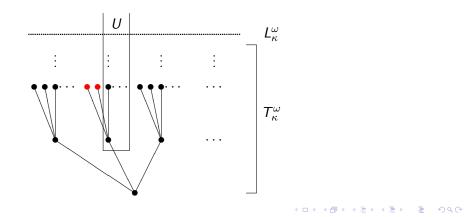
•
$$Log(T_{\omega}^n) = Grz_{n+1}$$
 for $n \ge 0$

• Log
$$\left(\bigoplus_{n\geq 0} T_{\omega}^{n}\right) = \bigcap_{n\geq 0} \operatorname{Grz}_{n+1} = \operatorname{Grz}$$

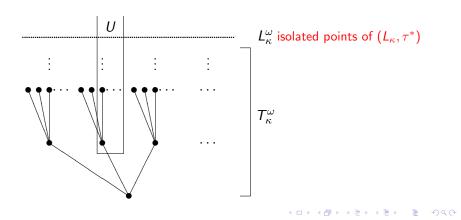
Remark

This merely a new perspective of some known results... Moving to the ED setting requires leaving the metric setting... To do so, our current machinery requires an increase in cardinality

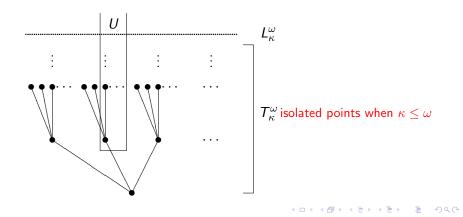
Theorem



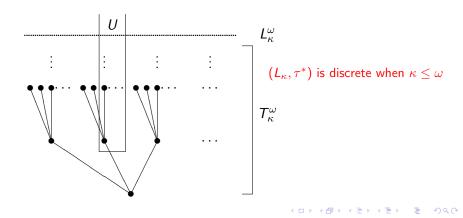
Theorem



Theorem

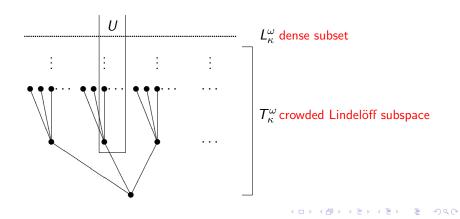


Theorem



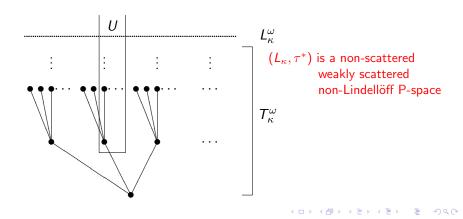
Observations about (L_{κ}, τ^*) for $\kappa > \omega$

Theorem



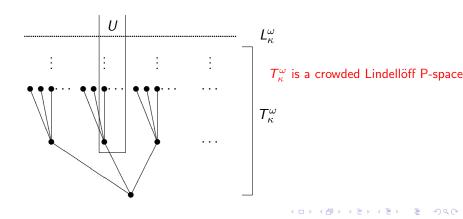
Observations about (L_{κ}, τ^*) for $\kappa > \omega$

Theorem



Observations about (L_{κ}, τ^*) for $\kappa > \omega$

Theorem



Logics of (L_{κ}, τ^*) and T_{κ}^{ω}

Theorem

•
$$Log(T_{\kappa}^{\omega}) = S4$$

•
$$\mathsf{Log}(L_{\kappa}, \tau^*) = \mathsf{S4.1}$$

PROOF SKETCH

Soundness:

- S4 \subseteq Log (T_{κ}^{ω}) always
- S4.1 \subseteq Log (L_{κ}, au^*) because (L_{κ}, au^*) is weakly scattered

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Logics of (L_{κ}, τ^*) and T_{κ}^{ω}

Theorem

•
$$Log(T_{\kappa}^{\omega}) = S4$$

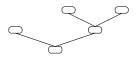
•
$$Log(L_{\kappa}, \tau^*) = S4.1$$

PROOF SKETCH

Completeness:

- Each 'good' S4-frame is an interior image of T_{κ}^{ω}
- Each 'good' S4.1-frame is an interior image of (L_{κ}, τ^*)

'good' S4-frame



Logics of (L_{κ}, τ^*) and T_{κ}^{ω}

Theorem

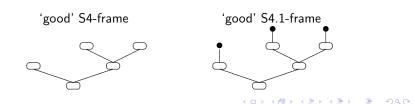
•
$$Log(T_{\kappa}^{\omega}) = S4$$

•
$$\mathsf{Log}(L_{\kappa}, \tau^*) = \mathsf{S4.1}$$

PROOF SKETCH

Completeness:

- Each 'good' S4-frame is an interior image of $\mathcal{T}^\omega_\kappa$
- Each 'good' S4.1-frame is an interior image of (L_κ, au^*)



Logics of (L_{κ}, τ^*) and T_{κ}^{ω}

Theorem

•
$$Log(T_{\kappa}^{\omega}) = S4$$

•
$$\mathsf{Log}(L_{\kappa}, \tau^*) = \mathsf{S4.1}$$

PROOF SKETCH

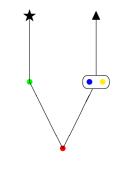
Completeness:

- Example via picture: defining interior surjection $f: L_\kappa o \mathfrak{F}$
- Restriction of $f: T_{\kappa}^{\omega} \to \mathfrak{F} \setminus \max(\mathfrak{F})$ is interior surjection

・ロト ・西ト ・ヨト ・ヨー うらぐ

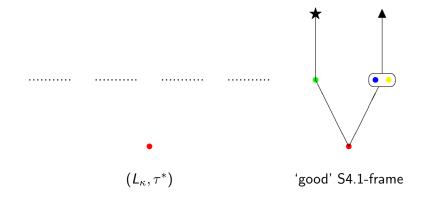
 (L_{κ}, τ^*)

EXAMPLE VIA PICTURE

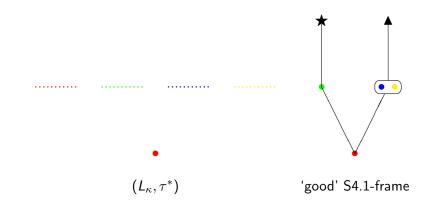


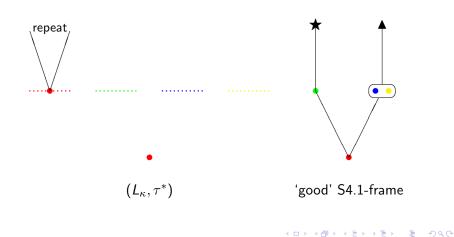
'good' S4.1-frame

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

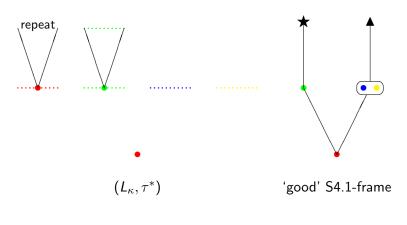


▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで





EXAMPLE VIA PICTURE

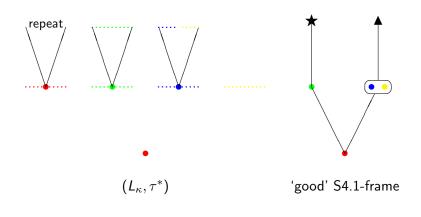


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

ヘロト ヘ週ト ヘヨト ヘヨト

æ

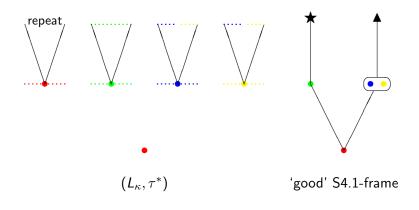
Example via Picture



・ロト ・ 一下・ ・ モト・ ・ モト・

æ

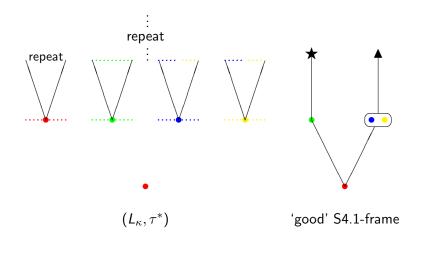
Example via Picture



・ロト ・ 一下・ ・ モト・ ・ モト・

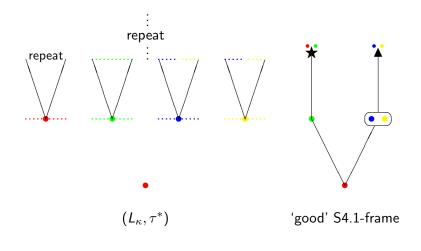
æ

Example via Picture

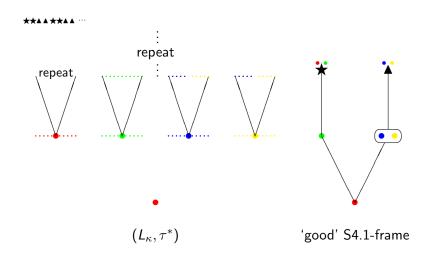


・ロト ・ 一下・ ・ モト・ ・ モト・

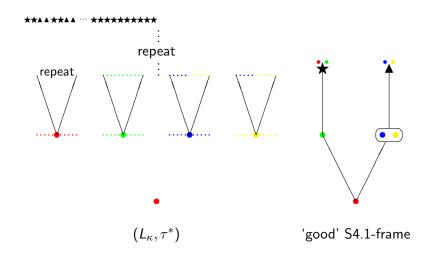
æ



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

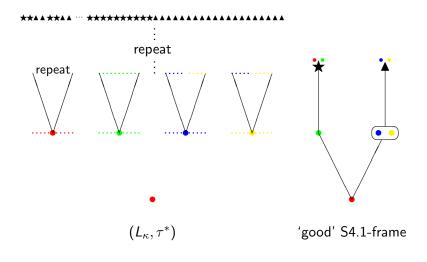


▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

EXAMPLE VIA PICTURE



LINDELÖFFICATION

Definition

View (uncountable) κ as a discrete space

The one-point Lindellöffication of κ is $\kappa \cup \{\infty\}$ with open subsets:

- $\bullet\,$ each subset of $\kappa\,$
- ${\scriptstyle \bullet}$ any subset containing ∞ whose complement is countable

OBSERVATIONS

- Analogue of one-point compactification of a discrete space: 'countable' replaces 'finite'
- \mathcal{T}^1_κ is homeomorphic to the one-point Lindellöffication of κ
- T_{κ}^{n+1} is obtained via appropriately gluing the roots/limit points of κ copies of T_{κ}^{1} to the leaves/isolated points of T_{κ}^{n} (similar to patch-setting where $T_{\omega}^{n} \approx \omega^{n} + 1$)

Scattered subspaces of (L_{κ}, τ^*)

Theorem

- T_{κ}^{n} is a scattered Lindellöff P-space of modal dimension n
- Any finite tree of depth $\leq n+1$ is an interior image of T_{κ}^{n}



Scattered subspaces of (L_{κ}, τ^*)

THEOREM

- T_{κ}^{n} is a scattered Lindellöff P-space of modal dimension n
- Any finite tree of depth $\leq n+1$ is an interior image of T_{κ}^{n}

•
$$Log(T_{\kappa}^n) = Grz_{n+1}$$

• Log
$$\left(\bigoplus_{n\in\omega}T_{\kappa}^{n}\right)=$$
 Grz

 $\begin{array}{c} \bullet \\ T_{\kappa}^{1} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} \bullet \\ \\ \end{array} \begin{array}{c} \bullet \\ \\ \end{array} \begin{array}{c} \bullet \\ \\ \\ \end{array} \begin{array}{c} \bullet \\ \end{array} \begin{array}{c} \bullet \\ \\ \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array}$ \begin{array}{c} \bullet \\ \end{array} \end{array}

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Moving Beyond S4, S4.1, Grz, and Grz_n

OBSERVATIONS

- We have not yet realized any new logics...
- But we have realized the logics arising from metrizable spaces as also arising from non-metrizable spaces...
- How do we move to the ED setting?

IDEA

Appropriately embed T_{κ}^{ω} (or T_{κ}^{n}) into an ED space

THEOREM

A dense subspace of an ED space is ED

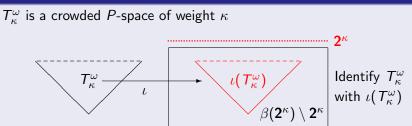
ED spaces

PICKING UP S4.1.2, Grz.2, AND Grz.2_n $(n \ge 2)$

Dow and van Mill 1982 (within ZFC)

Any P-space of weight κ can be embedded into $\beta(\mathbf{2}^{\kappa})$

Note



DEFINITION

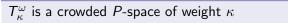
Set
$$X_{\kappa}^{\omega} = \iota(T_{\kappa}^{\omega}) \cup \mathbf{2}^{\kappa} = T_{\kappa}^{\omega} \cup \mathbf{2}^{\kappa}$$

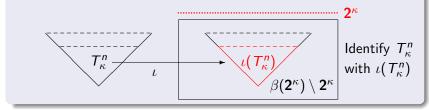
PICKING UP S4.1.2, Grz.2, AND Grz.2_n $(n \ge 2)$

Dow and van Mill 1982 (within ZFC)

Any *P*-space of weight κ can be embedded into $\beta(\mathbf{2}^{\kappa})$

Note





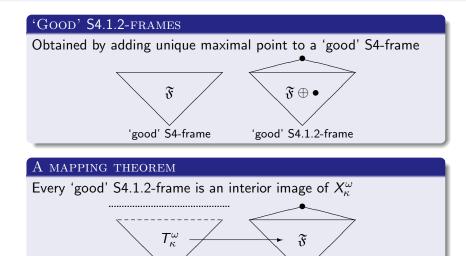
DEFINITION

Set
$$X_{\kappa}^{\omega} = \iota(T_{\kappa}^{\omega}) \cup \mathbf{2}^{\kappa} = T_{\kappa}^{\omega} \cup \mathbf{2}^{\kappa}$$
 and $X_{\kappa}^{n} = \iota(T_{\kappa}^{n}) \cup \mathbf{2}^{\kappa} = T_{\kappa}^{n} \cup \mathbf{2}^{\kappa}$

20

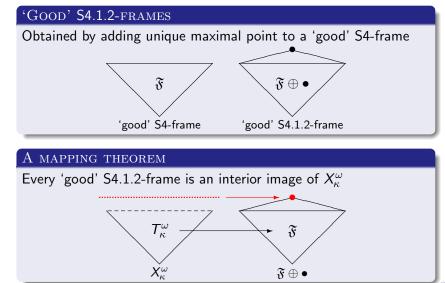
PICKING UP <u>S4.1.2</u>, Grz.2, AND Grz.2_n $(n \ge 2)$

 X^{ω}_{κ}



 $\mathfrak{F} \oplus \bullet$

PICKING UP <u>S4.1.2</u>, Grz.2, AND Grz.2_n $(n \ge 2)$



) Q (A

PICKING UP <u>S4.1.2</u>, Grz.2, AND Grz.2_n $(n \ge 2)$

Theorem

 X^ω_κ is a non-scattered weakly scattered ED space

PROOF SKETCH

Weakly scattered: the isolated points of X_{κ}^{ω} , namely $\mathbf{2}^{\kappa}$, are dense ED: X_{κ}^{ω} is dense in $\beta(\mathbf{2}^{\kappa})$ since $\mathbf{2}^{\kappa} \subseteq X_{\kappa}^{\omega}$

Theorem

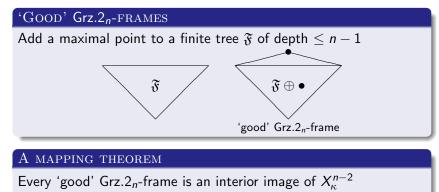
$$Log(X_{\kappa}^{\omega}) = S4.1.2$$

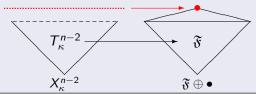
PROOF SKETCH

Soundness: X_{κ}^{ω} is weakly scattered and ED Completeness: follows from the previous mapping theorem

・ロト ・画・ ・曲・ ・曲・ ・ 白・

PICKING UP S4.1.2, Grz.2, AND Grz.2_n $(n \ge 2)$





PICKING UP S4.1.2, Grz.2, AND Grz.2_n $(n \ge 2)$

Theorem

 X_{κ}^{n-2} is a scattered ED space of modal dimension n-1

PARTIAL IDEA OF PROOF

Adding a dense 'layer' of isolated points to T_{κ}^{n-2} preserves scattered and increases modal dimension by one; i.e. $\operatorname{mdim}(X_{\kappa}^{n-2}) = \operatorname{mdim}(T_{\kappa}^{n-2}) + 1$

Theorem

$$Log(X_{\kappa}^{n-2}) = Grz.2_n$$

PROOF SKETCH

Soundness: follows from first theorem above Completeness: follows from the previous mapping theorem

PICKING UP S4.1.2, <u>Grz.2</u>, AND Grz.2_n $(n \ge 2)$

Theorem

$$\operatorname{Log}\left(\bigoplus_{n\in\omega}X_{\kappa}^{n}\right)=\bigcap_{n\in\omega}\operatorname{Grz.2}_{n+2}=\operatorname{Grz.2}$$

QUESTION

How do we obtain S4.2?

BALCAR AND FRANEK 1982 (WITHIN ZFC)

For infinite compact ED spaces X and Y

- if weight of $Y \leq$ weight of X, then Y embeds into X
- X contains a homeomorphic copy of itself as a nowhere dense subspace

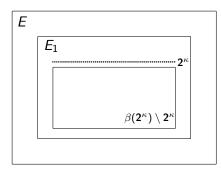
Picking up S4.2

- $eta(\mathbf{2}^\kappa)$ is an infinite compact ED-space of weight $\mathbf{2}^{\mathbf{2}^\kappa}$
- The Gleason cover $E:=E\left([0,1]^{2^{2^\kappa}}
 ight)$ is an infinite compact ED-space of weight 2^{2^κ}

Ε	
	$E_1 \approx E$ nowhere dense

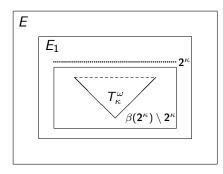
Picking up S4.2

- $eta(\mathbf{2}^\kappa)$ is an infinite compact ED-space of weight $\mathbf{2}^{\mathbf{2}^\kappa}$
- The Gleason cover $E:=E\left([0,1]^{2^{2^\kappa}}
 ight)$ is an infinite compact ED-space of weight 2^{2^κ}



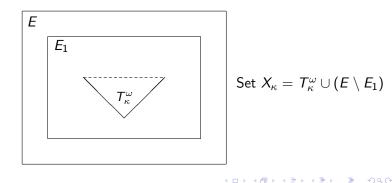
${\rm Picking \ up \ S4.2}$

- $eta(\mathbf{2}^\kappa)$ is an infinite compact ED-space of weight $\mathbf{2}^{\mathbf{2}^\kappa}$
- The Gleason cover $E:=E\left([0,1]^{2^{\kappa}}
 ight)$ is an infinite compact ED-space of weight $2^{2^{\kappa}}$



${\rm PICKING}\ {\rm UP}\ S4.2$

- $eta(\mathbf{2}^\kappa)$ is an infinite compact ED-space of weight $\mathbf{2}^{\mathbf{2}^\kappa}$
- The Gleason cover $E:=E\left([0,1]^{2^{\kappa}}
 ight)$ is an infinite compact ED-space of weight $2^{2^{\kappa}}$

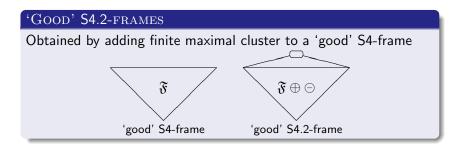


${\rm Picking \ Up \ } S4.2$

OBSERVATIONS

- $E \setminus E_1$ is open and dense in E
- X_{κ} is dense in E
- X_{κ} is ED
- T_{κ}^{ω} is closed and nowhere dense in X_{κ}
- $E \setminus E_1$ is *n*-resolvable for any $n \ge 2$

Picking up S4.2



 \mathfrak{F}

 $\mathfrak{F} \oplus \Theta$

A MAPPING THEOREM

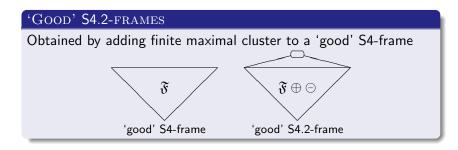
Every 'good' S4.2-frame is an interior image of X_{κ}

 T^{ω}_{κ}

Xĸ

 $) \land (\land)$

Picking up S4.2



A MAPPING THEOREM

Every 'good' S4.2-frame is an interior image of X_{κ} $E \setminus E_1$ T_{κ}^{ω} X_{κ} $\mathfrak{F} \oplus \mathfrak{S}$

${\rm Picking \ up \ S4.2}$

THEOREM

 $Log(X_{\kappa}) = S4.2$

PROOF SKETCH

Soundness: X_{κ} is ED Completeness: mapping theorem

Recap

The logics S4.2, S4.1.2, Grz.2, and Grz.2_n $(n \ge 2)$ arise from Tychonoff ED spaces built within ZFC

Background	Trees with Limits	Patch and Countable Arity	$\sigma ext{-Patch}$ and Uncountable Arity	ED spaces

THANK YOU...

Organizers and Audience

Questions ...

