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[∀p]
Two problems to solve

I The proliferation of modal “logics”

I The riddle of propositional quantification
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[∀p]
The modal proliferation crisis

I Consider ordinary Kripke semantics

I Each condition on frames—a different “logic”?

> K: the minimal normal logic

> D (♦>): non-termination

> T (�p→ p): reflexivity

> K4 (�p→ ��p): transitivity

> S4 (K4 + T): quasiorders

> S5 (S4 + p→ �♦p): equivalence relations . . .

I By contrast, just one first-order logic (FOL) allowing

varying theories!

I Modal logicians are less happy about it than you may think
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[∀p][T ]hese systems are not “different modal logics”, but different spe-

cial theories of particular kinds of accessibility relation. We do not

speak of “different first-order logics” when we vary the underlying

model class. There is no good reason for that here, either.

J. van Benthem, Modal Logics for Open Minds
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[∀p]Another suggestion is that the great proliferation of modal logics is

an epidemy from which modal logic ought to be cured.

R. A. Bull and K. Segerberg, Basic Modal Logic, HPL

(in the context of Gentzen systems: some have suggested to keep only those

modal logics which allow a natural Natural Deduction calculus . . . )
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[∀p]
The riddle of propositional quantification

I Clearly, those additional axioms are implicitly quantified

I But propositional quantification is a mess

> Over state-based semantics or lattice-complete algebras,

computationally as bad as ordinary SO logic

> Which axioms? Which rules? Can be nonconservative over

a syntactically defined “logic”!

Unless you have a semantic result: completeness wrt, e.g.,

lattice-complete BAEs!

> Even for standard “logics”, can yield undesirable principles.

See Kaplan’s paradox in our paper.
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[∀p]
And yet, modal logic twinned with propositional quantification

since birth . . .

[I ]t is only through such principles [such as ∃p(♦p∧♦¬p)] that the

outlines of a logical system can be positively delineated.

C. I. Lewis, Symbolic Logic, 1932

After WWII, Ruth Barcan Marcus, then since 1960’s an

avalanche of papers . . .

. . . okay, at least a trickle : Kripke, Bull, Fine, Kaplan . . .
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[∀p]But very little attention has been paid to second-order modal logic.

I predict that it will play an increasingly central role as the frame-

work for many debates in metaphysics and other areas of philos-

ophy, and that this aspect of the 1947 paper will turn out to have

been more than sixty years ahead of its time.

T. Williamson, Laudatio for R. Barcan Marcus
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[∀p]
That preciousssss thing we’re after

I A quantifier . . . ? modality . . . ? . . . binder?

I Should be interpretable over any semantics, including any

algebra

I Consequently, should reduce all modal “logics” to theories

over some reasonable minimal system

More broadly: “internalization” of modal metatheory

I Should have viable proof theory/theoremhood problem

Decidability can be too much to ask, but at least r.e. should obtain

I Should yield some insight on “paradoxes” of ordinary

propositional quantification, and on its properties in

general

10
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[∀p]
The global quantificational modality

I Semi-formally, one can introduce [∀p]ϕ as “∀pAϕ”

I Aφ itself can be defined in presence of [∀p]ϕ:

I just take a fresh p . . .

Notice: “vacuous” quantification has a semantic effect!

I Other definable global quantificational modalities (GQMs):

〈∃p〉ϕ := ¬[∀p]¬ϕ “=” ∃pEϕ

[∃p]ϕ := 〈∃p〉Aϕ “=” ∃pAϕ

〈∀p〉ϕ := ¬[∃p]¬ϕ “=” ∀pEϕ.

I Note this is the most compact syntax:

LGQM ϕ ::= p | (ϕ→ ϕ) | �ϕ | [∀p]ϕ,

as ⊥ can be defined as [∀p]p.
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[∀p]
Definition
A Boolean algebra expansion (BAE) is a tuple

A = 〈A,¬,∧,⊥,>,�〉 where 〈A,¬,∧,⊥,>〉 is a Boolean algebra

and � : A→ A.

Definition

1. A C-BAE (resp. A-BAE) is a BAE whose Boolean reduct is

lattice-complete (resp. atomic).

2. A BAO (Boolean Algebra with a (dual) Operator) is a BAE

with a normal �, i.e., � distributes over all finite meets.

3. A V-BAO is a BAO where � distributes over all existing

meets.

Recall our surprising discovery this property is actually FO-definable. Some

use made in this paper too.
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[∀p]
Definition (Algebraic Semantics of GQM)

A valuation θ : Prop→ A extends to a function θ̃ : LGQM → A

as follows:

θ̃(p) := θ(p) θ̃(¬ϕ) := ¬θ̃(ϕ)

θ̃(ϕ ∧ ψ) := θ̃(ϕ) ∧ θ̃(ψ) θ̃(�ϕ) := �θ̃(ϕ)

θ̃([∀p]ϕ) :=

> if γ̃(ϕ) = > for all valuations γ ∼p θ

⊥ otherwise

where γ ∼p θ denotes that γ and θ disagree at most at p.

A formula ϕ is valid in A iff for every valuation θ on A,

θ̃(ϕ) = >. Let �GQM ϕ iff ϕ is valid in all BAEs, in which case

ϕ is simply valid.
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[∀p]Lemma (Semantics of Derived Connectives)
For any valuation θ on a BAE A:

θ̃(Aϕ) =

> if θ̃(ϕ) = >
⊥ otherwise

θ̃(Eϕ) =

> if θ̃(ϕ) 6= ⊥
⊥ otherwise

θ̃(〈∃p〉ϕ) =

> if ∃γ ∼p θ.γ̃(ϕ) 6= ⊥
⊥ otherwise

θ̃([∃p]ϕ) =

> if ∃γ ∼p θ.γ̃(ϕ) = >
⊥ otherwise

θ̃(〈∀p〉ϕ) =

> if ∀γ ∼p θ.γ̃(ϕ) 6= ⊥
⊥ otherwise

.
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[∀p]Several definitions of semantic consequence are available, but

we go for an algebraic analogue of global model consequence:

Definition

Given Γ ∪ {ϕ} ⊆ LGQM, let Γ �AGQM ϕ iff for any BAE A and

θ : Prop→ A, if θ̃(γ) = > for each γ ∈ Γ, then θ̃(ϕ) = >.

We need now a proof system complete with respect to �AGQM.
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[∀p]Theorem (Semantic Deduction)

For any formulas ϕ1, . . . , ϕn, ψ ∈ LGQM {ϕ1, . . . , ϕn} �AGQM ψ

iff �GQM A(ϕ1 ∧ · · · ∧ ϕn)→ Aψ.
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[∀p]
Definition (Notions of Equivalence)

For any ϕ,ψ ∈ LGQM and class K of BAEs:

1. ϕ and ψ are equivalent over K iff for every A ∈ K and

valuation θ on A, θ̃(ϕ) = θ̃(ψ)

(or equivalently, ϕ↔ ψ is valid in A);

2. ϕ and ψ are globally equivalent over K iff for every A ∈ K
and valuation θ on A, θ̃(ϕ) = > iff θ̃(ψ) = >
(or equivalently, Aϕ↔ Aψ is valid in A).

3. ϕ and ψ are equivalent (resp. globally equivalent) iff they

are equivalent (resp. globally equivalent) over the class of

all BAEs.
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[∀p]
Since LGQM can be interpreted in arbitrary BAEs, it can be

interpreted in any frames that give rise to BAEs, e.g.:

I Kripke frames (corresponding to CAV-BAOs);

I relational possibility frames (corresponding to CV-BAOs);

I neighborhood frames (corresponding to CA-BAEs);

I neighborhood possibility frames (corresponding to

C-BAEs);

I discrete general frames (corresponding to AV-BAOs);

I discrete general neighborhood frames (corresponding to

A-BAEs);

I general neighborhood frames (corresponding to BAEs).
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[∀p]
That preciousssss thing we’re after

I A quantifier . . . ? modality . . . ? . . . binder? X

I Should be interpretable over any semantics, including any

algebra X

I Consequently, should reduce all modal “logics” to theories

over some reasonable minimal system

More broadly: “internalization” of modal metatheory

I Should have viable proof theory/theoremhood problem

Decidability can be too much to ask, but at least r.e. should obtain

I Should yield some insight on “paradoxes” of ordinary

propositional quantification, and on its properties in

general
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[∀p]
The logic GQM is the smallest set of formulas containing the axioms

from groups 1, 2 and 3 + closed under the rules from group 4 below.

1. propositional axioms

I all classical propositional tautologies.

2. axioms for [∀p]

I distribution: [∀p](ϕ→ ψ)→ ([∀p]ϕ→ [∀p]ψ);

I instantiation: [∀p]ϕ→ ϕpψ where ψ is substitutable for p in ϕ;

I global instantiation: [∀p]ϕ→ [∀r]ϕpψ where ψ is substitutable for

p in ϕ and r is not free in ϕpψ;

I quantificational 5 axiom: ¬[∀p]ϕ→ [∀r]¬[∀p]ϕ where r is not free

in [∀p]ϕ.

20



[∀p]
3. axioms binding [∀p] and �

I �-congruence: [∀p](ϕ↔ ψ)→ (�ϕ↔ �ψ).

4. rules

I modus ponens: if `GQM ϕ and `GQM ϕ→ ψ, then ` ψ;

I [∀p]-necessitation: if `GQM ϕ, then `GQM [∀p]ϕ;

I universal generalization: if `GQM α→ [∀p]ϕ and q is not free in α,

then `GQM α→ [∀q][∀p]ϕ.

Here ‘`GQM ϕ ’ means ϕ ∈ GQM. We write ‘` ϕ ’ when no confusion

will arise.
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[∀p]
Lemma (Provable Formulas)

1. ` A(ϕ→ ψ)→ (Aϕ→
Aψ);

2. ` G∗(ϕ∗ψ)↔ (G∗ϕ∗G∗ψ);

3. if ` ϕ→ ψ, then

` Gϕ→ Gψ;

4. ` Aϕ→ ϕ;

5. ` ϕ→ Eϕ;

6. ` Eϕ↔ AEϕ;

7. ` EAϕ↔ Aϕ;

8. ` GGϕ↔ Gϕ;

9. ` [〈Qp〉]Aψ ↔ [Qp]ψ;

10. ` [〈Qp〉]Eψ ↔ 〈Qp〉ψ;

11. ` [〈Qp〉]ψ ↔ A[〈Qp〉]ψ;

12. ` [〈Qp〉]ψ ↔ E[〈Qp〉]ψ.

In this statement: for ∗ ∈ {∧,∨}, let G∗ be A if ∗ = ∧ and E

otherwise.
22



[∀p]Definition (Global Syntactic Consequence)

Given Γ ∪ {ϕ} ⊆ LGQM, let Γ `AGQM ϕ

iff

ϕ belongs to the smallest set Λ of GQM formulas that includes

Γ ∪ GQM and is closed under modus ponens and

A-necessitation: if ψ ∈ Λ, then Aψ ∈ Λ.
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[∀p]Theorem (Syntactic Deduction)

For any formulas ϕ1, . . . , ϕn, ψ ∈ LGQM: {ϕ1, . . . , ϕn} `AGQM ψ

iff `GQM A(ϕ1 ∧ · · · ∧ ϕn)→ Aψ.
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[∀p]Theorem (Soundness)
For Γ ∪ {ϕ} ⊆ LGQM, Γ `AGQM ϕ implies Γ �AGQM ϕ.

Proof.
Straightforward induction.

Completeness seems a natural next step. But first, let us cross

out an earlier item from our list.
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[∀p]
That preciousssss thing we’re after

I A quantifier . . . ? modality . . . ? . . . binder? X

I Should be interpretable over any semantics, including any

algebra X

I Consequently, should reduce all modal “logics” to theories

over some reasonable minimal system

More broadly: “internalization” of modal metatheory

I Should have viable proof theory/theoremhood problem

Decidability can be too much to ask, but at least r.e. should obtain

I Should yield some insight on “paradoxes” of ordinary

propositional quantification, and on its properties in

general
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[∀p]
Let L� (L�A) be the set of GQM formulas in which no GQMs

other than ⊥ (no GQMs other than A, E and ⊥) appear.

A congruential modal logic is a set L ⊆ L�

I containing all propositional tautologies and

I closed under uniform substitution, modus ponens, and

I the rule that if ϕ↔ ψ ∈ L, then �ϕ↔ �ψ ∈ L.

Let GQM-L be the smallest set of formulas that includes

GQM ∪ L and is closed under all three rules of GQM.
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[∀p]Theorem (Conservativity)

For any ϕ ∈ L�, ϕ ∈ GQM-L iff ϕ ∈ L.

Proof.
The Lindenbaum-Tarski algebra for L is a BAE in which every

ϕ ∈ GQM-L is valid and in which any L� formula not in L can

be refuted.
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[∀p]A set Σ ⊆ L� axiomatizes a congruential modal logic L iff L is

the smallest congruential modal logic such that Σ ⊆ L.

Theorem (Modal Monism)
If Σ axiomatizes L, then we have the following equivalence:

ϕ ∈ L iff there are ψ1, . . . , ψn ∈ Σ such that

`GQM
~[∀p](ψ1 ∧ · · · ∧ ψn)→ ϕ, where ~p is the tuple of variables

occurring in ψ1, . . . , ψn.
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[∀p]
We can easily rephrase this Theorem in the language of

“theories.”

Definition

A `GQM-theory is a set of GQM formulas that includes GQM

and is closed under modus ponens.

Corollary (Logics as Theories)

If Σ ⊆ L� axiomatizes a congruential modal logic L, then we

have the following equivalence: ϕ ∈ L iff ϕ belongs to the

smallest `GQM-theory that includes

[∀]Σ = { ~[∀p]ϕ | ϕ ∈ Σ and ~p are the variables in ϕ}.
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[∀p]
Given this reduction of modal logics to `GQM-theories, we have

the following.

Corollary

GQM theoremhood is undecidable.

Proof.
In the light of the above Theorem, a decision procedure for

GQM would yield a decision procedure for every finitely

axiomatizable modal logic. But there are undecidable logics

with finite axiomatizations.
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[∀p]
That preciousssss thing we’re after

I A quantifier . . . ? modality . . . ? . . . binder? X

I Should be interpretable over any semantics, including any

algebra X

I Consequently, should reduce all modal “logics” to theories

over some reasonable minimal system X

More broadly: “internalization” of modal metatheory ⇐= more to do . . .

I Should have viable proof theory/theoremhood problem

Decidability can be too much to ask, but at least r.e. should obtain

I Should yield some insight on “paradoxes” of ordinary

propositional quantification, and on its properties in

general
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[∀p]
Overall strategy for completeness

I Define the notion of pure weak prenex form (PWP)

I Show that every formula of the form Aφ is equivalent to

one in PWP

An analogy with TBoxes. . .

I Show that PWP formulas are equivalent to formulas of

FOBAEA

first-order theory of BAEs with a unary discriminator, i.e., the global

modality A

I Cannibalize FO completeness!
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[∀p]
I A formula is in pure weak prenex form (PWP) iff it is of

the form ~[〈Qp〉]Gϕ where

> ~[〈Qp〉] is a sequence of [∀pi] and 〈∃pi〉 GQMs only,

> G is either A or E,

> and ϕ is a L�A-formula.

I As stated, every formula of the form Aφ is equivalent to

one in PWP

I We have a normal form working for arbitrary GQM

formulas like CNFWP, but it is too much for this talk

conjunction of normal clauses involving as disjuncts nontrivial weak prenex

form (NWP), literals or boxed/diamonded modal formulas
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[∀p]
Definition

A Boolean algebra expansion with a discriminator (BAEA) is a

tuple A = 〈A,¬,∧,⊥,>,�,A〉 where 〈A,¬,∧,⊥,>,�〉 is a BAE

and A is the dual form of the unary discriminator term (Jipsen

1993), i.e., an algebraic counterpart of the global modality:

Aa = > if a = >, and Aa = ⊥ otherwise.

FOBAEA
(resp. FOBAE) is the set of first-order formulas in the

BAEA (resp. BAE) signature

Recycling Prop for our set of first-order variables
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[∀p]I The class of all BAEAs is elementary, although not exactly

a variety (an equationally definable class)

rather, it is the class of all simple members of the corresponding variety

(Jipsen 1993)

also, we need to focus on nontrivial ones, i.e., those where > 6= ⊥

I BAEs and BAEAs are in 1-1 correspondence:

> BAEAs have BAEs as reducts;

> every BAE A can be trivially extended to a BAEA AA;

and both operations are mutual inverses.
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[∀p]
Enderton-style axioms for FOBAEA

I all substitution instances of propositional tautologies;

I ∀pϕ→ ϕp
t where the term t is substitutable for p in ϕ;

I ∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ);

I ϕ→ ∀pϕ where p does not occur free in ϕ;

I p ≈ p, and p ≈ q → (ϕ→ ϕ′) where ϕ is atomic (i.e.,

equality) and ϕ′ is obtained from ϕ by replacing p in zero

or more places by q;

I first-order axioms of Boolean algebras;

I > 6≈ ⊥;

I ∀p((p ≈ >& Ap ≈ >) OR (p 6≈ >& Ap ≈ ⊥)).
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[∀p]
Every formula of FOBAEA

equivalent to a PWP formula:

where ∼ and & are the negation and conjunction connectives in the first-order

language, whereas ¬ and ∧ in the first-order language are function symbols for the

Boolean algebraic operations

(ϕ ≈ ψ)∗ := A(ϕ↔ ψ) (∼α)∗ := ¬(α)∗

(α&β)∗ := ((α)∗ ∧ (β)∗) (∀pα)∗ := [∀p](α)∗.

Note that the terms in the FOBAEA
formula become formulas of

LGQM, with the Boolean function symbols becoming

propositional connectives.
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[∀p]
In the reverse direction, define for each PWP formula:

(Aϕ)∗ := ϕ ≈ > (Eϕ)∗ := ϕ 6≈ ⊥
([∀p]ϕ)∗ := ∀p(ϕ)∗ (〈∃p〉ϕ)∗ := ∃p(ϕ)∗.

Any A or E GQMs inside ϕ become function symbols in the

FOBAEA
translation.

Lemma (Faithfulness of Translation of FOBAEA
)

For any nontrivial BAE A, θ : Prop→ A, and α ∈ FOBAEA
:

A, θ � α iff θ̃((α)∗) = > and A, θ 2 α iff θ̃((α)∗) = ⊥.
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[∀p]
Theorem (PWP Equivalence of Consequences)

1. For any PWP formula ϕ ∈ LGQM, ϕ a`AGQM ((ϕ)∗)∗.

2. For any ∆ ∪ {α} ⊆ FOBAEA
, ∆ `FOBAEA

α iff

(∆)∗ `AGQM (α)∗.

Corollary (Cannibalizing FOBAEA
-Completeness)

1. For any ∆ ∪ {α} ⊆ FOBAEA
, ∆ �FOBAEA

α iff

(∆)∗ `AGQM (α)∗.

2. For any set of PWP fomulas Γ ∪ {ϕ} ⊆ LGQM, Γ `AGQM ϕ

iff (Γ)∗ �FOBAEA
(ϕ)∗.

Similar results used in AAL to show equivalences of closure operators
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[∀p]
Theorem (Completeness of GQM)

For any Γ ∪ {ϕ} ⊆ LGQM,

Γ `AGQM ϕ iff Γ �AGQM ϕ.

I Note that the transformation to PWP involves a blowup

I Hence, GQM is more succinct that FOBAEA

We still need a formal proof of succintness though

I And it’s only the global consequence anyway, local

consequence more GQM-specific
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[∀p]
That preciousssss thing we’re after

I A quantifier . . . ? modality . . . ? . . . binder? X

I Should be interpretable over any semantics, including any

algebra X

I Consequently, should reduce all modal “logics” to theories

over some reasonable minimal system X

More broadly: “internalization” of modal metatheory ⇐= more to do . . .

I Should have viable proof theory/theoremhood problem X

Decidability can be too much to ask, but at least r.e. should obtain

I Should yield some insight on ordinary propositional

quantification
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[∀p]
Second-order propositional modal logic

LSOPML ϕ ::= p | (ϕ→ ϕ) | �ϕ | ∀pϕ,
LSOPMLA

ϕ ::= p | (ϕ→ ϕ) | �ϕ | Aϕ | ∀pϕ,

I The second language, as stated at the beginning, encodes

GQM.

I We have seen that over arbitrary BAEs, GQM is globally

equivalent to FOBAEA

I Now we’ll add another equivalence: over lattice-complete

BAEs, there is a global equivalence between GQM and

LSOPMLA
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[∀p]
Definition (Algebraic Semantics of SOPML)

We extend a valuation θ on a C-BAE A to a valuation

θ̃ : LSOPMLA
→ A using the standard clauses for ¬, ∧, and �

plus:

θ̃(∀pϕ) =
∧
{γ̃(ϕ) | γ ∼p θ} θ̃(Aϕ) =

> if θ̃(ϕ) = >

⊥ otherwise.

Dually, ∃pϕ is interpreted using the join. The definitions of

local and global equivalence transfer in the obvious way to

LSOPML and LSOPMLA
.
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[∀p]
Balder ten Cate has shown that over CAV-BAOs, every LSOPML

formula is equivalent to a prenex one, i.e., a formula of the form

Q1p1 . . . Qnpnϕ where Qi ∈ {∀, ∃} and ϕ is quantifier-free. In

fact, the following more general result holds.

Theorem (Prenex Normal Form for SOPML)

1. Over CV-BAOs, every SOPML formula is equivalent to a

prenex SOPML formula.

2. Over C-BAEs, every SOPMLA formula is equivalent to a

prenex SOPMLA formula.
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[∀p]
Theorem (SOPML to GQM)

I If α is a prenex SOPMLA formula, then Aα is equivalent

over C-BAEs to a GQM formula.

I Every SOPMLA formula is globally equivalent over C-BAEs

to a GQM formula.

Corollary (C-r.e. Disaster)
The set of GQM formulas valid over any class of C-BAEs

containing the class of CAV-BAOs satisfying S4.2 is not

recursively enumerable.

Proof.
Using an old result by Fine.
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[∀p]See the paper for an analysis of “Kaplan’s paradox” of

propositional quantification in our setting
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[∀p]
Bonus Track: Coq Formalization

I Developed by my student Michael Sammler

I Code available at

https://gitlab.cs.fau.de/lo22tobe/GQM-Coq

I more than 4200 lines of Coq code in 19 files for 15 pages of

proofs

I formalization uncovered the following:

> 10 typos and easy to fix mistakes (e.g. “proof for (vii) is by

(vii)”)

> 5 incorrect steps in proofs

> 1 definition, which needed to be adjusted

I Covers four of the five points on our preciousssss list

48

https://gitlab.cs.fau.de/lo22tobe/GQM-Coq


[∀p]
Todos

I Succinctness analysis

I More on “internalization” of modal metatheory

I Gentzen-style systems

recall the origin of the suggestion Bull&Segerberg’s

I Non-classical propositional bases

Excluded middle can be written as an axiom

I Bisimulation/uniform interpolation GQMs
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[∀p]Proofs for the SOPML part
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[∀p]
For the first part, pulling the quantifier out of ♦∀pϕ is the

interesting bit.

For any normal �, we have the following equivalence:

♦ψ ⇔ ∃q(♦q ∧�(q → ψ))

for a fresh q. Thus, we have the following equivalences where

q#p, ϕ:

♦∀pϕ⇔ ∃q(♦q ∧�(q → ∀pϕ)) setting ψ := ∀pϕ
⇔ ∃q(♦q ∧�∀p(q → ϕ)) because q 6= p

⇔ ∃q(♦q ∧ ∀p�(q → ϕ)) by V for �

⇔ ∃q∀p(♦q ∧�(q → ϕ)) because q 6= p.
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[∀p]
For the second part, we have (?): A∃pψ is equivalent to

∀q∃p(Eq → E(q ∧ ψ)).

In any C-BAE, we also have the following equivalence:

♦ψ ⇔ ∃q(♦q ∧ A(q ↔ ψ))

for q#ψ. Thus, we have the following equivalences where q#p, ϕ:

♦∀pϕ⇔ ∃q(♦q ∧ A(q ↔ ∀pϕ)) setting ψ := ∀pϕ
⇔ ∃q(♦q ∧ A(∀p(q → ϕ) ∧ ∃p(ϕ→ q))) because q 6= p

⇔ ∃q(♦q ∧ A(∀p(q → ϕ) ∧ ∃r(ϕpr → q))) for a fresh r

⇔ ∃q(♦q ∧ A∀p∃r((q → ϕ) ∧ (ϕpr → q))︸ ︷︷ ︸
α

) because r 6= p

⇔ ∃q(♦q ∧ ∀pA∃rα) by V for A

⇔ ∃q(♦q ∧ ∀p∀q′∃r(Eq′ → E(q′ ∧ α))) by (?) where q′ is fresh

⇔ ∃q∀p∀q′∃r(♦q ∧ (Eq′ → E(q′ ∧ α))) because q 6= p, q 6= q′, q 6= r.
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[∀p]
Still more lemmas . . .

Lemma

The following are valid in all C-BAEs:

1. A∀pψ ↔ ∀pAψ;

2. A∃pψ ↔ ∀qA(Eq → ∃rA(Er ∧ (r → q)∧ ∃pA(r → ψ))) where

q and r do not occur in ψ.

. . . and with this, we have the main result . . .
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