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Summary

1. some boring preliminary notions

2. convergence in logic and deductive systems closed to limits

3. an infinitary logic that admits C (X ), with X BDKHaus-space, as
models.
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MV-algebras with product

MV-algebras D endowed with a
scalar multiplication with scalars in
[0, 1]Q = [0, 1] ∩Q.

DMV-algebras (B. Gerla, 2001,
S.L. and Leuştean, 2016)

I they form a variety,
DMV = HSP([0, 1] ∩Q).

I categorical equivalence with
divisible `u-groups and with
Q-vector lattices with s.u..

MV-algebras R endowed with a
scalar multiplication with scalars in
[0, 1].

Riesz MV-algebras (Di Nola,
Leuştean, 2014)

I they form a variety,
RMV = HSP([0, 1]RMV )

I categorical equivalence with
Riesz Spaces (vector lattices)
with strong unit.
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Logics

Logic Algebra Completeness

L LindL is an MV-algebra [0, 1]MV

QL LindQL is a DMV-algebra [0, 1] ∩Q
RL LindRL is a Riesz MV-algebra [0, 1]RMV

Functional representation
Let R ⊆ R be a ring. f : [0, 1]n → [0, 1] is a PWLu(R) function if it is
continuous and there is a finite set of affine functions p1, . . . , pk : Rn → R
with coefficients in R such that for any (a1, . . . , an) ∈ [0, 1]n there exists
i ∈ {1, . . . , k} with f (a1, . . . , an) = pi (a1, . . . , an).
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Functional representations

Free MV-algebra MVn ' LindL,n [R. McNaughton, 1951]
MVn = {fϕ : [0, 1]n → [0, 1] | ϕ formula of L} = PWLu(Z)

Free DMV-algebra DMVn ' LindQL,n [B.Gerla, 2001]
DMVn = {fϕ : [0, 1]n → [0, 1] | ϕ formula of QL} = PWLu(Q)

Free Riesz MV-algebra RMVn ' LindRL,n [Di Nola, Leuştean
2014]
RMVn = {fϕ : [0, 1]n → [0, 1] | ϕ formula of RL} = PWLu(R)
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Tensor product of semisimple MV-algebras. Mundici, 1999

A ⊆ C (X ),B ⊆ C (Y ) semisimple,

A⊗ss B = 〈a · b | a ∈ A,B ∈ B〉MV ⊆ C (X × Y )

(a · b)(x , y) = a(x) · b(y) for any x ∈ X , y ∈ Y .
It enjoys a suitable universal property and each factor embeds in the
product.

Scalar extension properties [S.L., I. Leuştean, 2016, 2017]

I If R is a semisimple Riesz MV-algebra and A is a semisimple
MV-algebra, then R ⊗ A is a semisimple Riesz MV-algebra.

I If D is a semisimple DMV-algebra and A is a semisimple
MV-algebra, then D ⊗ A is a semisimple DMV-algebra.
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Semisimple algebras and tensor product
MVss

DMVssRMVss

UR

UR

UQ

TR

DR

DQ

MVss

DQ−→ DMVss DQ(A) = [0, 1]Q ⊗ A

MVss

TR−→ RMVss TR(A) = [0, 1]⊗ A

DMVss

DR−→ RMVss DR(A) = TR(UR(A)) = [0, 1]⊗ A.
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Convergence in RL

Di Nola A., Lapenta S., Leuştean I., An analysis of the logic of Riesz
Spaces with strong unit, Annals of Pure ans Applied Logic (2018),
169(3) 216–234.
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Convergence in RL

Uniform Limit of formulas
A formula ϕ is the uniform limit of the sequence (ϕm)m∈N in RL if
for any r < 1 there is k such that for any m ≥ k : ` r→ (ϕ↔ ϕm). We
write lim

m
ϕm = ϕ.

TFAE:
1. lim

m
ϕm = ϕ,

2. lim
m

fϕm = fϕ (uniform convergence),

3. there exists (fψm)m∈N such that infm∈N(fψm(x)) = 0 for all x ∈ [0, 1]n

and | fϕm(x)− fϕ(x) |≤ fψm(x) in LindRL,n (strong order convergence)
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A remark

I Riesz MV-algebras are equivalent with Riesz Spaces with a strong
unit,

I In a Riesz space we have three notions of convergence: uniform, in
order and in norm,

I (sm)m∈N converges in order to s if there exists (rm)m∈N such that∧
m rm = 0 and | s − sm |≤ rm for any m ∈ N,

I Order converge does not imply uniform convergence nor
norm-convergence, because in spaces of functions, the pointwise
infimum and the infimum do not need to coincide. This is why we
called 3. strong order convergence.
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Norm of formulas: the unit-norm

ϕ formula in RL, setting ‖[ϕ]‖u = ‖fϕ‖∞.

(LindRL,n, ‖ · ‖u) becomes a normed space.

Completion
The norm-completion of the normed space (LindRL,n, ‖ · ‖u) is
isometrically isomorphic with (C ([0, 1]n), ‖ · ‖∞).

Norm of formulas: the integral norm
It is possible to define an integral norm on LindRL,n . With respect to this norm,
the completion of LindRL,n is a suitable space of integrable function and it is
connected to the theory of L-spaces.
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We now have an appropriate notion of syntactical limit, which
is compatible with the semantic notion.

I analyze deductive systems closed to limits,
I discuss norm completions in logic,
I axiomatize a logic whose models are C (X ), for basically

disconnected X ∈ KHausd.
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From QL to RL

Monotone sequences of formulas
A sequence (ϕn)n of formulas is

1. increasing if ` ϕn → ϕn+1

2. decreasing if ` ϕn−1 → ϕn .

Rational approximation
For any formula ϕ in RL there exist an increasing sequence of formulas
{ψn}n∈N and a decreasing sequence of formulas {χn}n∈N, both in QL,
such that limn ψn = ϕ and limn χn = ϕ.
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Deductive systems

Clearly, the three logical system we are considering are
entangled with each other.

Each formula in RL can be approximated by sequences in QL.

Can be said the same for formulas in QL wrt formulas in Łukasiewicz
logic?

If not, how these consideration are reflected on the deductive systems
of these logics?
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Deductive systems
Recall that L denotes Łukasiewicz logic.

Θ ⊆ FormL, we denote

Thm(Θ,L) = {ϕ ∈ FormL | Θ `L ϕ}

the theory determined by Θ in L.

Analogously for QL and RL, we get

Thm(Θ,QL) = {ϕ ∈ FormL | Θ `QL ϕ}

Thm(Θ,RL) = {ϕ ∈ FormL | Θ `RL ϕ}
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Ł-generated theories in QL

It is easy to check that, for any f ∈ DMVn there exist f ∈ MVn such that

〈f 〉DMV = 〈f 〉DMV .

Thus, via the usual corresponded between filters and
deductive systems,
Let ϕ be a formula of QL. There exists a formula β of L such that
Thm(ϕ,QL) = Thm(β,QL).
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Ł-generated theories in RL

An ideal I of RMVn , n ∈ N, is said to be norm-closed if, whenever
f1, f2, . . . , fm, . . . is a sequence of elements of I and {fm}m∈N uniformly
converges to f , then f ∈ I .

For example, any σ-ideal is norm-closed.

An infinitary deduction rule

(?) if ϕ = limm ϕm then ϕ1, ϕ2, . . . , ϕm, . . .

ϕ
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Ł-generated theories in RL

The logic RL?
It is the logic obtained from RL adding the rule (?).

A consequence
The deductive systems of RL? are in correspondence with norm-closed
ideals of the Lindenbaum-Tarki algebra of RL.

Let ϕ be a formula of RL. There exists a sequence of formulas
Θ = {ϕn}n∈N ⊆ FormŁ such that Thm(ϕ,RL?) = Thm(Θ,RL?).
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How to get compact Hausdorff spaces from Riesz
MV-algebras?

Di Nola A., Lapenta S., Leuştean I., An infinitary logic for basically
disconnected compact Hausdorff spaces, accepted for publication on
the Journal of Logic and Computation, arXiv:1709.08397 [math.LO]
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Some approaches to KHausd

1. frames of opens → duality with compact regular frames
(Isbell)

2. frame of regular opens with a proximity → duality with De Vries
algebras
(De Vries)

3. algebras of continuous functions → duality with "norm-complete"
lattices of functions
(Gelfand, Neumark, Stone, Yosida, Kakutani, Banaschewski)
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Algebras of continuous functions
I By Stone duality, a subcategory of KHausd is equivalent to the

category whose objects are element of the finitary variety of Boolean
Algebras;

I An analogous result is trickier for the whole KHausd: indeed, the dual
of KHausd is an infinitary variety (Rosický, Banaschewski, Duskin);

I Isbell actually proved that it is "enough" to have a variety in which
every function has at most countable arity, and explicitly described
this variety;

I Marra and Reggio provided a finite axiomatization for a variety of
MV-algebras with an infinitary operation δ: δ-algebras are a finitary
variety of infinitary algebras that is dual to KHausd. On C (X ), their
operator coincides with Isbell’s.
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How to get compact Hausdorff spaces from Riesz
MV-algebras?

Norm-complete Riesz MV-algebras

R ∈ RMV semisimple, ‖ · ‖u : R → [0, 1]

‖x‖u = min{r ∈ [0, 1] | x ≤ r1}

A Riesz MV-algebra is norm-complete if it is a complete normed
space wrt to ‖ · ‖u .

M-spaces
An M-space is a Banach lattice (norm-complete Riesz Space) endowed
with a norm ‖·‖ such that ‖x ∨ y‖ = max(‖x‖, ‖y‖).
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How to get compact Hausdorff spaces from Riesz
MV-algebras?

Kakutani’s duality
The category of M-spaces and suitable morphisms is dual to the category
of compact Hausdorff spaces and continuous maps.

M-spaces and Riesz MV-algebras [A. Di Nola and I. Leuştean,
2014]
The category of M-spaces and suitable morphisms is equivalent to the full
subcategory of norm-complete Riesz MV-algebras.
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How to get compact Hausdorff spaces from Riesz
MV-algebras?

KHausd M-spaces

δMV

dual

dual

NormCompleteRMV
equiv

semisimple, complete... can we axiomatize them?

Recalling that the uniform limit of formulas is equivalent to
"strong order convergence"...
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σ-complete algebras

The category RMVσ
objects: σ-complete Riesz MV-algebras (i.e. closed to countable suprema),
arrows: σ-homomorphisms of Riesz MV-algebras.

It follows from the general theory of Riesz spaces that:

I Any σ-complete Riesz MV-algebra is norm-complete;
I for any R ∈ RMVσ there exists a basically disconnected compact

Hausdorff space X space such that R ' C (X ).
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What we got:

KHausd M-spacesdual
NormCompleteRMV

equiv

BDKHausd RMVσ

BDKHausd
A compact Hausdorff space is basically disconnected if the closure of any
open Fσ (i.e. countable union of closed sets) is open.

S. Lapenta (UNISA) Infinitary logic and DBKHausd-spaces 26/40



What we got:

KHausd M-spacesdual
NormCompleteRMV

equiv

BDKHausd RMVσ

BDKHausd
A compact Hausdorff space is basically disconnected if the closure of any
open Fσ (i.e. countable union of closed sets) is open.

S. Lapenta (UNISA) Infinitary logic and DBKHausd-spaces 26/40



What we got:

KHausd M-spacesdual
NormCompleteRMV

equiv

BDKHausd RMVσ

BDKHausd
A compact Hausdorff space is basically disconnected if the closure of any
open Fσ (i.e. countable union of closed sets) is open.

S. Lapenta (UNISA) Infinitary logic and DBKHausd-spaces 26/40



What we got:

KHausd M-spacesdual
NormCompleteRMV

equiv

BDKHausd RMVσ

BDKHausd
A compact Hausdorff space is basically disconnected if the closure of any
open Fσ (i.e. countable union of closed sets) is open.

S. Lapenta (UNISA) Infinitary logic and DBKHausd-spaces 26/40



An important remark

σ-complete Riesz MV-algebras are actually infinitary algebras in the
sense of Słomiński.

Spoiler: they are an infinitary variery!

Słomiński J., The theory of abstract algebras with infinitary
operations, Instytut Matematyczny Polskiej Akademi Nauk, Warszawa
(1959).
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The logic IRL

I Language: the one of RL +
∨

I Axioms: the ones of RL +
(S1) ϕk →

∨
n∈N ϕn , for any k ∈ N

I Deduction rules: Modus Ponens +
(SUP) (ϕ1 → ψ), . . . , (ϕk → ψ) . . .∨

n∈N ϕn → ψ
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The semantics of IRL, main results:

I Models of the logic are objects in RMVσ ,

I LindIRL is the smallest σ-complete Riesz MV-algebra that contains
LindRL,

I alternatively, models are spaces C (X ), with X basically disconnected
compact Hausdorff space.

Hence,
There exists a basically disconnected compact Hausdorff space X such
that LindIRL ' C (X ).
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Functional representations for LindIRL

On the one end,
LindIRL ' C (X ), for some basically disconnected X ∈ KHausd.
We tried to get an analogous of the Gleason cover, but for a general space
X the construction is very complicated (Jayne, Zakherov and Kuldonov,
Vermeer)

On the other end,
we can prove that LindRL,n ⊆ C ([0, 1]n) ⊆ LindIRL,n

⇒ LindIRL,n is also isomorphic to some class of non-continuous
[0, 1]n-valued functions! Can we characterize them?
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Let’s start with Riesz tribes...

A Riesz tribe over X is a Riesz MV-algebra of [0, 1]-valued functions over
X that are closed under pointwise countable suprema.

The Loomis-Sikorski theorem for Riesz MV-algebras
Any σ-complete R Riesz MV-algebra is an homomorphic image of a Riesz
tribe T .

R = C (X ) and we say that f v g iff {x ∈ X | f (x) 6= g(x)} is meager.
Then R is homomorphic image of:

T = {f ∈ [0, 1]X | there exists g ∈ R : f v g}
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A completeness theorem

The class of Dedekind σ-complete Riesz MV-algebras is
HSP([0, 1]), the infinitary variety generated by [0, 1].
by the Loomis-Sikorski theorem.

Corollary:
IRL is [0, 1]-complete.
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Term functions in σ-complete Riesz MV-algebras

Absolutely free algebras

I TermRMVσ , the set of terms in the language of RMVσ , is the
absolutely free algebra in the same language, denoted by
TermRMVσ(n) when only n variables occur.

I for A ∈ RMVσ , we get

τ ∈ TermRMVσ(n) 7→ f Aτ : An → A

I RT n = {fτ : [0, 1]n → [0, 1] | τ ∈ TermRMVσ(n)} is a Riesz tribe.
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Free algebras

The following hold

1. RT n is the smallest Riesz tribe that contains the projections.

2. RT n is the free n-generated Riesz σ-algebra in RMVσ .

3. By standard arguments, the free algebra in RMVσ is LindIRL,n .

4. Whence, RT n ' LindIRL,n .

Borel functions on (X , τ)

B(X ) = 〈O(X )〉σ is the Borel sigma algebra of X .
f : X → Y is Borel function if f −1(A) ∈ B(X ) for any A ∈ B(Y ).
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The smallest Riesz tribe that cointains all projections

RT n ' Borel([0, 1]n, [0, 1])

Sketch of proof

1. Since projections are Borel functions, RT n ⊆ Borel([0, 1]n, [0, 1]).
Viceversa,

2. Standard argument in literature. Any Borel function
f : [0, 1]n → [0, 1] is the uniform limit of an increasing sequence of
simple functions fm : [0, 1]n → [0, 1], where fm =

∑km
i=1

αiχEi with
αi ∈ [0, 1], km a suitable index that depends on m and Ei are Borel
subsets of [0, 1]n . Then, we only have to prove that χE ∈ RT n .
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Sketch.
3. For n = 1 and E = (r , 1], it is enough to note that χ(r ,1] =

∧
m fm,r ,

where fm,r is the continuous piecewise linear function with real
coefficients defined by

fm,r (x) =


0 if x ≤ r − r

2m

linear if r − r
2m
< x ≤ r

1 if x > r

4. For n > 1, E ∈ B([0, 1]n) iff E =
∏n

i=1
Ei , with Ei ∈ B([0, 1]).
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Another characterization

Baire functions
X , Y topological spaces.
f : X → Y is a Baire function if it belongs to the algebra of functions
obtained by transfinite induction starting from the continuous functions
and it is closed under pointwise limits of convergent sequences.

Lebesgue-Hausdorff theorem
If X is a metric space and Y = [0, 1]n , then

Baire(X ,Y ) = Borel(X ,Y )
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Finally,

RT n ' Baire([0, 1]n, [0, 1]) ' Borel([0, 1]n, [0, 1]) ' LindIRL,n

Another way in:

I The isomorphism between RT and Baire([0, 1]n, [0, 1]) can be also
deduced as a straightforward consequence of the work of A.
Dvurečenskij on the Loomis-Sikorski theorem for `-groups.
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A recap:
1. We have defined convergence in logic and characterized the

norm-completion of LindRL,n ,

2. We analyzed limits in deductive systems,

3. We have found a "nice" infinitary variety whose objects are in
correspondence with basically disconnected compact Hausdorff
spaces,

4. We have considered the logical system attached to such variety and
have given different functional characterizations of its
Lindenbaum-Tarski algebra,

5. We have proved the Loomis-Sikorski theorem for RMV-algebras and
deduced [0, 1]-completeness of our logic.
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Thank you!
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