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Semantic Hierarchy
In our paper, we show how semantics for intuitionistic logic
form a strict hierarchy in terms of generality:

Kripke < Beth < Topological < Dragalin < Algebraic.

Each semantics supplies a map σ from a class of structures to
the class of Heyting algebras. For semantics S and S′:

S ≤ S′ if every Heyting algebra in the image of σS is
isomorphic to a Heyting algebra in the image of σS′;

S < S′ if S ≤ S′ but S′ 6≤ S; S ≡ S′ if S ≤ S′ and S′ ≤ S.

We pay relatively more attention to Beth and Dragalin, as
instances of the unifying idea of nuclear semantics.

The Dragalin place in the hierarchy can be expanded as:

Locales ≡ Nuclear ≡ Dragalin ≡ Cover ≡ FM.
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Kripke < Topological < Locales < Algebraic

This part of the semantic hierarchy is well known.

Kripke < Topological, as Kripke frames produce only those
locales that are completely join-prime generated, i.e., every
element is a join of completely join-prime elements.
Many spatial locales are not so generated.

Topological < Locales, because not all locales are spatial.

Locales < Algebraic, because not all HAs are complete.
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Consequences for SI-logics

One consequence of S < S′ is that S′ may be able to characterize
more superintuitionistic logics than S can characterize.

Re Kripke < Topological, Shehtman showed that there are
Kripke-incomplete but topologically-complete SI-logics.

But there are many open questions about SI-incompleteness. . .

Contrast this with our knowledge of modal incompleteness with
respect to different kinds of algebras—as summarized in, e.g.,
“Complete Additivity and Modal Incompleteness” by H. & Litak.
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Kuznetsov’s Problem (1974): can every SI-logic be
characterized as the logic of some class of topological spaces?

Alexander Vladimirovich Kuznetsov (1926–1984)

Natural variant: replace ‘topological spaces’ by ‘locales’ above.
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Beth semantics

Prior to Kripke semantics, Beth proposed a semantics for
intuitionistic logic.

Evert Willem Beth (1908–1964)



Beth semantics

Like Kripke semantics, Beth semantics (in the version we adopt)
works with a poset X and a valuation mapping each proposition
letter p to an upset v(p).

But there is a modified definition of
satisfaction for proposition letters and disjunctions:

x |=v p iff every maximal chain1 through x intersects v(p);

x |=v ϕ ∨ ψ iff every maximal chain through x intersects
{y ∈ X | y |=v ϕ or y |=v ψ}.

If p will “inevitably” be verified, then it is already satisfied.

If “inevitably” one of the disjuncts of a disjunction will be
satisfied, then the disjunction is already satisfied.

1In our paper, we work with chains closed under upper bounds instead of
maximal chains in order to give more constructive proofs.



Beth semantics

Like Kripke semantics, Beth semantics (in the version we adopt)
works with a poset X and a valuation mapping each proposition
letter p to an upset v(p). But there is a modified definition of
satisfaction for proposition letters and disjunctions:

x |=v p iff every maximal chain1 through x intersects v(p);

x |=v ϕ ∨ ψ iff every maximal chain through x intersects
{y ∈ X | y |=v ϕ or y |=v ψ}.

If p will “inevitably” be verified, then it is already satisfied.

If “inevitably” one of the disjuncts of a disjunction will be
satisfied, then the disjunction is already satisfied.

1In our paper, we work with chains closed under upper bounds instead of
maximal chains in order to give more constructive proofs.



Beth semantics

Like Kripke semantics, Beth semantics (in the version we adopt)
works with a poset X and a valuation mapping each proposition
letter p to an upset v(p). But there is a modified definition of
satisfaction for proposition letters and disjunctions:

x |=v p iff every maximal chain1 through x intersects v(p);

x |=v ϕ ∨ ψ iff every maximal chain through x intersects
{y ∈ X | y |=v ϕ or y |=v ψ}.

If p will “inevitably” be verified, then it is already satisfied.

If “inevitably” one of the disjuncts of a disjunction will be
satisfied, then the disjunction is already satisfied.

1In our paper, we work with chains closed under upper bounds instead of
maximal chains in order to give more constructive proofs.



Beth semantics

x |=v p iff every maximal chain through x intersects v(p);

x |=v ϕ ∨ ψ iff every maximal chain through x intersects
{y ∈ X | y |=v ϕ or y |=v ψ}.

Instead of evaluating formulas in the locale Up(X) of all upsets,
evaluate in the algebra of “fixed” upsets: upsets U such that if
every maximal chain through x intersects U, then x ∈ U.

The join in the algebra is no longer union, but rather:

U∨V = {x ∈ X | every maximal chain through x intersects U∪V}.

Later we will see why the algebra of fixed upsets is a locale,
which yields soundness of IPC w.r.t. Beth semantics.
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Beth semantics
One of Dummett’s (2000) ways of understanding Beth:

On this approach, we are distinguishing between the
verification of an atomic statement in a given state of
information, and its being assertible; the latter notion
is represented by truth at a node, and is defined, for all
statements, in terms of the verification of atomic
statements. The knowledge that a given atomic
statement will be verified within a finite time does not
itself constitute a verification of it, but is sufficient
ground to entitle us to assert it. (p. 139)

While in Kripke semantics, x |=v p iff x ∈ v(p), Dummett
suggests that in Beth semantics we can make a distinction:

x ∈ v(p) means that p is verified in x;

x |=v p means that in x, it is known that p will be verified.
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Beth semantics

The same idea helps to explain the different treatment of
disjunction in Beth vs. Kripke and topological semantics.

Assume a constructivist view according to which one has verified
a disjunction only if one has verified one of the disjuncts.

Thus, in Kripke semantics, which is based on what has been
verified, x |= p ∨ q only if x |= p or x |= q.

However, it does not follow that one knows that a
disjunction will be verified only if one knows of one of the
disjuncts that it will be verified. Thus, in Beth semantics,
which is based on knowledge of what will be verified, it does
not hold in general that x |= p ∨ q only if x |= p or x |= q.

In Beth semantics, x |= p ∨ q if it is known that however the
future unfolds, one of the disjuncts will be verified.
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Kripke < Beth < Topological

Theorem

1 Every locale that can be produced by a Kripke frame can also
be produced by a Beth frame, but not vice versa.

2 Every locale that can be produced by a Beth frame can also be
produced by a topological space, but not vice versa.

As a corollary, every superintuitionistic logic that can be
characterized by Kripke frames (resp. Beth frames) can be
characterized by Beth frames (resp. topological spaces).

Given Shehtman’s result that there are Kripke-incomplete but
topologically-complete SI-logics, either there are
Kripke-incomplete but Beth-complete SI-logics or there are
Beth-incomplete but topologically-complete SI-logics.

Question: Which is it? Both?
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Recall: the locales produced by Kripke frames are the
completely join-prime generated locales, and the locales
produced by topological spaces are the spatial locales.

Problem: characterize the locales produced by Beth frames.
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The essence of Beth semantics

At the heart of Beth semantics is an operation jb on the upsets of
a poset X defined as follows:

jbU = {x ∈ X | every maximal chain through x intersects U}.

A fixed upset as before is an upset that is a fixpoint of jb:

U = jbU.

The two key satisfaction clauses in Beth semantics become:

x |=v p iff x ∈ jbv(p);

x |=v ϕ ∨ ψ iff x ∈ jb{y ∈ X | y |=v ϕ or y |=v ψ}.

In the algebra of fixed upsets mentioned before, the join is:

U ∨ V = jb(U ∪ V).
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At the heart of Beth semantics is an operation jb on the upsets of
a poset X defined as follows:

jbU = {x ∈ X | every maximal chain through x intersects U}.

This jb is an example of a nucleus.

A nucleus on an HA H is a function j : H → H satisfying:

1 a ≤ ja (inflationarity);

2 jja ≤ ja (idempotence);

3 j(a ∧ b) = ja ∧ jb (multiplicativity).

A nuclear algebra is a pair (H, j) of an HA H and nucleus j on H.
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The essence of Beth semantics

Earlier we claimed that the algebra of fixed upsets of a Beth
frame, with join changed to U ∨jb V = jb(U ∨ V), is a locale.

Since jb is a nucleus, this follows from a well-known result:

For any HA H and nucleus j on H, let Hj = {a ∈ H | ja = a}.

Then Hj is an HA where for a, b ∈ Hj:

a ∧j b = a ∧ b;

a→j b = a→ b;

a ∨j b = j(a ∨ b);

0j = j0.

If H is a locale, so is Hj, where
∧

j S =
∧

S and
∨

j S = j(
∨

S).

For Beth, H is the locale of upsets of a poset, and j = jb.
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Beyond Beth to nuclear semantics

For Beth, H is the locale of upsets of a poset, and j = jb.

But we can generalize:

Definition
A nuclear frame is a pair (X, j) where X is a poset and j is a
nucleus on Up(X).



Definition
A nuclear frame is a pair (X, j) where X is a poset and j is a
nucleus on Up(X).

A valuation on a nuclear frame assigns to proposition letters
elements of Up(X) as usual, and the definition of |= simply
replaces the Beth nucleus jb with the given nucleus j:

x |=v ⊥ iff x ∈ j∅;

x |=v p iff x ∈ jv(p);

x |=v ϕ ∨ ψ iff x ∈ j{y ∈ X | y |=v ϕ or y |=v ψ};

In short: evaluate formulas in the locale Up(X)j.

Soundness of IPC is then immediate, since Hj is an HA
whenever HA is. Completeness follows from Kripke
completeness (j is identity) or Beth completeness (j = jb).
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Interpretation of nuclei

Dummett’s distinction between p being verified vs. assertible:
“The knowledge that a given atomic statement will be verified
within a finite time does not itself constitute a verification of it,
but is sufficient ground to entitle us to assert it” (p. 139).

Connection to nuclei: there is a set V(ϕ) of states in which ϕ is
verified and a set jV(ϕ) of states in which ϕ is assertible.

Whatever one’s view of assertibility, verification should be
sufficient for assertibility, so j should be inflationary.

One could reasonably adopt a notion of assertibility according
to which if it is assertible that some statement is assertible, then
that statement is indeed assertible, so j should be idempotent.

It also reasonable that a conjunction is assertible iff each
conjunct is assertible, so j should be multiplicative.
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The generality of nuclear semantics

Recall: the locales produced by Kripke frames are the
completely join-prime generated locales, and the locales
produced by topological spaces are the spatial locales.

By contrast:

Theorem (Dragalin 1979)
Every locale is isomorphic to Up(X)j for some nuclear frame (X, j).

Can we achieve this kind of generality with a semantics that
replaces the algebraic j with some more concrete data?
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Dragalin semantics

Albert Grigor’evich Dragalin (1941-1998)



Dragalin semantics

Beth semantics looks at the maximal chains through each x ∈ X.

Generalization: there is a D : X → ℘(℘(X)) assigning to each
x ∈ X a set of “developments” of x. D(x) could be the set of
maximal chains through x, but there are other possibilities. . .

Maybe they aren’t maximal; maybe they aren’t chains; maybe
they are only directed; maybe they are not even directed, etc.
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Dragalin semantics

But D : X → ℘(℘(X)) should satisfy some constraints, e.g.:

(1◦) ∅ 6∈ D(s).
Intuitively: the empty set is not a development of anything.

(2◦) if t ∈ S ∈ D(s), then ∃x ∈ S : s ≤ x and t ≤ x.
Intuitively: every stage t in a development of s is compatible
with s, in that s and t have a common extension x.

(3◦) if s ≤ t, then ∀T ∈ D(t) ∃S ∈ D(s) : S ⊆ ↓T.
Intuitively: if at some “future” stage t a development T will
become available, then it is already possible to follow a
development bounded by T.

(4◦) if t ∈ S ∈ D(s), then ∃T ∈ D(t) : T ⊆ ↓S.
Intuitively: we “can always stay inside” a development, in
the sense that for every stage t in S, we can follow a
development T from t that is bounded by S.
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But D : X → ℘(℘(X)) should satisfy some constraints, e.g.:

(1◦) ∅ 6∈ D(s).
Intuitively: the empty set is not a development of anything.

(2◦◦) if S ∈ D(s), then S ⊆ ↑s.
Intuitively: the stages in a development starting from s are
extensions of s.

(3◦◦) if s ≤ t, then D(t) ⊆ D(s).
Intuitively: developments available at “future” stages are
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(4◦◦) if t ∈ S ∈ D(s), then ∃T ∈ D(t) : T ⊆ S.

Intuitively: we “can always stay inside” a development in
the sense that for every state t in S, we can follow a
development T from t that is included in S.



Dragalin semantics

A Dragalin frame is a pair (X,D) where X is a poset and
D : X → ℘(℘(X)) satisfies conditions (1◦)–(4◦).

Proposition (Dragalin)
For any Dragalin frame (X,D), the function jD on Up(X) defined by

jDU = {s ∈ X | every development in D(s) intersects U}

is a nucleus on Up(X).

So every Dragalin frame (X,D) gives us a nuclear frame (X, jD),
which in turn gives us a locale Up(X)jD as before.

Dragalin semantics: given a Dragalin frame (X,D), apply the
earlier nuclear semantics to (X, jD).
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Theorem (Dragalin 1979)
Every spatial locale is isomorphic to one arising from a Dragalin
frame.

Recall that Dragalin had a stronger result for nuclear frames:

Theorem (Dragalin 1979)
Every locale is isomorphic to one arising from a nuclear frame.

Theorem (Bezhanishvili and Holliday 2016)
For every nuclear frame (X, j), there is a Dragalin frame (X,D)
such that jD = j.

Super-sketch. As is well known, the nuclei on Up(X) form a locale in
which each j can be written as a meet of special nuclei wja . We show
that each of these special nuclei can be captured by a D function, and
the meet of nuclei can be captured by an operation on D functions.

Corollary
Every locale is isomorphic to one arising from a Dragalin frame.
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An equivalence of semantics

Corollary
Every locale is isomorphic to one arising from a Dragalin frame.

Indeed, we have the equivalence of three semantics:

Locales ≡ Nuclear ≡ Dragalin.

Question: can every SI-logic be characterized by some class of
locales? Could Dragalin frames help us?
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Relation of Dragalin to Cover Semantics

Let (X,D) be such that X is a poset and D : X → ℘(℘(X)).

Generalizing Beth semantics, Dragalin gives conditions on D so
that the following operation [D〉 is a nucleus on Up(X):

[D〉U = {x ∈ S | ∀X ∈ D(x) : X ∩ U 6= ∅}.

À la neighborhood semantics, Goldblatt (2011) gives conditions
so that the following operation 〈D] is a nucleus on Up(X):

〈D]U = {x ∈ S | ∃X ∈ D(x) : X ⊆ U}.

He calls this cover semantics. It is not hard to see that

Dragalin ≡ Cover.

In our manuscript, “Development Frames”, we systematically
relate the Beth-Dragalin style path or development semantics to
Scott-Montague style neighborhood or cover semantics.
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FM-semantics

A (normal) FM-frame is a triple (Y,≤1,≤2) where Y is a set,
≤1 and ≤2 are preorders on X, and ≤2 is a subrelation of ≤1.

�1U = {x ∈ Y | ∀y ≥1 x : y ∈ U}
♦2U = {x ∈ Y | ∃y ≥2 x : y ∈ U}

Proposition (Fairtlough and Mendler 1997)
For any FM-frame (Y,≤1,≤2), the operation �1♦2 is a nucleus on
the Heyting algebra Up(Y,≤1).

Thus, we can apply nuclear semantics and work with the locale

Up(Y,≤1)�1♦2 .
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From Dragalin to FM
Surprisingly, FM is as general as Dragalin semantics:

Theorem (Bezhanishvili and Holliday 2016)
For any (normal) Dragalin frame (X,D), there is a (normal)
FM-frame (Y,≤1,≤2) such that the nuclear algebras (Up(X), jD)
and (Up(Y,≤1),�1♦2) are isomorphic.

Super-sketch. Any Dragalin frame can be made “convex”, and any
convex (normal) Dragalin frame (X,≤,D) can be turned into a
(normal) FM-frame (Y,≤1,≤2) as follows:

Y = {(x, S) | x ∈ X, S ∈ D(x)};

(x, S) ≤1 (y,T) iff x ≤ y;

(x, S) ≤2 (y,T) iff T ⊆ S.

Corollary
Every locale is isomorphic to one arising from an FM-frame.
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Direct from Locales to FM-frames

The FM-frame obtained by following our constructions for
Locale⇒ Dragalin⇒ FM is a substructure of the following.

Definition
The canonical FM-frame of a locale L is the normal FM-frame
(XL,≤1,≤2) defined as follows, where ≤ is the order in L:

1 XL = {(a, b) ∈ L2 | a 6≤ b}:
2 (a, b) ≤1 (c, d) iff a ≥ c;
3 (a, b) ≤2 (c, d) iff a ≥ c and b ≤ d.

Then we can give a direct proof of the following.

Theorem
Every locale L is isomorphic to Up(XL,≤1)�1♦2 .

This is essentially the approach of Massas (2016), except he
constructs a smaller substructure of the canonical FM-frame.
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Relation of FM to Urquhart and Allwein

Generalizing Urquhart, a doubly preordered structure is a triple
(X,≤1,≤2) where X is a set and ≤1 and ≤2 are preorders on X.

Then �2¬ and �1¬ form an antitone Galois connection between
Up1(X) and Up2(X). Hence �1♦2 is a closure operator on Up1(X), and
the �1♦2-fixpoints ordered by inclusion form a complete lattice.

Let the canonical structure of a complete lattice L be (X,≤1,≤2):
1 X = {(a, b) ∈ L2 | a 6≤ b};
2 (a, b) ≤1 (c, d) iff a ≤ c;
3 (a, b) ≤2 (c, d) iff b ≥ d.

Theorem (Allwein 1998)
If L is a complete lattice, then L is isomorphic to the lattice of
�1♦2-fixpoints of the canonical structure of L.

If L is a locale, we can cut down ≤2 to be a subrelation of ≤1.
That’s FM-semantics!
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Conclusion

We have sketched the semantic hierarchy:

Kripke < Beth < Topological < Dragalin < Algebraic.

Locales ≡ Nuclear ≡ Dragalin ≡ Cover ≡ FM.

Open question: for which of the strict inequalities S < S′ are
there S-incomplete but S′-complete SI-logics?

Can the more concrete representations of locales help answer
the question of locale (in)completeness of SI-logics?
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Kripke < Beth < Topological < Dragalin < Algebraic.

Locales ≡ Nuclear ≡ Dragalin ≡ Cover ≡ FM.

Thank you!



From Kripke to Beth

Bethification. Given a poset F = (X,≤), its Bethification
Fb = (Xb,≤b) is defined by:

Xb is the set of all pairs 〈x,n〉 where x ∈ X and n ∈ N;

〈x,n〉 ≤b 〈x′,n′〉 iff [x = x′ and n ≤ n′] or [x ≤ x′ and n < n′].

One can think of the second coordinate of each pair as the time
according to a discrete clock.

The definition of ≤b reflects the idea that one may remain at the
same state x for all time or one may transition from x to a
distinct extension x′ of x, which takes time.

A state in the Bethification records the current time and one’s
current location in the Kripke frame.
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Bethification (right) of a Kripke frame (left).

Bethification Theorem: Let F be a poset and Fb its Bethification.
Then Up(F) is isomorphic to the locale of fixpoints of the Beth
nucleus on Up(Fb).
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From Beth to Topological

Given a poset F = (X,6), let Y be the set of all maximal chains
in X, and for U ⊆ X, let [U] = {α ∈ Y | α ∩ U 6= ∅}.

Then the pair (Y,Ω) with

Ω = {[U] | U is a fixpoint of the Beth nucleus on Up(F)}

is a topological space, and the locale of fixpoints of the Beth
nucleus on Up(F) is isomorphic to the locale of open sets of the
topological space (Y,Ω).
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From Topological to Dragalin

For a topological space (X,Ω), consider the tuple (Ω,≤,D):

U ≤ V iff U ⊇ V;

D(U) = {B | ∃x ∈ U : B is a local base of x and
⋃
B ⊆ U}.

Then (Ω,≤,D) is a Dragalin frame, and Ω(X) is isomorphic to
the locale of fixpoints of the Dragalin nucleus jD on Up(Ω,≤).
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