A Semantic Hierarchy for Intuitionistic Logic

Guram Bezhanishvili ${ }^{\dagger}$ and Wesley H. Holliday ${ }^{\ddagger}$
\dagger New Mexico State University
\ddagger University of California, Berkeley

ToLo VI, July 5, 2018

An advertisement for our paper, "A Semantic Hierarchy for Intuitionistic Logic," written for a special issue of Indagationes Mathematicae on L.E.J. Brouwer: Fifty Years Later.

Luitzen Egbertus Jan Brouwer (1881-1966)

Semantic Hierarchy

In our paper, we show how semantics for intuitionistic logic form a strict hierarchy in terms of generality:

Kripke $<$ Beth $<$ Topological $<$ Dragalin $<$ Algebraic

Semantic Hierarchy

In our paper, we show how semantics for intuitionistic logic form a strict hierarchy in terms of generality:

$$
\text { Kripke < Beth }<\text { Topological < Dragalin }<\text { Algebraic. }
$$

Each semantics supplies a map σ from a class of structures to the class of Heyting algebras.

Semantic Hierarchy

In our paper, we show how semantics for intuitionistic logic form a strict hierarchy in terms of generality:

$$
\text { Kripke < Beth }<\text { Topological < Dragalin }<\text { Algebraic. }
$$

Each semantics supplies a map σ from a class of structures to the class of Heyting algebras. For semantics S and S^{\prime} :

- $S \leq S^{\prime}$ if every Heyting algebra in the image of σ_{S} is isomorphic to a Heyting algebra in the image of $\sigma_{S^{\prime}}$;

Semantic Hierarchy

In our paper, we show how semantics for intuitionistic logic form a strict hierarchy in terms of generality:

$$
\text { Kripke }<\text { Beth }<\text { Topological }<\text { Dragalin }<\text { Algebraic. }
$$

Each semantics supplies a map σ from a class of structures to the class of Heyting algebras. For semantics S and S^{\prime} :

- $S \leq S^{\prime}$ if every Heyting algebra in the image of σ_{S} is isomorphic to a Heyting algebra in the image of $\sigma_{S^{\prime}}$;
- $S<S^{\prime}$ if $S \leq S^{\prime}$ but $S^{\prime} \not \leq S$;

Semantic Hierarchy

In our paper, we show how semantics for intuitionistic logic form a strict hierarchy in terms of generality:

$$
\text { Kripke }<\text { Beth }<\text { Topological }<\text { Dragalin }<\text { Algebraic. }
$$

Each semantics supplies a map σ from a class of structures to the class of Heyting algebras. For semantics S and S^{\prime} :

- $S \leq S^{\prime}$ if every Heyting algebra in the image of σ_{S} is isomorphic to a Heyting algebra in the image of $\sigma_{S^{\prime}}$;
- $S<S^{\prime}$ if $S \leq S^{\prime}$ but $S^{\prime} \not \leq S ; S \equiv S^{\prime}$ if $S \leq S^{\prime}$ and $S^{\prime} \leq S$.

Semantic Hierarchy

In our paper, we show how semantics for intuitionistic logic form a strict hierarchy in terms of generality:

$$
\text { Kripke }<\text { Beth }<\text { Topological }<\text { Dragalin }<\text { Algebraic. }
$$

Each semantics supplies a map σ from a class of structures to the class of Heyting algebras. For semantics S and S^{\prime} :

- $S \leq S^{\prime}$ if every Heyting algebra in the image of σ_{S} is isomorphic to a Heyting algebra in the image of $\sigma_{S^{\prime}}$;
- $S<S^{\prime}$ if $S \leq S^{\prime}$ but $S^{\prime} \not \leq S ; S \equiv S^{\prime}$ if $S \leq S^{\prime}$ and $S^{\prime} \leq S$.

We pay relatively more attention to Beth and Dragalin, as instances of the unifying idea of nuclear semantics.

Semantic Hierarchy

In our paper, we show how semantics for intuitionistic logic form a strict hierarchy in terms of generality:

$$
\text { Kripke < Beth }<\text { Topological < Dragalin }<\text { Algebraic. }
$$

Each semantics supplies a map σ from a class of structures to the class of Heyting algebras. For semantics S and S^{\prime} :

- $S \leq S^{\prime}$ if every Heyting algebra in the image of σ_{S} is isomorphic to a Heyting algebra in the image of $\sigma_{S^{\prime}}$;
- $S<S^{\prime}$ if $S \leq S^{\prime}$ but $S^{\prime} \not \leq S ; S \equiv S^{\prime}$ if $S \leq S^{\prime}$ and $S^{\prime} \leq S$.

We pay relatively more attention to Beth and Dragalin, as instances of the unifying idea of nuclear semantics.

The Dragalin place in the hierarchy can be expanded as:

$$
\text { Locales } \equiv \text { Nuclear } \equiv \text { Dragalin } \equiv \text { Cover } \equiv \text { FM. }
$$

Kripke $<$ Topological $<$ Locales $<$ Algebraic

This part of the semantic hierarchy is well known.

Kripke $<$ Topological $<$ Locales $<$ Algebraic

This part of the semantic hierarchy is well known.

- Kripke < Topological, as Kripke frames produce only those locales that are completely join-prime generated,

Kripke $<$ Topological $<$ Locales $<$ Algebraic

This part of the semantic hierarchy is well known.

- Kripke < Topological, as Kripke frames produce only those locales that are completely join-prime generated, i.e., every element is a join of completely join-prime elements.

Kripke $<$ Topological $<$ Locales $<$ Algebraic

This part of the semantic hierarchy is well known.

- Kripke < Topological, as Kripke frames produce only those locales that are completely join-prime generated, i.e., every element is a join of completely join-prime elements. Many spatial locales are not so generated.

Kripke $<$ Topological $<$ Locales $<$ Algebraic

This part of the semantic hierarchy is well known.

- Kripke < Topological, as Kripke frames produce only those locales that are completely join-prime generated, i.e., every element is a join of completely join-prime elements. Many spatial locales are not so generated.
- Topological < Locales, because not all locales are spatial.
- Locales < Algebraic, because not all HAs are complete.

Consequences for SI-logics

One consequence of $S<S^{\prime}$ is that S^{\prime} may be able to characterize more superintuitionistic logics than S can characterize.

Consequences for SI-logics

One consequence of $S<S^{\prime}$ is that S^{\prime} may be able to characterize more superintuitionistic logics than S can characterize.

Re Kripke < Topological, Shehtman showed that there are Kripke-incomplete but topologically-complete SI-logics.

Consequences for SI-logics

One consequence of $S<S^{\prime}$ is that S^{\prime} may be able to characterize more superintuitionistic logics than S can characterize.

Re Kripke < Topological, Shehtman showed that there are Kripke-incomplete but topologically-complete SI-logics.

But there are many open questions about SI-incompleteness...

Consequences for SI-logics

One consequence of $S<S^{\prime}$ is that S^{\prime} may be able to characterize more superintuitionistic logics than S can characterize.

Re Kripke < Topological, Shehtman showed that there are Kripke-incomplete but topologically-complete SI-logics.

But there are many open questions about SI-incompleteness. . .

Contrast this with our knowledge of modal incompleteness with respect to different kinds of algebras-as summarized in, e.g., "Complete Additivity and Modal Incompleteness" by H. \& Litak.

Kuznetsov's Problem (1974): can every SI-logic be characterized as the logic of some class of topological spaces?

Alexander Vladimirovich Kuznetsov (1926-1984)

Kuznetsov's Problem (1974): can every SI-logic be characterized as the logic of some class of topological spaces?

Alexander Vladimirovich Kuznetsov (1926-1984)
Natural variant: replace 'topological spaces' by 'locales' above.

Beth semantics

Prior to Kripke semantics, Beth proposed a semantics for intuitionistic logic.

Evert Willem Beth (1908-1964)

Beth semantics

Like Kripke semantics, Beth semantics (in the version we adopt) works with a poset X and a valuation mapping each proposition letter p to an upset $v(p)$.

[^0]
Beth semantics

Like Kripke semantics, Beth semantics (in the version we adopt) works with a poset X and a valuation mapping each proposition letter p to an upset $v(p)$. But there is a modified definition of satisfaction for proposition letters and disjunctions:

- $x \not \models_{v} p$ iff every maximal chain ${ }^{1}$ through x intersects $v(p)$;
- $x \neq_{v} \varphi \vee \psi$ iff every maximal chain through x intersects $\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{v} \psi\right\}$.

[^1]
Beth semantics

Like Kripke semantics, Beth semantics (in the version we adopt) works with a poset X and a valuation mapping each proposition letter p to an upset $v(p)$. But there is a modified definition of satisfaction for proposition letters and disjunctions:

- $x \not \models_{v} p$ iff every maximal chain ${ }^{1}$ through x intersects $v(p)$;
- $x \not \models_{v} \varphi \vee \psi$ iff every maximal chain through x intersects $\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{v} \psi\right\}$.

If p will "inevitably" be verified, then it is already satisfied. If "inevitably" one of the disjuncts of a disjunction will be satisfied, then the disjunction is already satisfied.

[^2]
Beth semantics

- $x \not \models_{v} p$ iff every maximal chain through x intersects $v(p)$;
- $x \neq_{v} \varphi \vee \psi$ iff every maximal chain through x intersects $\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{\nu} \psi\right\}$.

Instead of evaluating formulas in the locale $\operatorname{Up}(X)$ of all upsets, evaluate in the algebra of "fixed" upsets: upsets U such that if every maximal chain through x intersects U, then $x \in U$.

Beth semantics

- $x \neq_{v} p$ iff every maximal chain through x intersects $v(p)$;
- $x \neq_{v} \varphi \vee \psi$ iff every maximal chain through x intersects $\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{v} \psi\right\}$.

Instead of evaluating formulas in the locale $\operatorname{Up}(X)$ of all upsets, evaluate in the algebra of "fixed" upsets: upsets U such that if every maximal chain through x intersects U, then $x \in U$.

The join in the algebra is no longer union, but rather:
$U \vee V=\{x \in X \mid$ every maximal chain through x intersects $U \cup V\}$.

Beth semantics

- $x \models_{\nu} p$ iff every maximal chain through x intersects $v(p)$;
- $x \models_{\nu} \varphi \vee \psi$ iff every maximal chain through x intersects $\left\{y \in X \mid y \models_{\nu} \varphi\right.$ or $\left.y \models_{\nu} \psi\right\}$.

Instead of evaluating formulas in the locale $\mathrm{Up}(X)$ of all upsets, evaluate in the algebra of "fixed" upsets: upsets U such that if every maximal chain through x intersects U, then $x \in U$.

The join in the algebra is no longer union, but rather:
$U \vee V=\{x \in X \mid$ every maximal chain through x intersects $U \cup V\}$.
Later we will see why the algebra of fixed upsets is a locale, which yields soundness of IPC w.r.t. Beth semantics.

Beth semantics

One of Dummett's (2000) ways of understanding Beth:
On this approach, we are distinguishing between the verification of an atomic statement in a given state of information, and its being assertible; the latter notion is represented by truth at a node, and is defined, for all statements, in terms of the verification of atomic statements. The knowledge that a given atomic statement will be verified within a finite time does not itself constitute a verification of it, but is sufficient ground to entitle us to assert it. (p. 139)

Beth semantics

One of Dummett's (2000) ways of understanding Beth:
On this approach, we are distinguishing between the verification of an atomic statement in a given state of information, and its being assertible; the latter notion is represented by truth at a node, and is defined, for all statements, in terms of the verification of atomic statements. The knowledge that a given atomic statement will be verified within a finite time does not itself constitute a verification of it, but is sufficient ground to entitle us to assert it. (p. 139)

While in Kripke semantics, $x \models_{v} p$ iff $x \in v(p)$, Dummett suggests that in Beth semantics we can make a distinction:

- $x \in v(p)$ means that p is verified in x;
- $x \models_{\nu} p$ means that in x, it is known that p will be verified.

Beth semantics

The same idea helps to explain the different treatment of disjunction in Beth vs. Kripke and topological semantics.

Beth semantics

The same idea helps to explain the different treatment of disjunction in Beth vs. Kripke and topological semantics.

Assume a constructivist view according to which one has verified a disjunction only if one has verified one of the disjuncts.

Beth semantics

The same idea helps to explain the different treatment of disjunction in Beth vs. Kripke and topological semantics.

Assume a constructivist view according to which one has verified a disjunction only if one has verified one of the disjuncts.

- Thus, in Kripke semantics, which is based on what has been verified, $x \models p \vee q$ only if $x \models p$ or $x \models q$.

Beth semantics

The same idea helps to explain the different treatment of disjunction in Beth vs. Kripke and topological semantics.

Assume a constructivist view according to which one has verified a disjunction only if one has verified one of the disjuncts.

- Thus, in Kripke semantics, which is based on what has been verified, $x \models p \vee q$ only if $x \models p$ or $x \models q$.
- However, it does not follow that one knows that a disjunction will be verified only if one knows of one of the disjuncts that it will be verified. Thus, in Beth semantics, which is based on knowledge of what will be verified, it does not hold in general that $x \models p \vee q$ only if $x \vDash p$ or $x \vDash q$.

Beth semantics

The same idea helps to explain the different treatment of disjunction in Beth vs. Kripke and topological semantics.

Assume a constructivist view according to which one has verified a disjunction only if one has verified one of the disjuncts.

- Thus, in Kripke semantics, which is based on what has been verified, $x \models p \vee q$ only if $x \models p$ or $x \models q$.
- However, it does not follow that one knows that a disjunction will be verified only if one knows of one of the disjuncts that it will be verified. Thus, in Beth semantics, which is based on knowledge of what will be verified, it does not hold in general that $x \models p \vee q$ only if $x \vDash p$ or $x \vDash q$.

In Beth semantics, $x \mid p \vee q$ if it is known that however the future unfolds, one of the disjuncts will be verified.

Kripke $<$ Beth $<$ Topological

Theorem
(1) Every locale that can be produced by a Kripke frame can also be produced by a Beth frame, but not vice versa.

Kripke $<$ Beth $<$ Topological

Theorem
(1) Every locale that can be produced by a Kripke frame can also be produced by a Beth frame, but not vice versa.
(2) Every locale that can be produced by a Beth frame can also be produced by a topological space, but not vice versa.

Kripke $<$ Beth $<$ Topological

Theorem

(1) Every locale that can be produced by a Kripke frame can also be produced by a Beth frame, but not vice versa.
(2) Every locale that can be produced by a Beth frame can also be produced by a topological space, but not vice versa.

As a corollary, every superintuitionistic logic that can be characterized by Kripke frames (resp. Beth frames) can be characterized by Beth frames (resp. topological spaces).

Kripke $<$ Beth $<$ Topological

Theorem

(1) Every locale that can be produced by a Kripke frame can also be produced by a Beth frame, but not vice versa.
(2) Every locale that can be produced by a Beth frame can also be produced by a topological space, but not vice versa.

As a corollary, every superintuitionistic logic that can be characterized by Kripke frames (resp. Beth frames) can be characterized by Beth frames (resp. topological spaces).

Given Shehtman's result that there are Kripke-incomplete but topologically-complete SI-logics, either there are Kripke-incomplete but Beth-complete SI-logics or there are Beth-incomplete but topologically-complete SI-logics.

Kripke $<$ Beth $<$ Topological

Theorem

(1) Every locale that can be produced by a Kripke frame can also be produced by a Beth frame, but not vice versa.
(2) Every locale that can be produced by a Beth frame can also be produced by a topological space, but not vice versa.

As a corollary, every superintuitionistic logic that can be characterized by Kripke frames (resp. Beth frames) can be characterized by Beth frames (resp. topological spaces).

Given Shehtman's result that there are Kripke-incomplete but topologically-complete SI-logics, either there are Kripke-incomplete but Beth-complete SI-logics or there are Beth-incomplete but topologically-complete SI-logics.

Question: Which is it? Both?

Kripke $<$ Beth $<$ Topological

Theorem
(1) Every locale that can be produced by a Kripke frame can also be produced by a Beth frame, but not vice versa.
(2) Every locale that can be produced by a Beth frame can also be produced by a topological space, but not vice versa.

Recall: the locales produced by Kripke frames are the completely join-prime generated locales, and the locales produced by topological spaces are the spatial locales.

Kripke $<$ Beth $<$ Topological

Theorem
(1) Every locale that can be produced by a Kripke frame can also be produced by a Beth frame, but not vice versa.
(2) Every locale that can be produced by a Beth frame can also be produced by a topological space, but not vice versa.

Recall: the locales produced by Kripke frames are the completely join-prime generated locales, and the locales produced by topological spaces are the spatial locales.

Problem: characterize the locales produced by Beth frames.

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:

$$
j_{b} U=\{x \in X \mid \text { every maximal chain through } x \text { intersects } U\} .
$$

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:

$$
j_{b} U=\{x \in X \mid \text { every maximal chain through } x \text { intersects } U\} .
$$

A fixed upset as before is an upset that is a fixpoint of j_{b} :

$$
U=j_{b} U
$$

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:
$j_{b} U=\{x \in X \mid$ every maximal chain through x intersects $U\}$.
A fixed upset as before is an upset that is a fixpoint of j_{b} :

$$
U=j_{b} U .
$$

The two key satisfaction clauses in Beth semantics become:

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:
$j_{b} U=\{x \in X \mid$ every maximal chain through x intersects $U\}$.
A fixed upset as before is an upset that is a fixpoint of j_{b} :

$$
U=j_{b} U .
$$

The two key satisfaction clauses in Beth semantics become:

- $x \models_{v} p$ iff $x \in j_{b} v(p)$;
- $x \not \models_{v} \varphi \vee \psi$ iff $x \in j_{b}\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{v} \psi\right\}$.

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:
$j_{b} U=\{x \in X \mid$ every maximal chain through x intersects $U\}$.
A fixed upset as before is an upset that is a fixpoint of j_{b} :

$$
U=j_{b} U .
$$

The two key satisfaction clauses in Beth semantics become:

- $x \neq{ }_{v} p$ iff $x \in j_{b} v(p)$;
- $x \models_{v} \varphi \vee \psi$ iff $x \in j_{b}\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{v} \psi\right\}$.

In the algebra of fixed upsets mentioned before, the join is:

$$
U \vee V=j_{b}(U \cup V)
$$

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:

$$
j_{b} U=\{x \in X \mid \text { every maximal chain through } x \text { intersects } U\} .
$$

This j_{b} is an example of a nucleus.

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:

$$
j_{b} U=\{x \in X \mid \text { every maximal chain through } x \text { intersects } U\} .
$$

This j_{b} is an example of a nucleus.
A nucleus on an HA H is a function $j: H \rightarrow H$ satisfying:
(1) $a \leq j a$ (inflationarity);
(2) $j j a \leq j a$ (idempotence);
(3) $j(a \wedge b)=j a \wedge j b$ (multiplicativity).

The essence of Beth semantics

At the heart of Beth semantics is an operation j_{b} on the upsets of a poset X defined as follows:

$$
j_{b} U=\{x \in X \mid \text { every maximal chain through } x \text { intersects } U\} .
$$

This j_{b} is an example of a nucleus.
A nucleus on an HA H is a function $j: H \rightarrow H$ satisfying:
(1) $a \leq j a$ (inflationarity);
(2) $j j a \leq j a$ (idempotence);
(3) $j(a \wedge b)=j a \wedge j b$ (multiplicativity).

A nuclear algebra is a pair (H, j) of an HA H and nucleus j on H.

The essence of Beth semantics

Earlier we claimed that the algebra of fixed upsets of a Beth frame, with join changed to $U \vee{ }_{j_{b}} V=j_{b}(U \vee V)$, is a locale.

The essence of Beth semantics

Earlier we claimed that the algebra of fixed upsets of a Beth frame, with join changed to $U \vee_{j_{b}} V=j_{b}(U \vee V)$, is a locale. Since j_{b} is a nucleus, this follows from a well-known result:

The essence of Beth semantics

Earlier we claimed that the algebra of fixed upsets of a Beth frame, with join changed to $U \vee_{j_{b}} V=j_{b}(U \vee V)$, is a locale. Since j_{b} is a nucleus, this follows from a well-known result: For any HA H and nucleus j on H, let $H_{j}=\{a \in H \mid j a=a\}$.

The essence of Beth semantics

Earlier we claimed that the algebra of fixed upsets of a Beth frame, with join changed to $U \vee_{j_{b}} V=j_{b}(U \vee V)$, is a locale.

Since j_{b} is a nucleus, this follows from a well-known result:
For any HA H and nucleus j on H, let $H_{j}=\{a \in H \mid j a=a\}$.
Then H_{j} is an HA where for $a, b \in H_{j}$:

- $a \wedge_{j} b=a \wedge b$;
- $a \rightarrow{ }_{j} b=a \rightarrow b$;
- $a \vee_{j} b=j(a \vee b)$;
- $0_{j}=j 0$.

The essence of Beth semantics

Earlier we claimed that the algebra of fixed upsets of a Beth frame, with join changed to $U \vee{ }_{j_{b}} V=j_{b}(U \vee V)$, is a locale.

Since j_{b} is a nucleus, this follows from a well-known result:
For any HA H and nucleus j on H, let $H_{j}=\{a \in H \mid j a=a\}$.
Then H_{j} is an HA where for $a, b \in H_{j}$:

- $a \wedge_{j} b=a \wedge b$;
- $a \rightarrow{ }_{j} b=a \rightarrow b$;
- $a \vee_{j} b=j(a \vee b)$;
- $0_{j}=j 0$.

If H is a locale, so is H_{j}, where $\bigwedge_{j} S=\bigwedge S$ and $\bigvee_{j} S=j(\bigvee S)$.

The essence of Beth semantics

Earlier we claimed that the algebra of fixed upsets of a Beth frame, with join changed to $U \vee{ }_{j_{b}} V=j_{b}(U \vee V)$, is a locale.

Since j_{b} is a nucleus, this follows from a well-known result:
For any HA H and nucleus j on H, let $H_{j}=\{a \in H \mid j a=a\}$.
Then H_{j} is an HA where for $a, b \in H_{j}$:

- $a \wedge_{j} b=a \wedge b$;
- $a \rightarrow_{j} b=a \rightarrow b$;
- $a \vee_{j} b=j(a \vee b)$;
- $0_{j}=j 0$.

If H is a locale, so is H_{j}, where $\bigwedge_{j} S=\bigwedge S$ and $\bigvee_{j} S=j(\bigvee S)$.
For Beth, H is the locale of upsets of a poset, and $j=j_{b}$.

Beyond Beth to nuclear semantics

For Beth, H is the locale of upsets of a poset, and $j=j_{b}$.
But we can generalize:
Definition
A nuclear frame is a pair (X, j) where X is a poset and j is a nucleus on $\operatorname{Up}(X)$.

Definition

A nuclear frame is a pair (X, j) where X is a poset and j is a nucleus on $\operatorname{Up}(X)$.

A valuation on a nuclear frame assigns to proposition letters elements of $\operatorname{Up}(X)$ as usual, and the definition of $=$ simply replaces the Beth nucleus j_{b} with the given nucleus j :

- $x \not \models_{v} \perp$ iff $x \in j \varnothing$;
- $x \models_{v} p$ iff $x \in j v(p)$;
- $x \models_{v} \varphi \vee \psi$ iff $x \in j\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{v} \psi\right\}$;

Definition

A nuclear frame is a pair (X, j) where X is a poset and j is a nucleus on $\operatorname{Up}(X)$.

A valuation on a nuclear frame assigns to proposition letters elements of $\operatorname{Up}(X)$ as usual, and the definition of $=$ simply replaces the Beth nucleus j_{b} with the given nucleus j :

- $x \not \models_{v} \perp$ iff $x \in j \varnothing$;
- $x \models_{v} p$ iff $x \in j v(p)$;
- $x \models_{v} \varphi \vee \psi$ iff $x \in j\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{\nu} \psi\right\}$;

In short: evaluate formulas in the locale $\mathrm{Up}(X)_{j}$.

Definition

A nuclear frame is a pair (X, j) where X is a poset and j is a nucleus on $\operatorname{Up}(X)$.

A valuation on a nuclear frame assigns to proposition letters elements of $\operatorname{Up}(X)$ as usual, and the definition of $=$ simply replaces the Beth nucleus j_{b} with the given nucleus j :

- $x \not \models_{v} \perp$ iff $x \in j \varnothing$;
- $x \models_{v} p$ iff $x \in j v(p)$;
- $x \models_{v} \varphi \vee \psi$ iff $x \in j\left\{y \in X \mid y \models_{v} \varphi\right.$ or $\left.y \models_{\nu} \psi\right\}$;

In short: evaluate formulas in the locale $\operatorname{Up}(X)_{j}$.
Soundness of IPC is then immediate, since H_{j} is an HA whenever HA is. Completeness follows from Kripke completeness (j is identity) or Beth completeness $\left(j=j_{b}\right)$.

Interpretation of nuclei

Dummett's distinction between p being verified vs. assertible: "The knowledge that a given atomic statement will be verified within a finite time does not itself constitute a verification of it, but is sufficient ground to entitle us to assert it" (p. 139).

Interpretation of nuclei

Dummett's distinction between p being verified vs. assertible: "The knowledge that a given atomic statement will be verified within a finite time does not itself constitute a verification of it, but is sufficient ground to entitle us to assert it" (p. 139).

Connection to nuclei: there is a set $V(\varphi)$ of states in which φ is verified and a set $j V(\varphi)$ of states in which φ is assertible.

Interpretation of nuclei

Dummett's distinction between p being verified vs. assertible: "The knowledge that a given atomic statement will be verified within a finite time does not itself constitute a verification of it, but is sufficient ground to entitle us to assert it" (p. 139).

Connection to nuclei: there is a set $V(\varphi)$ of states in which φ is verified and a set $j V(\varphi)$ of states in which φ is assertible.

Whatever one's view of assertibility, verification should be sufficient for assertibility, so j should be inflationary.

Interpretation of nuclei

Dummett's distinction between p being verified vs. assertible: "The knowledge that a given atomic statement will be verified within a finite time does not itself constitute a verification of it, but is sufficient ground to entitle us to assert it" (p. 139).

Connection to nuclei: there is a set $V(\varphi)$ of states in which φ is verified and a set $j V(\varphi)$ of states in which φ is assertible.

Whatever one's view of assertibility, verification should be sufficient for assertibility, so j should be inflationary.

One could reasonably adopt a notion of assertibility according to which if it is assertible that some statement is assertible, then that statement is indeed assertible, so j should be idempotent.

Interpretation of nuclei

Dummett's distinction between p being verified vs. assertible: "The knowledge that a given atomic statement will be verified within a finite time does not itself constitute a verification of it, but is sufficient ground to entitle us to assert it" (p. 139).

Connection to nuclei: there is a set $V(\varphi)$ of states in which φ is verified and a set $j V(\varphi)$ of states in which φ is assertible.

Whatever one's view of assertibility, verification should be sufficient for assertibility, so j should be inflationary.

One could reasonably adopt a notion of assertibility according to which if it is assertible that some statement is assertible, then that statement is indeed assertible, so j should be idempotent.

It also reasonable that a conjunction is assertible iff each conjunct is assertible, so j should be multiplicative.

The generality of nuclear semantics

Recall: the locales produced by Kripke frames are the completely join-prime generated locales, and the locales produced by topological spaces are the spatial locales.

The generality of nuclear semantics

Recall: the locales produced by Kripke frames are the completely join-prime generated locales, and the locales produced by topological spaces are the spatial locales.

By contrast:

Theorem (Dragalin 1979)
Every locale is isomorphic to $\operatorname{Up}(X)_{j}$ for some nuclear frame (X, j).

The generality of nuclear semantics

Recall: the locales produced by Kripke frames are the completely join-prime generated locales, and the locales produced by topological spaces are the spatial locales.

By contrast:

Theorem (Dragalin 1979)
Every locale is isomorphic to $\operatorname{Up}(X)_{j}$ for some nuclear frame (X, j).

Can we achieve this kind of generality with a semantics that replaces the algebraic j with some more concrete data?

Dragalin semantics

Albert Grigor'evich Dragalin (1941-1998)

Dragalin semantics

Beth semantics looks at the maximal chains through each $x \in X$.

Dragalin semantics

Beth semantics looks at the maximal chains through each $x \in X$.

Generalization: there is a $D: X \rightarrow \wp(\wp(X))$ assigning to each $x \in X$ a set of "developments" of $x . D(x)$ could be the set of maximal chains through x, but there are other possibilities...

Dragalin semantics

Beth semantics looks at the maximal chains through each $x \in X$.

Generalization: there is a $D: X \rightarrow \wp(\wp(X))$ assigning to each $x \in X$ a set of "developments" of $x . D(x)$ could be the set of maximal chains through x, but there are other possibilities...

Maybe they aren't maximal; maybe they aren't chains; maybe they are only directed; maybe they are not even directed, etc.

Dragalin semantics

But $D: X \rightarrow \wp(\wp(X))$ should satisfy some constraints, e.g.:

Dragalin semantics

But $D: X \rightarrow \wp(\wp(X))$ should satisfy some constraints, e.g.:
$\left(1^{\circ}\right) \varnothing \notin D(s)$.
Intuitively: the empty set is not a development of anything.
$\left(2^{\circ}\right)$ if $t \in S \in D(s)$, then $\exists x \in S: s \leq x$ and $t \leq x$.
Intuitively: every stage t in a development of s is compatible with s, in that s and t have a common extension x.
$\left(3^{\circ}\right)$ if $s \leq t$, then $\forall T \in D(t) \exists S \in D(s): S \subseteq \downarrow T$.
Intuitively: if at some "future" stage t a development T will become available, then it is already possible to follow a development bounded by T.
(4 ${ }^{\circ}$) if $t \in S \in D(s)$, then $\exists T \in D(t): T \subseteq \downarrow S$.
Intuitively: we "can always stay inside" a development, in the sense that for every stage t in S, we can follow a development T from t that is bounded by S.

Dragalin semantics

But $D: X \rightarrow \wp(\wp(X))$ should satisfy some constraints, e.g.:
$\left(1^{\circ}\right) \varnothing \notin D(s)$.
Intuitively: the empty set is not a development of anything.
$\left(2^{\circ \circ}\right)$ if $S \in D(s)$, then $S \subseteq \uparrow s$.
Intuitively: the stages in a development starting from s are extensions of s.
$\left(3^{\circ \circ}\right)$ if $s \leq t$, then $D(t) \subseteq D(s)$.
Intuitively: developments available at "future" stages are already available.
$\left(4^{\circ \circ}\right)$ if $t \in S \in D(s)$, then $\exists T \in D(t): T \subseteq S$.
Intuitively: we "can always stay inside" a development in the sense that for every state t in S, we can follow a development T from t that is included in S.

Dragalin semantics

A Dragalin frame is a pair (X, D) where X is a poset and $D: X \rightarrow \wp(\wp(X))$ satisfies conditions $\left(1^{\circ}\right)-\left(4^{\circ}\right)$.

Dragalin semantics

A Dragalin frame is a pair (X, D) where X is a poset and $D: X \rightarrow \wp(\wp(X))$ satisfies conditions $\left(1^{\circ}\right)-\left(4^{\circ}\right)$.

Proposition (Dragalin)

For any Dragalin frame (X, D), the function j_{D} on $U \mathrm{p}(X)$ defined by

$$
j_{D} U=\{s \in X \mid \text { every development in } D(s) \text { intersects } U\}
$$

is a nucleus on $\mathrm{Up}(X)$.

Dragalin semantics

A Dragalin frame is a pair (X, D) where X is a poset and $D: X \rightarrow \wp(\wp(X))$ satisfies conditions $\left(1^{\circ}\right)-\left(4^{\circ}\right)$.

Proposition (Dragalin)

For any Dragalin frame (X, D), the function j_{D} on $U \mathrm{p}(X)$ defined by

$$
j_{D} U=\{s \in X \mid \text { every development in } D(s) \text { intersects } U\}
$$

is a nucleus on $\mathrm{Up}(X)$.

So every Dragalin frame (X, D) gives us a nuclear frame $\left(X, j_{D}\right)$, which in turn gives us a locale $\operatorname{Up}(X)_{j_{D}}$ as before.

Dragalin semantics

A Dragalin frame is a pair (X, D) where X is a poset and $D: X \rightarrow \wp(\wp(X))$ satisfies conditions $\left(1^{\circ}\right)-\left(4^{\circ}\right)$.

Proposition (Dragalin)

For any Dragalin frame (X, D), the function j_{D} on $U \mathrm{p}(X)$ defined by

$$
j_{D} U=\{s \in X \mid \text { every development in } D(s) \text { intersects } U\}
$$

is a nucleus on $\operatorname{Up}(X)$.

So every Dragalin frame (X, D) gives us a nuclear frame $\left(X, j_{D}\right)$, which in turn gives us a locale $\operatorname{Up}(X)_{j_{D}}$ as before.

Dragalin semantics: given a Dragalin frame (X, D), apply the earlier nuclear semantics to $\left(X, j_{D}\right)$.

Theorem (Dragalin 1979)

Every spatial locale is isomorphic to one arising from a Dragalin frame.

Theorem (Dragalin 1979)

Every spatial locale is isomorphic to one arising from a Dragalin frame.

Recall that Dragalin had a stronger result for nuclear frames:
Theorem (Dragalin 1979)
Every locale is isomorphic to one arising from a nuclear frame.

Theorem (Dragalin 1979)

Every spatial locale is isomorphic to one arising from a Dragalin frame.

Recall that Dragalin had a stronger result for nuclear frames:
Theorem (Dragalin 1979)
Every locale is isomorphic to one arising from a nuclear frame.
Theorem (Bezhanishvili and Holliday 2016)
For every nuclear frame (X, j), there is a Dragalin frame (X, D) such that $j_{D}=j$.

Theorem (Dragalin 1979)

Every spatial locale is isomorphic to one arising from a Dragalin frame.

Recall that Dragalin had a stronger result for nuclear frames:
Theorem (Dragalin 1979)
Every locale is isomorphic to one arising from a nuclear frame.

Theorem (Bezhanishvili and Holliday 2016)

For every nuclear frame (X, j), there is a Dragalin frame (X, D) such that $j_{D}=j$.

Super-sketch. As is well known, the nuclei on $\operatorname{Up}(X)$ form a locale in which each j can be written as a meet of special nuclei $w_{j_{a}}$. We show that each of these special nuclei can be captured by a D function, and the meet of nuclei can be captured by an operation on D functions.

Theorem (Dragalin 1979)

Every spatial locale is isomorphic to one arising from a Dragalin frame.

Recall that Dragalin had a stronger result for nuclear frames:
Theorem (Dragalin 1979)
Every locale is isomorphic to one arising from a nuclear frame.

Theorem (Bezhanishvili and Holliday 2016)

For every nuclear frame (X, j), there is a Dragalin frame (X, D) such that $j_{D}=j$.

Super-sketch. As is well known, the nuclei on $\operatorname{Up}(X)$ form a locale in which each j can be written as a meet of special nuclei $w_{j_{a}}$. We show that each of these special nuclei can be captured by a D function, and the meet of nuclei can be captured by an operation on D functions.

Corollary

Every locale is isomorphic to one arising from a Dragalin frame.

An equivalence of semantics

Corollary
Every locale is isomorphic to one arising from a Dragalin frame.

Indeed, we have the equivalence of three semantics:
Locales \equiv Nuclear \equiv Dragalin.

An equivalence of semantics

Corollary
Every locale is isomorphic to one arising from a Dragalin frame.

Indeed, we have the equivalence of three semantics:
Locales \equiv Nuclear \equiv Dragalin.

Question: can every SI-logic be characterized by some class of locales? Could Dragalin frames help us?

Relation of Dragalin to Cover Semantics

Let (X, D) be such that X is a poset and $D: X \rightarrow \wp(\wp(X))$.

Relation of Dragalin to Cover Semantics

Let (X, D) be such that X is a poset and $D: X \rightarrow \wp(\wp(X))$.
Generalizing Beth semantics, Dragalin gives conditions on D so that the following operation $[D\rangle$ is a nucleus on $\operatorname{Up}(X)$:

$$
[D\rangle U=\{x \in S \mid \forall X \in D(x): X \cap U \neq \varnothing\}
$$

Relation of Dragalin to Cover Semantics

Let (X, D) be such that X is a poset and $D: X \rightarrow \wp(\wp(X))$.
Generalizing Beth semantics, Dragalin gives conditions on D so that the following operation $[D\rangle$ is a nucleus on $\operatorname{Up}(X)$:

$$
[D\rangle U=\{x \in S \mid \forall X \in D(x): X \cap U \neq \varnothing\}
$$

À la neighborhood semantics, Goldblatt (2011) gives conditions so that the following operation $\langle D]$ is a nucleus on $\operatorname{Up}(X)$:

$$
\langle D] U=\{x \in S \mid \exists X \in D(x): X \subseteq U\}
$$

He calls this cover semantics.

Relation of Dragalin to Cover Semantics

Let (X, D) be such that X is a poset and $D: X \rightarrow \wp(\wp(X))$.
Generalizing Beth semantics, Dragalin gives conditions on D so that the following operation $[D\rangle$ is a nucleus on $\operatorname{Up}(X)$:

$$
[D\rangle U=\{x \in S \mid \forall X \in D(x): X \cap U \neq \varnothing\}
$$

À la neighborhood semantics, Goldblatt (2011) gives conditions so that the following operation $\langle D]$ is a nucleus on $\operatorname{Up}(X)$:

$$
\langle D] U=\{x \in S \mid \exists X \in D(x): X \subseteq U\}
$$

He calls this cover semantics. It is not hard to see that

$$
\text { Dragalin } \equiv \text { Cover. }
$$

Relation of Dragalin to Cover Semantics

Let (X, D) be such that X is a poset and $D: X \rightarrow \wp(\wp(X))$.
Generalizing Beth semantics, Dragalin gives conditions on D so that the following operation $[D\rangle$ is a nucleus on $\operatorname{Up}(X)$:

$$
[D\rangle U=\{x \in S \mid \forall X \in D(x): X \cap U \neq \varnothing\} .
$$

À la neighborhood semantics, Goldblatt (2011) gives conditions so that the following operation $\langle D]$ is a nucleus on $\operatorname{Up}(X)$:

$$
\langle D] U=\{x \in S \mid \exists X \in D(x): X \subseteq U\} .
$$

He calls this cover semantics. It is not hard to see that

$$
\text { Dragalin } \equiv \text { Cover. }
$$

In our manuscript, "Development Frames", we systematically relate the Beth-Dragalin style path or development semantics to Scott-Montague style neighborhood or cover semantics.

FM-semantics

A (normal) FM-frame is a triple $\left(Y, \leq_{1}, \leq_{2}\right)$ where Y is a set, \leq_{1} and \leq_{2} are preorders on X, and \leq_{2} is a subrelation of \leq_{1}.

FM-semantics

A (normal) FM-frame is a triple $\left(Y, \leq_{1}, \leq_{2}\right)$ where Y is a set, \leq_{1} and \leq_{2} are preorders on X, and \leq_{2} is a subrelation of \leq_{1}.

$$
\begin{aligned}
\square_{1} U & =\left\{x \in Y \mid \forall y \geq_{1} x: y \in U\right\} \\
\diamond_{2} U & =\left\{x \in Y \mid \exists y \geq_{2} x: y \in U\right\}
\end{aligned}
$$

FM-semantics

A (normal) FM-frame is a triple $\left(Y, \leq_{1}, \leq_{2}\right)$ where Y is a set, \leq_{1} and \leq_{2} are preorders on X, and \leq_{2} is a subrelation of \leq_{1}.

$$
\begin{aligned}
\square_{1} U & =\left\{x \in Y \mid \forall y \geq_{1} x: y \in U\right\} \\
\diamond_{2} U & =\left\{x \in Y \mid \exists y \geq_{2} x: y \in U\right\}
\end{aligned}
$$

Proposition (Fairtlough and Mendler 1997)
For any FM-frame $\left(Y, \leq_{1}, \leq_{2}\right)$, the operation $\square_{1} \diamond_{2}$ is a nucleus on the Heyting algebra $\operatorname{Up}\left(Y, \leq_{1}\right)$.

FM-semantics

A (normal) FM-frame is a triple $\left(Y, \leq_{1}, \leq_{2}\right)$ where Y is a set, \leq_{1} and \leq_{2} are preorders on X, and \leq_{2} is a subrelation of \leq_{1}.

$$
\begin{aligned}
\square_{1} U & =\left\{x \in Y \mid \forall y \geq_{1} x: y \in U\right\} \\
\diamond_{2} U & =\left\{x \in Y \mid \exists y \geq_{2} x: y \in U\right\}
\end{aligned}
$$

Proposition (Fairtlough and Mendler 1997)

For any FM-frame $\left(Y, \leq_{1}, \leq_{2}\right)$, the operation $\square_{1} \diamond_{2}$ is a nucleus on the Heyting algebra $\operatorname{Up}\left(Y, \leq_{1}\right)$.

Thus, we can apply nuclear semantics and work with the locale

$$
\operatorname{Up}\left(Y, \leq_{1}\right)_{\square_{1} \diamond_{2}} .
$$

From Dragalin to FM

Surprisingly, FM is as general as Dragalin semantics:
Theorem (Bezhanishvili and Holliday 2016)
For any (normal) Dragalin frame (X, D), there is a (normal) $F M$-frame $\left(Y, \leq_{1}, \leq_{2}\right)$ such that the nuclear algebras $\left(\operatorname{Up}(X), j_{D}\right)$ and $\left(\operatorname{Up}\left(Y, \leq_{1}\right), \square_{1} \diamond_{2}\right)$ are isomorphic.

From Dragalin to FM

Surprisingly, FM is as general as Dragalin semantics:

Theorem (Bezhanishvili and Holliday 2016)

For any (normal) Dragalin frame (X, D), there is a (normal) $F M$-frame $\left(Y, \leq_{1}, \leq_{2}\right)$ such that the nuclear algebras $\left(\operatorname{Up}(X), j_{D}\right)$ and $\left(\operatorname{Up}\left(Y, \leq_{1}\right), \square_{1} \diamond_{2}\right)$ are isomorphic.

Super-sketch. Any Dragalin frame can be made "convex", and any convex (normal) Dragalin frame (X, \leq, D) can be turned into a (normal) FM-frame (Y, \leq_{1}, \leq_{2}) as follows:

- $Y=\{(x, S) \mid x \in X, S \in D(x)\} ;$
- $(x, S) \leq_{1}(y, T)$ iff $x \leq y$;
- $(x, S) \leq_{2}(y, T)$ iff $T \subseteq S$.

From Dragalin to FM

Surprisingly, FM is as general as Dragalin semantics:

Theorem (Bezhanishvili and Holliday 2016)

For any (normal) Dragalin frame (X, D), there is a (normal) $F M$-frame $\left(Y, \leq_{1}, \leq_{2}\right)$ such that the nuclear algebras $\left(\mathrm{Up}(X), j_{D}\right)$ and $\left(\operatorname{Up}\left(Y, \leq_{1}\right), \square_{1} \diamond_{2}\right)$ are isomorphic.

Super-sketch. Any Dragalin frame can be made "convex", and any convex (normal) Dragalin frame (X, \leq, D) can be turned into a (normal) FM-frame (Y, \leq_{1}, \leq_{2}) as follows:

- $Y=\{(x, S) \mid x \in X, S \in D(x)\} ;$
- $(x, S) \leq_{1}(y, T)$ iff $x \leq y$;
- $(x, S) \leq_{2}(y, T)$ iff $T \subseteq S$.

Corollary

Every locale is isomorphic to one arising from an FM-frame.

Direct from Locales to FM-frames

The FM-frame obtained by following our constructions for Locale \Rightarrow Dragalin $\Rightarrow \mathrm{FM}$ is a substructure of the following.

Definition
The canonical $F M$-frame of a locale L is the normal FM-frame ($X_{L}, \leq_{1}, \leq_{2}$) defined as follows, where \leq is the order in L :
(1) $X_{L}=\left\{(a, b) \in L^{2} \mid a \not \subset b\right\}$:
(3) $(a, b) \leq_{1}(c, d)$ iff $a \geq c$;
(3) $(a, b) \leq_{2}(c, d)$ iff $a \geq c$ and $b \leq d$.

Direct from Locales to FM-frames

The FM-frame obtained by following our constructions for Locale \Rightarrow Dragalin $\Rightarrow \mathrm{FM}$ is a substructure of the following.

Definition
The canonical FM-frame of a locale L is the normal FM-frame ($X_{L}, \leq_{1}, \leq_{2}$) defined as follows, where \leq is the order in L :
(1) $X_{L}=\left\{(a, b) \in L^{2} \mid a \not 又 b\right\}$:
(3) $(a, b) \leq_{1}(c, d)$ iff $a \geq c$;
(0) (a,b) $\leq_{2}(c, d)$ iff $a \geq c$ and $b \leq d$.

Then we can give a direct proof of the following.
Theorem
Every locale L is isomorphic to $\operatorname{Up}\left(X_{L}, \leq_{1}\right)_{\square_{1} \diamond_{2}}$.

Direct from Locales to FM-frames

The FM-frame obtained by following our constructions for Locale \Rightarrow Dragalin $\Rightarrow \mathrm{FM}$ is a substructure of the following.

Definition
The canonical FM-frame of a locale L is the normal FM-frame ($X_{L}, \leq_{1}, \leq_{2}$) defined as follows, where \leq is the order in L :
(1) $X_{L}=\left\{(a, b) \in L^{2} \mid a \not \subset b\right\}$:
(3) $(a, b) \leq_{1}(c, d)$ iff $a \geq c$;
(0) (a,b) $\leq_{2}(c, d)$ iff $a \geq c$ and $b \leq d$.

Then we can give a direct proof of the following.
Theorem
Every locale L is isomorphic to $\operatorname{Up}\left(X_{L}, \leq_{1}\right)_{\square_{1}} \diamond_{2}$.
This is essentially the approach of Massas (2016), except he constructs a smaller substructure of the canonical FM-frame.

Relation of FM to Urquhart and Allwein

Generalizing Urquhart, a doubly preordered structure is a triple $\left(X, \leq_{1}, \leq_{2}\right)$ where X is a set and \leq_{1} and \leq_{2} are preorders on X.

Relation of FM to Urquhart and Allwein

Generalizing Urquhart, a doubly preordered structure is a triple $\left(X, \leq_{1}, \leq_{2}\right)$ where X is a set and \leq_{1} and \leq_{2} are preorders on X.

Then $\square_{2} \neg$ and $\square_{1} \neg$ form an antitone Galois connection between $\operatorname{Up}_{1}(X)$ and $\mathrm{Up}_{2}(X)$.

Relation of FM to Urquhart and Allwein

Generalizing Urquhart, a doubly preordered structure is a triple $\left(X, \leq_{1}, \leq_{2}\right)$ where X is a set and \leq_{1} and \leq_{2} are preorders on X.

Then $\square_{2} \neg$ and $\square_{1} \neg$ form an antitone Galois connection between $\mathrm{Up}_{1}(X)$ and $\mathrm{Up}_{2}(X)$. Hence $\square_{1} \diamond_{2}$ is a closure operator on $\mathrm{Up}_{1}(X)$, and the $\square_{1} \diamond_{2}$-fixpoints ordered by inclusion form a complete lattice.

Relation of FM to Urquhart and Allwein

Generalizing Urquhart, a doubly preordered structure is a triple $\left(X, \leq_{1}, \leq_{2}\right)$ where X is a set and \leq_{1} and \leq_{2} are preorders on X.

Then $\square_{2} \neg$ and $\square_{1} \neg$ form an antitone Galois connection between $\mathrm{Up}_{1}(X)$ and $\mathrm{Up}_{2}(X)$. Hence $\square_{1} \diamond_{2}$ is a closure operator on $\mathrm{Up}_{1}(X)$, and the $\square_{1} \diamond_{2}$-fixpoints ordered by inclusion form a complete lattice.

Let the canonical structure of a complete lattice L be $\left(X, \leq_{1}, \leq_{2}\right)$:
(1) $X=\left\{(a, b) \in L^{2} \mid a \not \leq b\right\}$;
(2) $(a, b) \leq_{1}(c, d)$ iff $a \leq c$;
(3) $(a, b) \leq_{2}(c, d)$ iff $b \geq d$.

Relation of FM to Urquhart and Allwein

Generalizing Urquhart, a doubly preordered structure is a triple $\left(X, \leq_{1}, \leq_{2}\right)$ where X is a set and \leq_{1} and \leq_{2} are preorders on X.

Then $\square_{2} \neg$ and $\square_{1} \neg$ form an antitone Galois connection between $\mathrm{Up}_{1}(X)$ and $\mathrm{Up}_{2}(X)$. Hence $\square_{1} \diamond_{2}$ is a closure operator on $\mathrm{Up}_{1}(X)$, and the $\square_{1} \diamond_{2}$-fixpoints ordered by inclusion form a complete lattice.

Let the canonical structure of a complete lattice L be $\left(X, \leq_{1}, \leq_{2}\right)$:
(1) $X=\left\{(a, b) \in L^{2} \mid a \not 又 b\right\}$;
(2) $(a, b) \leq_{1}(c, d)$ iff $a \leq c$;
(3) $(a, b) \leq_{2}(c, d)$ iff $b \geq d$.

Theorem (Allwein 1998)
If L is a complete lattice, then L is isomorphic to the lattice of
$\square_{1} \diamond_{2}$-fixpoints of the canonical structure of L.

Relation of FM to Urquhart and Allwein

Generalizing Urquhart, a doubly preordered structure is a triple $\left(X, \leq_{1}, \leq_{2}\right)$ where X is a set and \leq_{1} and \leq_{2} are preorders on X.

Then $\square_{2} \neg$ and $\square_{1} \neg$ form an antitone Galois connection between $\mathrm{Up}_{1}(X)$ and $\mathrm{Up}_{2}(X)$. Hence $\square_{1} \diamond_{2}$ is a closure operator on $\mathrm{Up}_{1}(X)$, and the $\square_{1} \diamond_{2}$-fixpoints ordered by inclusion form a complete lattice.

Let the canonical structure of a complete lattice L be $\left(X, \leq_{1}, \leq_{2}\right)$:
(1) $X=\left\{(a, b) \in L^{2} \mid a \not \leq b\right\}$;
(2) $(a, b) \leq_{1}(c, d)$ iff $a \leq c$;
(3) $(a, b) \leq_{2}(c, d)$ iff $b \geq d$.

Theorem (Allwein 1998)
If L is a complete lattice, then L is isomorphic to the lattice of
$\square_{1} \diamond_{2}$-fixpoints of the canonical structure of L.
If L is a locale, we can cut down \leq_{2} to be a subrelation of \leq_{1}. That's FM-semantics!

Conclusion

We have sketched the semantic hierarchy:

Kripke $<$ Beth $<$ Topological $<$ Dragalin $<$ Algebraic
Locales \equiv Nuclear \equiv Dragalin \equiv Cover \equiv FM.

Conclusion

We have sketched the semantic hierarchy:

$$
\begin{gathered}
\text { Kripke }<\text { Beth }<\text { Topological }<\text { Dragalin }<\text { Algebraic. } \\
\text { Locales } \equiv \text { Nuclear } \equiv \text { Dragalin } \equiv \text { Cover } \equiv \text { FM. }
\end{gathered}
$$

Open question: for which of the strict inequalities $S<S^{\prime}$ are there S-incomplete but S^{\prime}-complete SI-logics?

Conclusion

We have sketched the semantic hierarchy:

$$
\begin{gathered}
\text { Kripke }<\text { Beth }<\text { Topological }<\text { Dragalin }<\text { Algebraic. } \\
\text { Locales } \equiv \text { Nuclear } \equiv \text { Dragalin } \equiv \text { Cover } \equiv \text { FM. }
\end{gathered}
$$

Open question: for which of the strict inequalities $S<S^{\prime}$ are there S-incomplete but S^{\prime}-complete SI-logics?

Can the more concrete representations of locales help answer the question of locale (in)completeness of SI-logics?

Kripke $<$ Beth $<$ Topological $<$ Dragalin $<$ Algebraic.
Locales \equiv Nuclear \equiv Dragalin \equiv Cover \equiv FM.

Thank you!

From Kripke to Beth

From Kripke to Beth

Bethification. Given a poset $\mathfrak{F}=(X, \leq)$, its Bethification $\mathfrak{F}_{b}=\left(X_{b}, \leq_{b}\right)$ is defined by:

From Kripke to Beth

Bethification. Given a poset $\mathfrak{F}=(X, \leq)$, its Bethification $\mathfrak{F}_{b}=\left(X_{b}, \leq_{b}\right)$ is defined by:

- X_{b} is the set of all pairs $\langle x, n\rangle$ where $x \in X$ and $n \in \mathbb{N}$;

From Kripke to Beth

Bethification. Given a poset $\mathfrak{F}=(X, \leq)$, its Bethification $\mathfrak{F}_{b}=\left(X_{b}, \leq_{b}\right)$ is defined by:

- X_{b} is the set of all pairs $\langle x, n\rangle$ where $x \in X$ and $n \in \mathbb{N}$;
- $\langle x, n\rangle \leq_{b}\left\langle x^{\prime}, n^{\prime}\right\rangle$ iff $\left[x=x^{\prime}\right.$ and $\left.n \leq n^{\prime}\right]$ or $\left[x \leq x^{\prime}\right.$ and $\left.n<n^{\prime}\right]$.

From Kripke to Beth

Bethification. Given a poset $\mathfrak{F}=(X, \leq)$, its Bethification $\mathfrak{F}_{b}=\left(X_{b}, \leq_{b}\right)$ is defined by:

- X_{b} is the set of all pairs $\langle x, n\rangle$ where $x \in X$ and $n \in \mathbb{N}$;
- $\langle x, n\rangle \leq_{b}\left\langle x^{\prime}, n^{\prime}\right\rangle$ iff $\left[x=x^{\prime}\right.$ and $\left.n \leq n^{\prime}\right]$ or $\left[x \leq x^{\prime}\right.$ and $\left.n<n^{\prime}\right]$.

One can think of the second coordinate of each pair as the time according to a discrete clock.

From Kripke to Beth

Bethification. Given a poset $\mathfrak{F}=(X, \leq)$, its Bethification $\mathfrak{F}_{b}=\left(X_{b}, \leq_{b}\right)$ is defined by:

- X_{b} is the set of all pairs $\langle x, n\rangle$ where $x \in X$ and $n \in \mathbb{N}$;
- $\langle x, n\rangle \leq_{b}\left\langle x^{\prime}, n^{\prime}\right\rangle$ iff $\left[x=x^{\prime}\right.$ and $\left.n \leq n^{\prime}\right]$ or $\left[x \leq x^{\prime}\right.$ and $\left.n<n^{\prime}\right]$.

One can think of the second coordinate of each pair as the time according to a discrete clock.

The definition of \leq_{b} reflects the idea that one may remain at the same state x for all time or one may transition from x to a distinct extension x^{\prime} of x, which takes time.

From Kripke to Beth

Bethification. Given a poset $\mathfrak{F}=(X, \leq)$, its Bethification $\mathfrak{F}_{b}=\left(X_{b}, \leq_{b}\right)$ is defined by:

- X_{b} is the set of all pairs $\langle x, n\rangle$ where $x \in X$ and $n \in \mathbb{N}$;
- $\langle x, n\rangle \leq_{b}\left\langle x^{\prime}, n^{\prime}\right\rangle$ iff $\left[x=x^{\prime}\right.$ and $\left.n \leq n^{\prime}\right]$ or $\left[x \leq x^{\prime}\right.$ and $\left.n<n^{\prime}\right]$.

One can think of the second coordinate of each pair as the time according to a discrete clock.

The definition of \leq_{b} reflects the idea that one may remain at the same state x for all time or one may transition from x to a distinct extension x^{\prime} of x, which takes time.

A state in the Bethification records the current time and one's current location in the Kripke frame.

Bethification (right) of a Kripke frame (left).

Bethification (right) of a Kripke frame (left).

Bethification Theorem: Let \mathfrak{F} be a poset and \mathfrak{F}_{b} its Bethification. Then $\operatorname{Up}(\mathfrak{F})$ is isomorphic to the locale of fixpoints of the Beth nucleus on $\operatorname{Up}\left(\mathfrak{F}_{b}\right)$.

From Beth to Topological

Given a poset $\mathfrak{F}=(X, \leqslant)$, let Y be the set of all maximal chains in X, and for $U \subseteq X$, let $[U]=\{\alpha \in Y \mid \alpha \cap U \neq \varnothing\}$.

From Beth to Topological

Given a poset $\mathfrak{F}=(X, \leqslant)$, let Y be the set of all maximal chains in X, and for $U \subseteq X$, let $[U]=\{\alpha \in Y \mid \alpha \cap U \neq \varnothing\}$.

Then the pair (Y, Ω) with

$$
\Omega=\{[U] \mid U \text { is a fixpoint of the Beth nucleus on } \operatorname{Up}(\mathfrak{F})\}
$$

is a topological space,

From Beth to Topological

Given a poset $\mathfrak{F}=(X, \leqslant)$, let Y be the set of all maximal chains in X, and for $U \subseteq X$, let $[U]=\{\alpha \in Y \mid \alpha \cap U \neq \varnothing\}$.

Then the pair (Y, Ω) with

$$
\Omega=\{[U] \mid U \text { is a fixpoint of the Beth nucleus on } \operatorname{Up}(\mathfrak{F})\}
$$

is a topological space, and the locale of fixpoints of the Beth nucleus on $\operatorname{Up}(\mathfrak{F})$ is isomorphic to the locale of open sets of the topological space (Y, Ω).

From Topological to Dragalin

For a topological space (X, Ω), consider the tuple (Ω, \leq, D) :

From Topological to Dragalin

For a topological space (X, Ω), consider the tuple (Ω, \leq, D) :

- $U \leq V$ iff $U \supseteq V$;

From Topological to Dragalin

For a topological space (X, Ω), consider the tuple (Ω, \leq, D) :

- $U \leq V$ iff $U \supseteq V$;
- $D(U)=\{\mathcal{B} \mid \exists x \in U: \mathcal{B}$ is a local base of x and $\bigcup \mathcal{B} \subseteq U\}$.

From Topological to Dragalin

For a topological space (X, Ω), consider the tuple (Ω, \leq, D) :

- $U \leq V$ iff $U \supseteq V$;
- $D(U)=\{\mathcal{B} \mid \exists x \in U: \mathcal{B}$ is a local base of x and $\bigcup \mathcal{B} \subseteq U\}$.

Then (Ω, \leq, D) is a Dragalin frame,

From Topological to Dragalin

For a topological space (X, Ω), consider the tuple (Ω, \leq, D) :

- $U \leq V$ iff $U \supseteq V$;
- $D(U)=\{\mathcal{B} \mid \exists x \in U: \mathcal{B}$ is a local base of x and $\bigcup \mathcal{B} \subseteq U\}$.

Then (Ω, \leq, D) is a Dragalin frame, and $\Omega(X)$ is isomorphic to the locale of fixpoints of the Dragalin nucleus j_{D} on $\operatorname{Up}(\Omega, \leq)$.

[^0]: ${ }^{1}$ In our paper, we work with chains closed under upper bounds instead of maximal chains in order to give more constructive proofs.

[^1]: ${ }^{1}$ In our paper, we work with chains closed under upper bounds instead of maximal chains in order to give more constructive proofs.

[^2]: ${ }^{1}$ In our paper, we work with chains closed under upper bounds instead of maximal chains in order to give more constructive proofs.

