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What does “choice-free” mean?

We give a choice-free topological duality for Boolean algebras.

We work in what Schechter (Handbook of Analysis and Its
Foundations) calls quasiconstructive mathematics:

“mathematics that permits conventional rules of reasoning
plus ZF + DC, but no stronger forms of Choice” (p. 404).

Note: only our applications, not the duality itself, uses DC.

Note: of course we won’t prove that every BA is isomorphic to a
field of sets, since this implies the Boolean Prime Filter Theorem.
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Slogans

Three slogans describing our duality:

“a mix of Stone and Tarski, connected by Vietoris”;

“possibility semantics (further) topologized”.

“the hyperspace approach, in contrast to the
pointfree approach”.
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Stone Representation of BAs

Theorem (Stone 1936). Every Boolean algebra is isomorphic to
the BA of clopen sets of some topological (Stone) space.

Marshall Stone (1903 - 1989)



Stone Representation of DLs

Theorem (Stone 1937). Every distributive lattice is isomorphic
to the distributive lattice of compact open sets of some
topological (spectral) space.

Marshall Stone (1903 - 1989)



Boolean algebra of regular open sets

Theorem (Tarski 1937). For every topological space X, the set
RO(X) of regular open subsets of X forms a Boolean algebra.

Alfred Tarski (1901 - 1983)



Regular open sets

A set U is regular open if Int(Cl(U)) = U.

For U,V ∈ RO(X) we put

U ∧ V = U ∩ V,

U ∨ V = Int(Cl(U ∪ V)),

¬U = Int(X \ U).
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Vietoris space

Theorem (Vietoris 1922, Stone version). For every Stone space
X its Vietoris space, i.e., the space of closed sets equipped with
the hit-and-miss topology, is again a Stone space.

Leopold Vietoris (1891 - 2002)



Vietoris space

Let X be a Stone space.

Then VX is the set of all non-empty closed subsets of X.

The upper Vietoris topology has the basis

[U] = {F ∈ VX : F ⊆ U}, U ∈ Clop(X).

The lower Vietoris topology has the subbasis

〈V〉 = {F ∈ VX : F ∩ V 6= ∅}, V ∈ Clop(X).

The Vietoris topology is the join of the upper and lower Vietoris
topologies.



Vietoris space

Let X be a Stone space.

Then VX is the set of all non-empty closed subsets of X.

The upper Vietoris topology has the basis

[U] = {F ∈ VX : F ⊆ U}, U ∈ Clop(X).

The lower Vietoris topology has the subbasis

〈V〉 = {F ∈ VX : F ∩ V 6= ∅}, V ∈ Clop(X).

The Vietoris topology is the join of the upper and lower Vietoris
topologies.



Vietoris space

Let X be a Stone space.

Then VX is the set of all non-empty closed subsets of X.

The upper Vietoris topology has the basis

[U] = {F ∈ VX : F ⊆ U}, U ∈ Clop(X).

The lower Vietoris topology has the subbasis

〈V〉 = {F ∈ VX : F ∩ V 6= ∅}, V ∈ Clop(X).

The Vietoris topology is the join of the upper and lower Vietoris
topologies.



Vietoris space

Let X be a Stone space.

Then VX is the set of all non-empty closed subsets of X.

The upper Vietoris topology has the basis

[U] = {F ∈ VX : F ⊆ U}, U ∈ Clop(X).

The lower Vietoris topology has the subbasis

〈V〉 = {F ∈ VX : F ∩ V 6= ∅}, V ∈ Clop(X).

The Vietoris topology is the join of the upper and lower Vietoris
topologies.



Stone representation

Stone representation uses the Prime Filter Theorem.

Let A be a Boolean algebra.

Let XA be the space of all prime filters.

The topology is generated by â = {x ∈ XA : a ∈ x}.

Then XA is a compact Hausdorff space with a clopen basis.

A is isomorphic to the Boolean algebra Clop(XA) of clopen sets.

This isomorphism ϕ : A→ Clop(XA) is given by ϕ(a) = â.
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Prime Filter Theorem

The Prime Filter Theorem is used for showing that ϕ is injective.

Suppose a � b. Then ↑a ∩ ↓b = ∅.

By the Prime Filter Theorem, there is a prime filter F such that
↑a ⊆ F and F ∩ ↓b = ∅.

So F ∈ ϕ(a) and F /∈ ϕ(b), implying ϕ(a) 6⊆ ϕ(b).

Our aim is to obtain Stone-like representation of
Boolean algebras choice free.

This will resemble Stone’s representation of distributive lattices.
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Choice-free Stone duality

Let A be a Boolean algebra.

Let XA be the space of all proper filters of A.

We generate a topology by â = {x ∈ XA : a ∈ x}.

Then XA is a spectral space, i.e., compact, T0, sober, and compact
open sets are closed under intersection and form a basis.

The specialization order 6 is the inclusion order ⊆ on the set of
proper filters.

A subset of X is 6-regular open if it is regular open in the
upset topology induced by 6.

Then (XA,6) is a separative poset, i.e., every principal upset
is regular open.
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Then XA is a spectral space, i.e., compact, T0, sober, and compact
open sets are closed under intersection and form a basis.

The specialization order 6 is the inclusion order ⊆ on the set of
proper filters.

A subset of X is 6-regular open if it is regular open in the
upset topology induced by 6.

Then (XA,6) is a separative poset, i.e., every principal upset
is regular open.



Choice-free Stone duality

Let A be a Boolean algebra.

Let XA be the space of all proper filters of A.

We generate a topology by â = {x ∈ XA : a ∈ x}.
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Choice-free Stone duality

CO(X) = {compact open subsets of X}.

Let CORO(XA) be the set of compact open 6-regular open sets.

If U ∈ CORO(XA), then Int6(X \ U) ∈ CORO(XA).

Then CORO(XA) is a Boolean algebra, where

U ∧ V = U ∩ V,

¬U = Int6(X \ U).
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Choice-free Stone duality

Theorem (Choice-free representation of BAs) Each Boolean
algebra A is isomorphic to the Boolean algebra CORO(XA).

This isomorphism ϕ : A→ CORO(XA) is given by ϕ(a) = â.

To show that ϕ is injective we do not need the PFT.

What kind of space is XA?
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UV-spaces

A UV-space is a T0 space X such that:

1 CORO(X) is closed under ∩ and Int6(X \ ·);

2 x 66 y⇒ there is a U ∈ CORO(X) s.t. x ∈ U and y /∈ U;

3 every proper filter in CORO(X) is CORO(x) for some x ∈ X.

Proposition. Every UV-space is a spectral space.
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Choice-free representation of BAs

Theorem (Choice-free representation of BAs) For each Boolean
algebra A there is a UV-space X such that A is isomorphic to
CORO(X).

This correspondence can be extended to a full duality of the
corresponding categories.

This duality is the topological version of the duality between
BAs and (filter-descriptive) possibility frames (Holliday 2015).
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Let X be a Stone space and UV(X) its upper-Vietoris space.

Then UV(X) is a UV-space.

Assuming the PFT, every UV-space is homeomorphic to UV(X)
for some Stone space X.
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Duality

Let X and X ′ be spectral spaces.

A map f : X → Y is called spectral if f−1(U) is compact open for
each compact open U.

A UV-map between UV-spaces X and X ′ is a spectral map
f : X → X ′ that is also a p-morphism:

if f(x) 6′ y′, then ∃y : x 6 y and f(y) = y′.

Theorem. The category of UV-spaces with UV-maps is dually
equivalent to the category of Boolean algebras with Boolean
homomorphisms.
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Duality dictionary

BA UV Stone
BA UV-space Stone space
homomorphism UV-map continuous map
filter ↑x, x ∈ X closed set
ideal U ∈ ORO(X) open set
principal filter U ∈ CORO(X) clopen set
principal ideal U ∈ CORO(X) clopen set
maximal filter {x}, x ∈ Max6(X) {x}, x ∈ X
maximal ideal X \ ↓x, x ∈ Max6(X) X \ {x}, x ∈ X
relativization subspace U ∈ CORO(X) subspace U ∈ Clop(X)
complete algebra complete UV-space ED Stone space
atom isolated point isolated point
atomic algebra Cl(Xiso) = X Cl(Xiso) = X
atomless algebra Xiso = ∅ Xiso = ∅
homomorphic image subspace induced by ↑x, x ∈ X closed set
subalgebra image under UV-map image under continuous map
direct product UV-sum disjoint union
canonical completion RO(X) ℘(X)
MacNeille completion RO({x ∈ X | ↑x ∈ CORO(X)}) RO(X)

Table: Dictionary for BA, UV, and Stone.



Example applications: antichains of BAs

By an antichain in a BA, we mean a collection C of elements
such that for all x, y ∈ C with x 6= y, we have x ∧ y = 0.

Proposition. Every infinite BA contains infinite chains and
infinite antichains.

The standard Stone duality proof uses the fact that if X is an
infinite set and U ⊆ X, then either U is infinite or X \U is infinite.

Our proof is very similar, but we use the fact that if X is an
infinite separative poset and U ∈ RO(X), then either U is
infinite or ¬U = Int6(X \U) = {x ∈ X | ∀y > x y 6∈ U} is infinite.
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Priestley-like duality

Assuming AC, the spectral duality of distributive lattices can be
reformulated in terms of Priestley spaces.

We will do the same for the duality via UV-spaces.

Let A be a BA.

Let XA be the space of all proper filters, with topology generated
by a subbasis of sets of the form

{â : a ∈ A}, {XA \ â : a ∈ A}.

Let 6 be the inclusion of filters.

Then (XA,6) is a Priestley space.
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Let 6 be the inclusion of filters.

Then (XA,6) is a Priestley space.



Priestley-like duality

Assuming AC, the spectral duality of distributive lattices can be
reformulated in terms of Priestley spaces.

We will do the same for the duality via UV-spaces.

Let A be a BA.

Let XA be the space of all proper filters, with topology generated
by a subbasis of sets of the form
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In addition, if ClopRO(X) = {clopen 6-regular open sets}:

1 if U ∈ ClopRO(X), then Int6(X \ U) ∈ ClopRO(X);

2 x 66 y⇒ there is a U ∈ ClopRO(X) s.t. x ∈ U and y /∈ U;

3 every proper filter in ClopRO(X) is ClopRO(x) for some
x ∈ X.
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algebra A is isomorphic to ClopRO(XA).

Such spaces are order-homeomorphic to (VX,⊆) for some Stone
space X.
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Conclusions and further directions

We developed choice-free topological duality for Boolean
algebras.

With choice this can be converted into a Priestley-like
order-topological duality.

We also have extensions of this duality to modal algebras
(modal logic) in connection with possibility semantics.

It should also be possible to give choice-free dualities for
distributive lattices and Heyting algebras (cf. Massas 2016).



Thank you!


