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MV-algebras

The infinitely valued propositional calculi t

have been introduced by tukasiewicz and
Tarski in 1930.

The algebraic models, MV-algebras, for this
logic was introduced by Chang in 1959.



MV-algebras

An MV-algebra is an algebra
A=(AIG_)I®I *IOI 1)

where (A, @, 0) is an abelian monoid, and for
all x,yeA the following identities hold:
XxX®1=1 x** =x

X*DY)FDy=xDy*)* Dx,
Xy =(x*Dy*)*.



MV -algebras

It is well known that the MV-algebra
S=([0,1], ®,®, * 0, 1), wherex®y=
min(1, x+y), x ® y = max(0, x+y -1), x* = 1-x,
generates the variety MV of all MV-algebras.

Let Q denote the set of rational numbers,
for(0#)n emw weset S, =(S,, D, ®, * 0, 1),
where S, ={0, 1/n-1, ..., n-2/n-1, 1} is also MV-
algebra.



/-groups

Let (G, u) be /-group with strong unite u.

Then I'(G,u) = ([O,u], ©®, *, 0) (Chang 1959,
Mundici 1986) is an MV-algebra, where

O,ul={a e G:0<La<u}
a®b=(a+b)Au,

a*=u-—a.



/-groups

A lattice-ordered abelian group (¢-group) is an
algebra (G, +, —, 0, v, A) such that (G, +, —, 0) is a
abelian group, (G, v, A) is a lattice, and + distri-
butes over v and A.

A strong unite of /-group Gisanelement u>0
of G such that for every a € G, there exists a
natural number m with a <mu.



Examples

C,=1(Z1),

C,=C=T(Z%,Z (1,0))

with generator (0, 1) = c,(= c),
C.=I(Zx,, ...%x.,Z (1,0, ..,0))

with generators
c,(=(0,0,..,1)),..,c,(=(0,1,..,0)),

where the number of factors Z is equal to m+1,
m > 1 and x,,, is the lexicographic product.



Perfect MV-algebras

From the variety of MV-algebras MV select
the subvariety MV(C) which is defined by the
following identity:

(Perf) 2(x?) = (2x)?,

that is MV(C) = MV+ (Perf) (Di Nola, Lettieri
1993) .



(—|C, O)

(c,0)

(0.0)

(0,—|C)



Perfect MV -algebras

(c,0) (0,c)

Rad(C?) U —Rad(C?)



Logic tP

t, is the logic corresponding to the variety
generated by perfect MV-algebras which coincides
with the set of all tukasiewicz formulas that are
valid in all perfect MV-chains, or equivalently that

are valid in the MV-algebra C. Actually, £, is the
logic obtained by adding to the axioms of
tukasiewicz sentential calculus the following axiom:

b (v d&lav o) (a&a)v(a&a)



Heyting algebra

A Heyting algebra
(H, v, An,—, 0, 1)
is a bounded distributive lattice
(H, v, A,0, 1)
with an additional binary operation
— : Hx H - Hsuch that foranya, b € H

x<a—>biffanx<h.

(Herex<yiffxAny=xiffxvy=y.)



Godel algebra

Godel algebras are Heyting algebras with the
linearity condition:

(x> y)Vv (y—>x) =1.

Let G be the variety of Godel algebras



L,G-algebra
An algebra
A ®, O, *, A v,—, 0,1)

is called L,G-algebra if
A ®, S, %0, 1)

is L,-algebra (i. e. an algebra from the variety generated by
perfect MV-algebras) and

(A, AV, —,0,1)

is a Godel algebra (i. e. Heyting algebra satisfying the
identity

(x > y) vy > x)=1).



L,G-algebra

1) xPy)Pz=xD(y® z); 10) xvy=(x®y*) Dy;

2) XD y=y® x; 11)xAy=(xDy*)®vy;

3) x®0=x; 12) (x > y) Ay=y;

4)xD1=1; 13) (x A (x> Yy) =xAy;

5)0* = 1; 14)x > (ynz)= (x—>y) Alx—>2);
6) 1* =0; 15)(x vy)>z=(x—>2) Aly—> 2);
7)xQ@y=(x*D y*)*; 16)(x > 0)*< ((x > 0)—> 0);
) (X*D y)*® y=(y*® x)* ® x;

9) 2(x?) = (2x)? 17) (x > y)*< (x* Dy).



L,G-algebra

The algebras

C.=I(Zx,, ..%,Z2(1,0,..,0), me w

are L,G-algebras. Denote by the same symbol
the L,G-algebra

(C,, ®, D, *,A,v,—, 0,1).



L,G-algebra

Theorem 1. The variety L,G is generated by the
algebra (C, ®, D, *, A, v,—, 0, 1).



Heyting-Brouwer logic

e Heyting-Brouwer logic (alias symmetric
ntuitionistic logic Int?) was introduced by C.
Rauszer (1974) as a Hilbert calculus with an
algebraic semantics.

* The variety of Skolem (Heyting-Brouwerian)
algebras are algebraic models for symmetric

Intuitionistic logic Int? (Rauszer 1974, Esakia
1978 ).




L,G-algebra

* Llet (A, ®,D, *,A,v,—>, 0, 1) be L,G-algebra.
Then A is a bi-Heyting (Heyting-Browerian)
algebra, where the pseudo-difference

b—-—a= (a*—> b*)* and ra=(ra*)*.

Let A be an L,G-algebra. A subset F — T is said to be
a Skolem filter | for Heyting-Browerian algebras
Rauszer 1974, Esakia 1978], if F is a MV-filter
(i,e.leF ifxe Fandx<y,theny eF, ifx,y eF
thenx®y e F)andifx € F,thenq rx € F.



L,G-algebra

Theorem 2. Let (A, ®, D, *, A, Vv, —, 0, 1) be
L.G-algebra and F Skolem filter. Then the
equivalence relation

X=y SX*Py)A(y*Dx) eF
is a congruence relation for L,G-algebra A.

A lattice of congruences of an L,G-algebra A
is isomorphic to a lattice of Skolem filters of
L.G-algebra A.



L,G-algebra

Theorem 3. The logic t,G is recursively
axiomatizable and charcharacterized by a

recursively enumerable class of recursive
algebras



L,G-algebra

Theorem 4. The logic t,G is decidable.



Topological spaces

A topological space X is said to be an MV -space if
there exists an MV -algebra A such that Spec(A) and
X are homeomorphic. It is well known that Spec(A)
with the specialization order (which coincides with
the inclusion between prime filters) forms a root
system. Actually any MV-space is a Priestly space
which is a root system.

An MV-space is a Priestley space X such that R(x) is
a chain for any x € X and a morphism between MV -
spaces is a strongly isotone map, i. e. a continuous
map f: X = Y such that f(R(x)) = R(f(x)) for all x € X.



Belluce’s functor

* On each MV-algebra A Belluce has defined a
binary relation = by the following stipulation:
X =y iff supp(x) = supp(y), where supp(x) is
defined as the set of all prime ideals of A not
containing the element x.



Belluce’s functor

= is a congruence with respect to @ and A. The resulting
set f#(A)(= A/ =) of equivalence classes is a bounded
distributive lattice, called the Belluce lattice of A. For
each x € A let us denote by f(x) the equivalence class of
X

Let f: A - B be an MV -homomorphism. Then f(f) is a
lattice homomorphism from f(A) to £(B) which is defined

as follows: A(f)(A(x)) = BAf(x)).

[ defines a covariant functor from the category of MV -
algebras to the category of bounded distributive lattices.
Moreover MV-space of A and Priestly space of (A) are

homeomorphic (Belluce).



Belluce’s functor

Dually, on each MV-algebra A is defined a
binary relation =* by the following stipulation:
X =* y iff supp*(x) = supp™*(y), where supp™*(x) is
defined as the set of all prime filters of A
containing the element x.



Belluce’s functor

=* js a congruence with respect to ® and v. The
resulting set 5*(A)(= A/ =) of equivalence classes is
a bounded distributive lattice. For each x € A let us
denote by /*(x) the equivalence class of x.

Let f: A = B be an MV -homomorphism. Then S*(f)
is a lattice homomorphism from £*(A) to f*(B) is

defined as follows: S*(f)(£*(x)) = £*(f(x)).

[* defines a covariant functor from the category of
MV -algebras to the category of bounded
distributive lattices. Moreover MV-space of A and
Priestly space of /*(A) are homeomorphic.



Belluce’s functor

Theorem 5. Let (A, ®, D, *, A, Vv, —, 0, 1) be
L.G-algebra. Then [*(A) is a Gédel algebra.



Belluce’s functor

Theorem 5. Let (A, ®, D, *, A, Vv, —, 0, 1) be
L.G-algebra. Then [*(A) is a Gédel algebra.

Theorem 6. Let (A, ®, D, *, A, v, —, O, 1) be
L,G-algebra. Then [*(A) is a bi-Heyting algebra,
i. e. the distributive lattice where there exist
Heyting implication and pseudo-difference.



Belluce’s functor

Theorem 7. Let (A, ®, D, *, A, Vv,—, 0, 1) be
L,G-algebra. Then the topological spaces of A
and [ *(A) are homeomorphic.

The space Spec(F *(A)) (= the set of prime filters
of Gédel algebra 3 *(A)) of £ *(A) is a cardinal
sum of chains.



L,G-space

* The set of prime Skolem filters of L,G-algebra
A, ordered by inclusion, is named by

L,G-space.
Let L,GS be the category of L,G-spaces
and strongly isotone symmetric maps
fiX>Y,ie.
f(R(X)) = Rfx)) and fRL,(x)) = R (f(x)).



Belluce’s functor

Theorem 8. Let {A},., be afamily of L,G -
algebras. Then

B A) = 1o, B%(A)

Theorem 9. Let f: A - B be a injective LG -
homomorphism between L,G -algebras A and B.

Then [*(f): f7(A) > (7 (B)

is a L,G —algebra injective homomorphism.



Belluce’s functor

Theorem 10. S *(F ,s(n)) is bi-Heyting algebra.



Priestley space

A Boolean space X is zero-dimensional, compact
and Hausdorf topological space.

A Priestley space is a triple (X,R), where X is a
Boolean space and R is an order relation on X
such that, for all x,y € X with xRy, there exists a
clopen up-set Vwithx € Vandy ¢ V.

A morphism between Priestley spaces is a
continuous order-preserving map.



Heyting space

Heyting space (or Esakia space) X is a Priestley
space such that R-1(U) is open for every open
subset U of X.

A morphism between Heyting spaces, called a
strongly isotone map, is a continuous map

f: X = Ysuch that f(R(x)) = R(f(x)) for all x € X.



Heyting space

» There exists the dual equivalence between the
categories of bounded distributive lattices D
and Priestley spaces PS

» There exists the dual equivalence between the
categories HA of Heyting algebras and
Heyting spaces HS.



Godel algebra

A Heyting algebra A is said
satisfies the linearity conc

to be Godel algebra if it
ition:

(a > b)v(b—a)=1.

It is well known that the H
algebras form root system
algebra is a Godel algebra

e

eyting spaces for Godel
s. Specifically, Heyting
if its set of prime lattice

ters is a root system (ordered by inclusion). So we

can define Godel space X as such kind Heyting space

that R(x) is a chain for any

X € X.



Godel algebra

» There exists the dual equivalence between the
categories of Godel algebra G and Godel
spaces GS

» Let H? be the variety of be-Heyting algebras
(symmetric Heyting algebras).

Let G2 be the variety selected from H? by the
identities:

(a > b)v(b—>a)=1, (a —b)A(b—a)=0.
Let G2 S be the category of G2 -spaces.



L,G-algebras

Let L,G2= LSP{C.: n € w) be the class of

algebras generated from {C.: n € w) by the
operators of direct product, subalgebras and

direct limit.
This class is a full subcategory of the category of
L ,G-algebras L,G.



L,G-algebras

Taking into account that G2 is locally finite and
any algebra can be represented as direct limit of
finitely generated subalgebras, we have that

G2=LSP{B*(C.): n € w}.



Duality

Theorem 12. Let we have two categories: L,G2 and
G’S. Then there exist contravariant functor

* S :L,GQ-> G?S and contravariant functor
* K :G?S - L,G%such that K (S(A)) = A for any
object A € L,G2 and S(K (X)) = X for any object
X € GS, i. e. the functors S and K are dense.
Moreover, the functor S : L,G? = G*S is full, but not

faithful and the functor K : G°S - L,G? is faithful,
but not full.



Free L,G-algebra

Theorem 13. The algebra B? x C? is a free
1-generated L,G-algebra with free generator
(0,1,c, c*), where B is two-element Boolean
algebra.



Free L,G-algebra

Theorem 13. The algebra B? x C? is a free
1-generated L,G-algebra with free generator
(0,1,c, c*), where B is two-element Boolean
algebra.




Free L,G-algebra

“ L,G-algebra C,, (m > 0) is generated by 2™
different generators and these are minimal
number of different generators.

% For1<n<m C,is generated by infinitely
many different m generators.



Free L,G-algebra

" m-generated free L,G-algebra F ,c(m), where
1< m, contains as a homomorphic image the

L.G-algebras

B2m x C_2™ and [I*_, C
forO<n<m, ke w.
L,G-space F ,g(m) consists of cardinal sum of
n-element chains, where 1 <n<m.



Projective L,G-algebras

Theorem 14. An L,G-algebra A is finitely
presented if A =F,,s(n)/[u) for some principal
Scolem filter generated by u € F,5(n) .



Projective L,G-algebras

Theorem 14. An L,G-algebra A is finitely
presented if A =F,,s(n)/[u) for some principal
filter generated by u € F,5(n) .

Theorem 15. Any finitely presented algebra
A € L,G? js projective.



Projective L,G-algebras

Theorem 16. Let A € L,G?. If S(A) is finite, then
A is projective in L,G2.

Corollary 17. Any finite product of finitely
generated totally ordered L,G-algebras is
projective.
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