

International Workshop on Topological Methods in Logic VI

July 2-6, 2018 Tbilisi, Georgia

On the variety of L_pG -algebras

Revaz Grigolia

Ivane Javakhishvili Tbilisi State University,

Department of Mathematics

Georgian Technical University, Institute of Cybernetics

Georgia

MV-algebras

The infinitely valued propositional calculi *Ł* have been introduced by Łukasiewicz and Tarski in 1930.

The algebraic models, MV-algebras, for this logic was introduced by Chang in 1959.

MV-algebras

An *MV-algebra* is an algebra

$$A = (A, \oplus, \otimes, *, 0, 1)$$

where $(A, \oplus, 0)$ is an *abelian monoid*, and for all $x,y \in A$ the following identities hold:

$$x \oplus 1 = 1$$
, $x^{**} = x$,
 $(x^* \oplus y)^* \oplus y = (x \oplus y^*)^* \oplus x$,
 $x \otimes y = (x^* \oplus y^*)^*$.

MV -algebras

It is well known that the MV-algebra $S = ([0, 1], \oplus, \otimes, *, 0, 1)$, where $x \oplus y = \min(1, x+y)$, $x \otimes y = \max(0, x+y-1)$, $x^* = 1-x$, generates the variety MV of all MV-algebras.

Let Q denote the set of rational numbers, for $(0 \neq)$ $n \in \omega$ we set $S_n = (S_n, \oplus, \otimes, *, 0, 1)$, where $S_n = \{0, 1/n-1, ..., n-2/n-1, 1\}$ is also MV-algebra.

ℓ-groups

Let (G, u) be ℓ -group with strong unite u. Then $\Gamma(G,u) = ([0,u], \oplus, *, 0)$ (Chang 1959, Mundici 1986) is an MV-algebra, where $[0,u] = \{a \in G : 0 \le a \le u\},$ $a \oplus b = (a+b) \land u,$ $a^* = u - a.$

ℓ-groups

A *lattice-ordered abelian group* (ℓ -group) is an algebra (G, +, -, 0, \vee , \wedge) such that (G, +, -, 0) is a abelian group, (G, \vee , \wedge) is a lattice, and + distributes over \vee and \wedge .

A *strong unite* of ℓ -group G is an element u > 0 of G such that for every $a \in G$, there exists a natural number m with $a \le mu$.

Examples

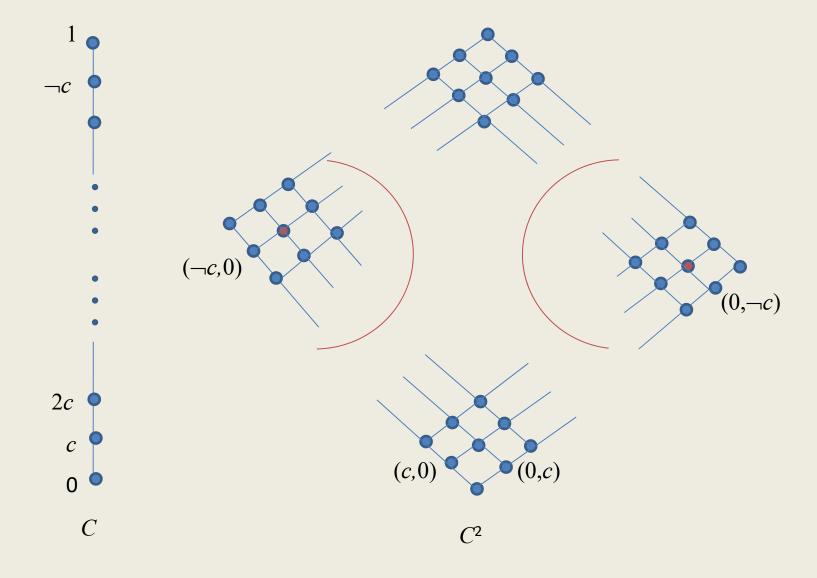
$$\begin{split} &C_0 = \Gamma(Z,1), \\ &C_1 = C = \Gamma(Z \times_{lex} Z, (1,0)) \\ &\text{with generator } (0,1) = c_1(=c), \\ &C_m = \Gamma(Z \times_{lex} ... \times_{lex} Z, (1,0,...,0)) \\ &\text{with generators} \\ &c_1(=(0,0,...,1)), ..., c_m(=(0,1,...,0)), \\ &\text{where the number of factors Z is equal to m+1,} \\ &m > 1 \text{ and } \times_{lex} \text{ is the lexicographic product.} \end{split}$$

Perfect MV-algebras

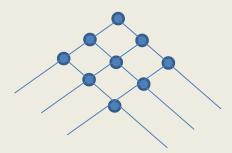
From the variety of *MV*-algebras **MV** select the subvariety **MV(C)** which is defined by the following identity:

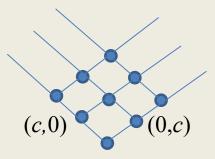
(Perf)
$$2(x^2) = (2x)^2$$
,

that is MV(C) = MV+ (Perf) (Di Nola, Lettieri 1993).



Perfect MV -algebras





 $Rad(C^2) \cup \neg Rad(C^2)$

Logic L_P

 \mathcal{L}_P is the logic corresponding to the variety generated by perfect MV-algebras which coincides with the set of all Łukasiewicz formulas that are valid in all perfect MV-chains, or equivalently that are valid in the MV-algebra C. Actually, \mathcal{L}_P is the logic obtained by adding to the axioms of Łukasiewicz sentential calculus the following axiom:

Heyting algebra

A Heyting algebra

$$(H, \vee, \wedge, \rightarrow, 0, 1)$$

is a bounded distributive lattice

$$(H, \vee, \wedge, 0, 1)$$

with an additional binary operation $\rightarrow : H \times H \rightarrow H$ such that for any $a, b \in H$

$$x \le a \rightarrow b$$
 iff $a \land x \le b$.

(Here
$$x \le y$$
 iff $x \land y = x$ iff $x \lor y = y$.)

Gödel algebra

Gödel algebras are Heyting algebras with the linearity condition:

$$(x \rightarrow y) \lor (y \rightarrow x) = 1.$$

Let **G** be the variety of Gödel algebras

An algebra

$$(A, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$$

is called L_pG -algebra if

$$(A, \otimes, \oplus, *, 0, 1)$$

is L_p -algebra (i. e. an algebra from the variety generated by perfect MV-algebras) and

$$(A, \wedge, \vee, \rightarrow, 0, 1)$$

is a Gödel algebra (i. e. Heyting algebra satisfying the identity

$$(x \rightarrow y) \lor (y \rightarrow x) = 1$$
.

$$1)(x \oplus y) \oplus z = x \oplus (y \oplus z);$$

2)
$$x \oplus y = y \oplus x$$
;

3)
$$x \oplus 0 = x$$
;

4)
$$x \oplus 1 = 1$$
;

$$5) 0* = 1;$$

6)
$$1* = 0$$
;

7)
$$x \otimes y = (x^* \oplus y^*)^*$$
;

8)
$$(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$$
;

9)
$$2(x^2) = (2x)^2$$

10)
$$x \vee y = (x \otimes y^*) \oplus y$$
;

11)
$$x \wedge y = (x \oplus y^*) \otimes y$$
;

12)
$$(x \rightarrow y) \land y = y$$
;

13)
$$(x \land (x \rightarrow y) = x \land y;$$

14)
$$x \rightarrow (y \land z) = (x \rightarrow y) \land (x \rightarrow z)$$
;

15)
$$(x \lor y) \rightarrow z = (x \rightarrow z) \land (y \rightarrow z);$$

16)
$$(x \to 0)^* \le ((x \to 0) \to 0)$$
;

17)
$$(x \to y)^* \le (x^* \oplus y)$$
.

The algebras

$$C_m = \Gamma(Z \times_{lex} ... \times_{lex} Z, (1, 0, ..., 0)), \ m \in \omega$$
 are L_pG -algebras. Denote by the same symbol the L_pG -algebra

$$(C_m, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1).$$

L_PG-algebra

Theorem 1. The variety L_pG is generated by the algebra $(C, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$.

Heyting-Brouwer logic

- Heyting-Brouwer logic (alias symmetric Intuitionistic logic Int²) was introduced by C.
 Rauszer (1974) as a Hilbert calculus with an algebraic semantics.
- The variety of Skolem (Heyting-Brouwerian) algebras are algebraic models for symmetric Intuitionistic logic Int² (Rauszer 1974, Esakia 1978).

• Let $(A, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$ be L_pG -algebra. Then A is a bi-Heyting (Heyting-Browerian) algebra, where the pseudo-difference $b - a = (a^* \rightarrow b^*)^*$ and $\Gamma a = (\pi a^*)^*$.

Let A be an L_pG -algebra. A subset $F \subset T$ is said to be a *Skolem filter* [for *Heyting-Browerian* algebras Rauszer 1974, Esakia 1978], if F is a MV-filter (i. e. $1 \in F$, if $x \in F$ and $x \le y$, then $y \in F$, if $x, y \in F$, then $x \otimes y \in F$) and if $x \in F$, then $y \in F$.

Theorem 2. Let $(A, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$ be L_pG -algebra and F Skolem filter. Then the equivalence relation

$$x \equiv y \iff (x^* \oplus y) \land (y^* \oplus x) \in F$$

is a congruence relation for L_pG -algebra A.

A lattice of congruences of an L_pG -algebra A is isomorphic to a lattice of Skolem filters of L_pG -algebra A.

Theorem 3. The logic L_pG is recursively axiomatizable and charcharacterized by a recursively enumerable class of recursive algebras

Theorem 4. The logic L_pG is decidable.

Topological spaces

A topological space X is said to be an MV -space if there exists an MV -algebra A such that Spec(A) and X are homeomorphic. It is well known that Spec(A) with the specialization order (which coincides with the inclusion between prime filters) forms a root system. Actually any MV-space is a Priestly space which is a root system.

An MV-space is a Priestley space X such that R(x) is a chain for any $x \in X$ and a morphism between MV - spaces is a strongly isotone map, i. e. a continuous map $f: X \to Y$ such that f(R(x)) = R(f(x)) for all $x \in X$.

On each MV-algebra A Belluce has defined a binary relation ≡ by the following stipulation:
 x ≡ y iff supp(x) = supp(y), where supp(x) is defined as the set of all prime ideals of A not containing the element x.

 \equiv is a congruence with respect to \oplus and \wedge . The resulting set $\beta(A)(=A/\equiv)$ of equivalence classes is a bounded distributive lattice, called the Belluce lattice of A. For each $x \in A$ let us denote by $\beta(x)$ the equivalence class of x.

Let $f: A \to B$ be an MV-homomorphism. Then $\beta(f)$ is a lattice homomorphism from $\beta(A)$ to $\beta(B)$ which is defined as follows: $\beta(f)(\beta(x)) = \beta(f(x))$.

 β defines a covariant functor from the category of MV - algebras to the category of bounded distributive lattices. Moreover MV-space of A and Priestly space of $\beta(A)$ are homeomorphic (Belluce).

Dually, on each MV-algebra A is defined a binary relation \equiv^* by the following stipulation: $x \equiv^* y$ iff $supp^*(x) = supp^*(y)$, where $supp^*(x)$ is defined as the set of all prime filters of A containing the element x.

 \equiv^* is a congruence with respect to \otimes and \vee . The resulting set $\beta^*(A)(=A/\equiv)$ of equivalence classes is a bounded distributive lattice. For each $x \in A$ let us denote by $\beta^*(x)$ the equivalence class of x.

Let $f: A \to B$ be an MV-homomorphism. Then $\beta^*(f)$ is a lattice homomorphism from $\beta^*(A)$ to $\beta^*(B)$ is defined as follows: $\beta^*(f)(\beta^*(x)) = \beta^*(f(x))$.

 β^* defines a covariant functor from the category of MV-algebras to the category of bounded distributive lattices. Moreover MV-space of A and Priestly space of $\beta^*(A)$ are homeomorphic.

Theorem 5. Let $(A, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$ be L_pG -algebra. Then $\beta^*(A)$ is a Gödel algebra.

Theorem 5. Let $(A, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$ be L_pG -algebra. Then $\beta^*(A)$ is a Gödel algebra.

Theorem 6. Let $(A, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$ be L_pG -algebra. Then $\beta^*(A)$ is a bi-Heyting algebra, i. e. the distributive lattice where there exist Heyting implication and pseudo-difference.

Theorem 7. Let $(A, \otimes, \oplus, *, \wedge, \vee, \rightarrow, 0, 1)$ be L_pG -algebra. Then the topological spaces of A and $\beta *(A)$ are homeomorphic.

The space $Spec(\beta^*(A))$ (= the set of prime filters of Gödel algebra $\beta^*(A)$) of $\beta^*(A)$ is a cardinal sum of chains.

L_pG-space

• The set of prime Skolem filters of L_pG -algebra A, ordered by inclusion, is named by L_pG -space.

Let L_pGS be the category of L_pG -spaces and strongly isotone symmetric maps $f: X \to Y$, i. e.

$$f(R_X(x)) = R_Y(f(x))$$
 and $f(R^{-1}_X(x)) = R^{-1}_Y(f(x))$.

Theorem 8. Let $\{A_i\}_{i\in I}$ be a family of L_pG - algebras. Then

$$\beta^*(\prod_{i\in I}A_i)\cong\prod_{i\in I}\beta^*(A_i)$$

Theorem 9. Let $f: A \rightarrow B$ be a injective L_pG - homomorphism between L_pG -algebras A and B. Then $\beta^*(f): \beta^*(A) \rightarrow \beta^*(B)$ is a L_pG -algebra injective homomorphism.

Theorem 10. $\beta * (F_{LpG}(n))$ is bi-Heyting algebra.

Priestley space

A *Boolean space X* is zero-dimensional, compact and Hausdorf topological space.

A *Priestley space* is a triple (X,R), where X is a Boolean space and R is an order relation on X such that, for all $x,y \in X$ with xRy, there exists a clopen up-set V with $x \in V$ and $y \notin V$.

A morphism between Priestley spaces is a continuous order-preserving map.

Heyting space

Heyting space (or Esakia space) X is a Priestley space such that $R^{-1}(U)$ is open for every open subset U of X.

A morphism between Heyting spaces, called a strongly isotone map, is a continuous map

 $f: X \to Y$ such that f(R(x)) = R(f(x)) for all $x \in X$.

Heyting space

There exists the dual equivalence between the categories of bounded distributive lattices **D** and Priestley spaces **PS**

There exists the dual equivalence between the categories **HA** of Heyting algebras and Heyting spaces **HS**.

Gödel algebra

A Heyting algebra A is said to be Gödel algebra if it satisfies the linearity condition:

$$(a \rightarrow b) \lor (b \rightarrow a) = 1.$$

It is well known that the Heyting spaces for Gödel algebras form root systems. Specifically, Heyting algebra is a Gödel algebra if its set of prime lattice filters is a root system (ordered by inclusion). So we can define *Gödel space* X as such kind Heyting space that R(x) is a chain for any $x \in X$.

Gödel algebra

- There exists the dual equivalence between the categories of Gödel algebra **G** and Gödel spaces **GS**
- ➤ Let H² be the variety of be-Heyting algebras (symmetric Heyting algebras).

Let **G**² be the variety selected from **H**² by the identities:

$$(a \to b) \lor (b \to a) = 1, (a - b) \land (b - a) = 0.$$

Let G^2 S be the category of G^2 -spaces.

L_pG-algebras

Let $L_pG^Q = LSP\{C_n : n \in \omega\}$ be the class of algebras generated from $\{C_n : n \in \omega\}$ by the operators of direct product, subalgebras and direct limit.

This class is a full subcategory of the category of L_pG -algebras $\mathbf{L_pG}$.

L_pG-algebras

Taking into account that **G**² is locally finite and any algebra can be represented as direct limit of finitely generated subalgebras, we have that

$$G^2 = LSP\{\beta *(C_n): n \in \omega\}.$$

Duality

Theorem 12. Let we have two categories: L_pG^Q and G^2S . Then there exist contravariant functor

- $S: L_pG^Q \rightarrow G^2S$ and contravariant functor
- $K : \mathbf{G}^2\mathbf{S} \to \mathbf{L_p}\mathbf{G}^Q$ such that $K (S(A)) \cong A$ for any object $A \in \mathbf{L_p}\mathbf{G}^Q$ and $S(K(X)) \cong X$ for any object $X \in \mathbf{GS}$, i. e. the functors S and K are dense.

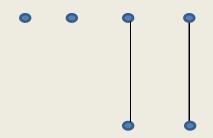
Moreover, the functor $S: \mathbf{L_pG^Q} \to \mathbf{G}^2\mathbf{S}$ is full, but not faithful and the functor $K: \mathbf{G}^2\mathbf{S} \to \mathbf{L_pG^Q}$ is faithful, but not full.

Free *L_pG*-algebra

Theorem 13. The algebra $B^2 \times C^2$ is a free 1-generated L_pG -algebra with free generator $(0,1,c,c^*)$, where B is two-element Boolean algebra.

Free *L_pG*-algebra

Theorem 13. The algebra $B^2 \times C^2$ is a free 1-generated L_pG -algebra with free generator $(0,1,c,c^*)$, where B is two-element Boolean algebra.



Free *L_PG*-algebra

- \clubsuit L_pG -algebra C_m (m > 0) is generated by 2^m different generators and these are minimal number of different generators.
- For 1 < n < m C_n is generated by infinitely many different m generators.

Free *L_pG*-algebra

■ m-generated free L_pG -algebra $F_{LpG}(m)$, where 1 < m, contains as a homomorphic image the L_pG -algebras

$$B^{2m} \times C_m^{2m}$$
 and $\prod_{i=1}^k C_n^{(i)}$

for 0 < n < m, $k \in \omega$.

 L_PG -space $F_{LpG}(m)$ consists of cardinal sum of n-element chains, where $1 \le n \le m$.

Projective *L_PG-algebras*

Theorem 14. An L_pG -algebra A is finitely presented if $A = F_{LpG}(n)/[u)$ for some principal Scolem filter generated by $u \in F_{LpG}(n)$.

Projective *L_PG-algebras*

Theorem 14. An L_pG -algebra A is finitely presented if $A = F_{LpG}(n)/[u)$ for some principal filter generated by $u \in F_{LpG}(n)$.

Theorem 15. Any finitely presented algebra $A \in L_PG^Q$ is projective.

Projective *L_PG-algebras*

Theorem 16. Let $A \in \mathbf{L_pG^Q}$. If S(A) is finite, then A is projective in $\mathbf{L_pG^Q}$.

Corollary 17. Any finite product of finitely generated totally ordered L_pG -algebras is projective.

THANK YOU